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Abstract
Generating co‐speech gestures for interactive digital humans remains challenging because
of the indeterministic nature of the problem. The authors observe that gestures generated
from speech audio or text by existing neural methods often contain less movement shift
than expected, which can be viewed as slow or dull. Thus, a new generative model coupled
with memory networks as dynamic dictionaries for speech‐driven gesture generation with
improved diversity is proposed. More specifically, the dictionary network dynamically
stores connections between text and pose features in a list of key‐value pairs as the memory
for the pose generation network to look up; the pose generation network then merges the
matching pose features and input audio features for generating the final pose sequences. To
make the improvements more accurately measurable, a new objective evaluation metric for
gesture diversity that can remove the influence of low‐quality motions is also proposed and
tested. Quantitative and qualitative experiments demonstrate that the proposed architec-
ture succeeds in generating gestures with improved diversity.
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1 | INTRODUCTION

With the continuous development of technologies such as
high‐speed wireless communication, power‐efficient mobile
computation, holographic high‐definition display, and data‐
driven artificial intelligence (AI), extended reality (XR) is
widely considered to be the next‐generation carrier of infor-
mation that will replace multimodal video contents in the near
future. A three‐dimensional (3D) immersive environment will
be provided by these synthetic realities that fascinate users with
a sensory experience similar to the real world. Using two‐
dimensional (2D) user interfaces on mobile devices today in
such realities may block users' direct and natural interaction
with the media content, downgrading the experience to a non‐
immersive level. Thus, novel interaction methods that are more
intuitive and human‐friendly are needed to be perfected before
the transition to the new era starts.

People exchange information mainly by communicating
with other people. Using digital humans or virtual avatars as
intermediaries when interacting in synthetic worlds can be
regarded as intuitive and natural. More specifically, people
mainly communicate by talking using language‐encoded voices.
The problem of generating voices from response text for
digital humans in an interactive session has been well resolved
by traditional and neural text‐to‐speech (TTS) technologies, as
they can now effortlessly generate human‐like voices with
tones and emotions, which can be seen as relatively deter-
ministic. However, simple observation in daily lives can show
that people naturally talk while performing accompanied body
gestures in most scenarios as well. Sometimes speeches without
gestures can be viewed as unnatural when people communi-
cate. Systems that can generate co‐speech gestures given input
speech text or audio can play important roles in future inter-
active sessions for making digital humans more natural.
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Besides, co‐speech gestures generated by such systems can also
be helpful for those with some form of hearing loss [43] or
understanding disability since co‐speech gestures can provide
auxiliary non‐verbal information. However, the problem of
generating gestures from speech voice audio or script text
remains challenging for its indeterministic nature, where there
exists a one‐to‐many mapping between the modalities. For the
same speech, there exist considerably wider range of possi-
bilities of acceptable co‐speech gestures than voices.

Solutions to this kind of generation problem are being made
increasingly feasible by the utilisation of neural networks in
recent years. Given sets of synchronised speech and gesture
data, neural models automatically learn the correlation between
the modalities and gain the ability to give results from previously
unseen speeches [2]. Nevertheless, it is observed that gestures
generated by neural methods from in‐the‐wild speeches seem to
be rather slow or dull, with less amount of movement shift than
expected, which appears to be less diverse than those performed
by a normal person. This may be explained by the total losses
used in the learning process of the models that sum up the losses
of all training samples. Guided by the losses, networks tend to
perform best when taking all training samples into consider-
ation, thus resulting in an averaged output.

To address this problem, we introduce dynamic dictio-
naries of pre‐stored features to neural generation architectures,
breaking the decoder's sole dependency on the averaged output
by learnt parameters of the encoders. This grants the decoder
of the generative network direct access to pose features
dynamically stored in the dictionaries from the training data-
sets, making the generation process more flexible and
comprehensive. Inspired by [3], we select memory networks to
play the role of the dictionary [1], which are commonly used in
numerous generation tasks with similar requirements in
different fields of study. In experiments, the memory‐network‐
based dictionaries succeeds in dynamically providing pose
features to the generator based on generative adversarial net-
works (GAN) and improving the diversity of the generated
gestures. Moreover, to ensure that the improvements we ach-
ieved are coming from the enhanced diversity instead of
degraded quality such as lower rhythmicity, lower human‐
likeness, or higher randomness, we also propose a new rela-
tive objective metric that intuitively represents the level of
diversity while eliminating those influences. With the new
metric, reproducible experiments supporting our opinions are
also conducted to show that said improvements are achievable
using proposed architectures.

Our main contributions can be summarised as follows:

� To further improve the diversity of the speech‐driven
gesture generation results, we propose a generative model
with an encoder‐decoder architecture, multiple backbone
choices, and memory networks introduced as dynamic dic-
tionaries that explicitly store connections between speech
and pose features.

� To accurately measure the diversity of the results with the
effects of random, unsmooth, or falsely rhythmed motions
eliminated, we propose a new metric for objective

evaluation of gesture diversity, utilising velocity changes in
pose sequences, with multiple threshold setups.

