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Abstract: Fault diagnosis is vital for normal operation of the rotating motor. An effective and reliable deep learning method
known as stacked denoising autoencoder (SDAE) is investigated in this paper, which can extract the features from the pending
signals with disturbances. Deep adaptive networks are designed to extract features automatically from time domain data and
frequency domain data of motor vibration signal, respectively. Then, the network parameters of the SDAE are trained to
reconstruct the signal features, and clustering results are investigated. Finally, a classification layer is added to the top layer of the
SDAE network for the fault isolation. It is shown that, the diagnosis accuracy with input of vibratory frequency signal is higher
than that of time domain signal. The features extracted by SDAE can represent complex mapping relationships between signal
and various running status, and the accuracy is improved comparing with traditional fault diagnosis methods.
Key Words: Rotating motor, Fault diagnosis, SDAE, Deep learning.



1 Introduction
In recent years, the high-speed railways have experienced

a rapid development throughout the world, hence there’s a
higher requirement for the safety performance of high-speed
trains[1]. With the growth of running time, actuators and
sensors of the high-speed railways system are degrading
with age. These fatigued components are likely to have
various slowly developing faults, which will increase the
risk of serious accidents in the whole system[2].Rotating
motor is the traction power equipment, whose reliability
relates directly to the train operation safety[3]. Any motor
failure will cause unwanted downtime, expensive repair
procedures, and even human casualties. As and effective
component of condition-based maintenance, fault diagnosis
has gained much attention to guarantee safe motor
operations[4]. Locomotive rotating motor fault diagnosis is
a critical technique mean to ensure the reliability of the
high-speed railways. So the researched problems in the
paper have important prospect of engineering application.
In the past few years, numerous physical models of

electrical motors have been developed. Most of them are
based either on finite-element modeling[5] or on analytical
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modeling[6].And numerous studies of motor fault detection
and diagnosis have been reported in the literature [7,8,9,10],
which could be categorized as model-based approaches and
data-driven approaches. Model based approaches mainly
rely on an accurate mathematical model of the rotating
motor and typically include observer based techniques,
Kalman filter and estimators, and parity equations. However,
in practice, model-based approaches often fail to work due
to the difficulty in modeling multiple coupling in system
parameters and unexpected disturbances. In contrast,
data-driven approaches do not require physical or accurate
mathematical models but directly use the measured sensor
data to infer the fault detection system. These approaches
mainly involve signature analysis and artificial intelligence.
The signature extraction based approach is utilized by
surveying fault signatures in time or frequency domain.
Signatures extracted from recorded signals are employed to
diagnose faults. Significant amount of research has been
done in this area[11]. Motor conditions can be reflected by
vibratory[12], acoustic[13], thermal[14] and electrical[15]
measurements, among others. Signals from vibration
sensors are usually measured and compared with reference
measurements in order to interpret motor conditions. The
methods used to analyze these signals include probabilistic
analysis[16], frequency analysis[17], time-domain analysis
[18], and finite-element analysis[19]. Among these methods,
the frequency analysis approach is the most popular one.
This popularity is most probably due to the availability of
Fourier transform technique. The frequency analysis
technique involves frequency analysis of the vibration signal
and further processing of the resulting spectrum to obtain
clearly defined diagnosis information[20]. As the data is
generally collected faster than diagnosticians can analyze it,
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there is an urgent need for diagnosis methods that can
effectively analyze massive amounts of data and provide
accurate diagnosis results automatically. These types of
methods are called intelligent fault diagnosis methods.
Traditional machine learning approaches like K-nearest[21],
Support Vector Machine (SVM)[22], particle swarm SVM
[23], logistic regression[24] and Dempster-Shafer evidence
theory[25] are used for obtaining clearly defined diagnosis
information such as fault detection and isolation. However,
some challenges in fault detection of rotating motors still
remain. One major challenge lies in their nonlinearity,
unknown disturbances as well as significant measurement
noise. In addition, manual feature extraction often makes
raw signals lose a certain part. Thus, it is necessary to
adaptively mine the characteristics hidden in measured
signals to reflect the different health conditions of the
machinery, instead of manually extracting and selecting
features.
In recent years, Deep learning has the potential to

overcome the aforementioned deficiencies in current
intelligent diagnosis method. Compared to current shallow
machine learning algorithms, deep learning-based methods
attempt to model high-level abstractions in data using
multiple processing layers with complex structures,
resulting in better representations from the point of view of
simplifying a learning task from input examples[26]. In
consideration of the similarity between health states of
complex rotating motor and heterogeneous data in image
pattern classification problems with high-dimensionality,
deep learning methods may show great potential in system
fault diagnosis with respect to the advantage of a dominant
training mechanism and deep learning architecture[27].
The existing methods of rotating motor fault diagnosis

mainly include: classifying by artificially extracted features
or by traditional supervised learning network.The former
method depends on very few artificial extracted features,
and makes raw signals lose a certain part features, so the
correct rate of diagnosis is low. The latter method relies on a
large number of labeled data sets for training.In this paper,
the stacked denoising autoencoder (SDAE)[28],which is a
kind of deep learning network, is used to diagnose the
rotating motor fault of high-speed train. The network codes
to learn the probability distribution of all kinds of samples,
based on the unlabeled data sets.A classifier is added to the
top layer of network, and is trained by supervised learning
method. Only a small number of labeled data is needed in
the training process.The SDAE based fault diagnosis
method consists of three consecutive stages: first, the raw
signal of vibration was converted into a frequency domain
using DFT. Subsequently, the frequency signal was used as
input to the SDAE, where it utilized these preprocessed
samples for carrying out unsupervised training to realize
motor fault diagnosis. Third, the proposed SDAE models are
validated using testing datasets. The fault diagnosis
accuracy of the proposed deep learning method can be used
to form a knowledge base to determine if the approach is
applicable for detecting and classifying the health states of
complex systems with inevitable interference.
The method researched in this paper can overcome the

shortcomings of the traditional supervised learning method,
which relies on a large number of labeled data sets, and
ensures the ability of the network to explain the types of the

unknown faults, so the accuracy and efficiency of fault
diagnosis are improved.This paper is organized as follows:
SDAE methods are introduced in Section 2. In Section 3, a
description of data preprocessing and model design is
provided. In Section 4, the proposed model is validated
using test datasets collected from the drivetrain diagnostics
simulator system. In Section 5, the paper is concluded.

2 Fault diagnosis using the SDAE-BASED
CLASSIFICATION

2.1 Autoencoder

A basic autoencoder (AE) is a fully-connected three-layer
feed forward neural network with one hidden layer.
Typically, the AE has the same number of neurons in the
input layer and the output layer and reproduces its inputs at
its output layer. Therefore, AE is trained in an unsupervised
manner without any label information, which is suitable for
learning the health reference model considered in this study.
Similar to PCA, the AE aims to encode the input data to an
intermediate representation which preserves most
information of the input data so as to reconstruct it [29]. Fig.
1 gives the structure of AE.

Fig. 1: Autoencoder
The dimension of the hidden layers can be either smaller

than the input dimension when the goal is feature
compression, or larger when the goal is mapping the feature
to a higher dimensional space. An autoencoder tries to find
deterministic mapping between input units x and hidden
nodes by means of a nonlinear function

1 1 1 1y= ( ) ( )f x s W x b   (1)
where 1W is a m n weight matrix, 1b is a bias vector, and

1(.)s is a nonlinear function such as sigmoid or tanh. This
mapping is called the encoder. The latent representation is
then mapped back to reconstruct the input signal with:

2 2 2 2z= ( ) ( )g y s W y b   (2)
where 2W is a n m weight matrix, 2b is a bias vector,

and 2 (.)s is either nonlinear function like 1(.)s or a linear
function. This mapping is called the decoder. The goal of
training is to minimize the loss function:
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where ( ) ( )( , )i iJ x z is the squared error between the input
and the output,  is the a regularization term to help prevent
overfitting by decreasing the magnitude of the weights.
To further improve the autoencoder performance, a

fine-tuning process using the back propagation algorithm is
applied on the basis of traditional gradient descent, where
the parameters of the autoencoder model are updated to
minimize the 1 1 2 2{ , , , }L W b W b training error.

2.2 Denoising Autoencoder

A problem usually arises in the self-learning process
when the ambient noise that cannot be ignored is mixed
within the dynamic vibration signals, which is hard to deal
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with manually because of the large number of samples to be
trained. In our study, to deal with complex noisy
multivariate data and capture the hidden nonlinear
correlations more robustly, we consider a newly developed
algorithm in the deep learning community, the denoising
autoencoder (DAE)[30], which has been extensively used
for unsupervised representation learning and as pre-training
building blocks in deep neural networks. The key idea of
DAE is to reconstruct the original input from a corrupted
one. Taking one autoencoder as an example, the data
destruction method undertaken in this study is described as
follows. Fig. 2 gives the structure of DAE.

Fig. 2: Denoising Autoencoder
Let 0 ( )q x be the joint distribution function concerned

with input samples:
0 0

( )( , , ) ( ) ( ) ( )

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f xq x x a q x q x x a (4)

where x and x denote the initial and corrupted input data,
respectively and a is the deterministic function of x . Hence
x is achieved by means of a stochastic mapping of

( )  Dx q x x . The autoencoder is thus applied for the
following feature reconstruction based on the un- supervised
learning process mentioned above. Note that the data
destruction process is conducted in all layers of the DAE
model instead of only the input layer.

2.3 Stacked Denosing Autoencoder

Stacked Denoising Autoencoder (SDAE) is the deep
version of a single DAE[31]. Fig. 3 illustrates the SDAE
architecture. The arrows indicate the direction of
information flow. As shown in Fig. 3, the SDAE structure is
a stacked multiple DAEs where the output of each DAE is

removed and the hidden layer of each DAE is the input to the
following one. Each DAE is trained independently and only
saves the input layer and the hidden layer. The decoder of
each DAE is abandoned.
To obtain the fault diagnosis, there is a classifier on the

top of SDAE, i.e. output layer. In this study, the softmax
regression algorithm is employed for multi-class
classification[26]. We suppose the training samples
are ( ) ( )( , )k kx y , and the label ( )ky is treated as the training
target for supervised optimization learning. Given an input x,
the classification probability ( )p y j x achieved by the
softmax regression algorithm for each
category ( 1,... )j j k can be expressed based on the
following hypothesis function:
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Where 1 2, ,...,   k refer to the model parameters.
To further improve the classification performance, a

fine-tuning process using the back propagation algorithm is
applied on the basis of traditional pattern recognition, where
the parameters of the SDAE model areupdated to minimize
the training error.

( )

( )

( )

1 1
1

1( ) 1{ }log





 


 
   
  




T i
j

T i
l

xn k
i

k x
i j

l

eJ y j
n e

(6)

Where 1{} is an indicative function, which means that,
when the value of the braces is true, the result is 1; otherwise,
the result is 0.

Fig. 3: The Structure of Stacked Denoising Autoencoder
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3 Data preprocessing
To address the health state identification problems

effectively with the SDAE, the first step is to identify the
data format and diagnosis targets. Under this method, we
have to preprocess the raw vibration signal and convert it to
frequency domain. The general frequency analysis method
is Fast Fourier Transform (FFT). FFT algorithm carries on
spectrum analysis in the signal period. The expression of
DFT is:

1
/

0

1( ) ( ) 





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N

j nt N

n

X k x n e
N

(7)

where ( )x n and ( )X k are sample sequence of signal and
the corresponding harmonic coefficients. The number of
sampling points decides the computation of the
transformation. FFT is a variety of DFT. The algorithm
complexity of DFT is N N , and the FFT is log( )N N .
When the sampling frequency is sF , the sequence

frequency F , the number of sampling points N, then the
FFT results of time domain sequence are N plural. Each
plural is a frequency of the signal. An important index about
spectrum analysis is frequency resolution, i.e. the minimum
identifiable space between two frequencies in spectrum. As
we know that the resolution of FFT is /sF N . To improve
this value, reducing the sampling frequency and increasing
the sampling point are required. The former reduces the
analysis range of frequency and cannot raise up frequency
resolution of high frequency band; the latter must increase
the length of data window, now along with the application of
computer, this is no longer a chief problem.

4 Experiment and Analysis
The motor data used in these experiments were collected

from the locomotive rotating motor in the drivetrain
diagnostics simulator system. Table 1 gives the
specifications.

Table 1: Specifications of Rotating Motor

Variables Data

Motor Speed 720r/min
Sampling Frequency 5120Hz

Sampling Point 5120
Frequency Resolution 1Hz

Maximum Frequency 2000Hz

Five experiments were carried out under different motor
health conditions (given in Table 2).

Table 2: Description of experiments

Motor Condition Description Label

Normal Normal Operation 0
Rotor Unbalance Caused by Rotor Washer 1

Bearing Ball Bearing Ball Damage 2
Bearing
Outer-ring

Indentation in the Outer-ring
Raceway 3

Bearing
Inner-ring

Peeling Pit in the Inner-ring
Raceway 4

Samples amounting to 3000 were collected for each fault
in this method, with the 5120 points of vibration signal for
each sample. We randomly selected 20% of them as the test
samples, and the rest as a training samples. Fig. 4 gives the
vertical vibration signal.

Fig. 4: Vibration Signal

As shown in Fig.4,The vibration signal embodies the
energy accumulation. When the motor fails, the energy
distribution of the vibration signal will change
correspondingly, and these changes will be reflected in the
vibration data collected.Generally, the fault frequency is one
or multiple times of rotation frequency. For example, rotor
unbalance fault frequency is equal to motor frequency.
Passing frequency of bearing outer-ring is multiple of the
motor speed as well as the number of bearing ball, and that
of bearing inner-ring follows the similar rules.
Based the proposed method, we use the time domain

signal and the frequency domain signal of vibration to train
the SDAE neural network. At the same time, for comparison
to traditional intelligent method, we use SVM based fault
diagnosis. To analysis the accuracy in different layers, this
study constructs several SDAE with different layers. From
the experiments, it can be seen that when the hidden layers is
4, the batch-size is 34 and the learning rate is 0.01, the
SDAE can give a good performance.Fig. 5 has shown the
results of the comparison.
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Fig. 5: Accuracy of Training

As shown in Fig.5, the accuracy rate increases with the
sample size. Comparative analysis indicates the following
two points.
(1) Compared with time domain signal, SDAE can give

a higher accuracy rate training by frequency signal.The main
reason is that fault frequency is one or multiple times of
rotation frequency. When bearing and rotor rotates, the
vibration signal will have a larger component overlay the
corresponding frequency. It is relatively difficult for neural
network to extract effective features from vibration signals
in time domain. Time-frequency transformation is a data
preprocessing. After data transformation, the reliability of
feature extraction will be higher.
(2) The SDAE network proposed can diagnose faults for

rotating motors of high speed train.The diagnostic accuracy
of SDAE is 99.6% when the sample size is 8000. SDAE can
give a better performance than SVM. The reason is that the
unsupervised feature learning method is used in
AutoEncoder network. By training on the unlabeled data
sets, probability distribution of various samples can be
learned by SDAE network. The classifier can be trained by
only a small number of labeled data sets. However, the
traditional supervised learning method SVM is poor in
learning data distribution, so its diagnostic accuracy is
relatively low.
PCA is essential a linear method, which can give the

visualized results. This study use the PCA to extract the
features of the fourth layer. Fig. 6 gives the results.

(a) 50 training epochs

(b) 300 training epochs
Fig. 6: Features Extracted from SDAE

Fig. 6(a) is the features extracted by SDAE for 50 train
epochs; Fig. 6(b) is the features extracted by SDAE for 300
train epochs. It shows that when the training epoch is 300,
the clustering of the faults can give good performance. For
50 iterations, bearing ball faults (label: 2) and bearing
inner-ring fault (label: 4) can be isolated; rotor imbalance
(label: 1) and bearing outer-ring fault (label: 3) and normal
cannot divided successfully. For 300 iterations, each fault
can be identified.

5 Conclusion
This paper proposed an SDAE based fault diagnosis for

locomotive rotating motor. The proposed method extracts
the features of vibration signals by using unsupervised
learning. Without the labeled data, this method can give a
good performance for clustering and robustness. Given the
comparison with SVM, the proposed method can present
99.6% accuracy with suitable parameters. The real
experiments verify its effectiveness.
The future work should be focused on the following two

aspects：1) How to select the hidden layer number of the
network, and how to select the learning rate and other
parameters to improve the algorithm performance.2)Collect
vibration signal of rotating motor, when the locomotive
drivetrain system is actually operating. Train and test the
SDAE network on the data sets, and transplant the network
to the controlling system of high-speed train .
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