� To demonstrate those improvements are measurable and
plausible, we design multiple quantitative and qualitative
experiments including comparisons, ablation studies and
user studies.

2 | RELATED WORKS

2.1 | Speech‐driven gesture generation

Rule‐based methods are used in early studies to blend pre‐
captured or pre‐defined gestures stored in databases for pri-
mary interactive speech‐driven gesture generation applications
[23] before data‐driven methods become mainstream. For
example, by inferring the acoustic and semantic properties of
the utterance for virtual characters, rules are defined in Ref.
[24] to generate gestures and expressions. Rules to link a pre‐
defined set of unit gestures to keywords [25] are also used for
real‐world robots to perform actions when talking. Apart from
utilising rules that need to be handcrafted, approaches based
on probabilistic modelling are also used to solve this problem
[23]. For example, the authors in Ref. [26] infer motion state
distribution over a set of hidden states from the speech signal
and design an optimal‐policy controller based on conditional
random fields to select the optimal. In Ref. [27], the problem is
seen as a classification problem, and a neural model is pro-
posed for selecting a proper gesture for a given speech context.
Results given by these methods are more of a simple concat-
enation of pre‐defined gestures than generating new gestures,
drawing limited attention from researchers.

Data‐driven methods such as neural networks and deep
learning have made end‐to‐end speech‐driven gesture genera-
tion applications possible and attention‐drawing in recent
years. These approaches view the problem as a regression
problem instead of a classification problem. As a specialised
generation problem, human gesture generation can leverage
general deep generative models, including GANs [15] and
variational autoencoders (VAE) [28]. Speech2Gestures [4]
transform input audio spectrograms to generated gestures
using convolutional encoders and decoders with the guidance
of an adversarial loss. Seq2Seq [5] is designed to have an
encoder‐decoder architecture of attentional networks to
generate sequences of poses from text inputs. JointEmbedding
[6] creates human motion from description text by mapping
text and motion to the same embedding space. Trimo-
dalContext [2] adversarially trains multiple encoders and a
decoder based on recurrent neural networks (RNN) that takes
encoded multimodal data, such as text, audio, and speaker id,
as input, to generate gestures. In more recent works, more
complicated network architectures are designed to capture
certain decoupled properties of gesture data. By splitting the
latent code into shared and motion‐specific codes for VAE,
Audio2Gestures [29] explicitly models the audio‐motion
mapping for generation. The network in FreeMo [30] is
divided into a rhythmic motion branch and a pose mode
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branch that uses conditional VAEs for improved perfor-
mances. Fine‐grained gestures are generated in HA2G [31] by
extracting audio representations across semantic granularities
so that the entire human pose can be gradually rendered in a
hierarchical manner. The authors in Ref. [38] decouple gestures
into rhythmic and semantic gestures and build correspondence
between hierarchical embeddings of the speech and the mo-
tion. Also, new generative models such as flow‐based models
[39] and diffusion models, for example, DiffGesture, [40] are
applied to the field. Good quality gestures can be generated
controllably by these methods while they also come with
limited diversity or increased architectural complexity
compared to the proposed method. A comparison between
these existing methods is shown in Table 1.

2.2 | Vision transformers

In the most recent years, vision transformers (ViT) [36] are
becoming increasingly popular as a substitute for common
models such as convolutional neural networks (CNN) in vision
tasks, with the utilisation of the self‐attention mechanism and
parallelisable design. Originating in the field of natural language
processing (NLP), transformer models that can process
sequential input data all at once beat RNNs in performance
and are used as backbones in many big models [8]. In theory,
the multi‐head self‐attention mechanism with relative posi-
tional encoding can be viewed as a general case of convolution
operations, which allows transformers to gain the ability to
process images by directly viewing images divided into small
sections as sequences. Despite the advantages, it requires much
more effort to train transformers than CNN models from
scratch for the complex structures inside the modules. Fortu-
nately, we can instead fine‐tune existing transformers pre‐
trained from specific datasets, for example, ImageNet [37]
and audio spectrograms [13], to utilise their abilities in speech‐
driven gesture generation tasks.

2.3 | Memory networks

Memory networks can work as external augmentation modules
for common neural networks with long‐term memory that

stores explicit connections between domains or modalities.
Early applications of memory networks can be found in
algorithmic problem solving as neural Turing machines (NTM)
[32], or problems in the field of NLP such as question
answering (QA) tasks [33]. They are also introduced to prob-
lems, such as lifelong and one‐shot learning, for their ability to
memorise rare events [10]. Later, they are observed to work
well on dealing with image features. For example, in Ref. [34],
they are used for different tasks such as personalisation issues
of image captioning, generating a descriptive sentence for a
query image, and accounting for prior knowledge such as the
user's active vocabularies in previous documents. In Ref. [35],
memory networks are also used in alleviation of GAN training
problems in image generation tasks. Based on the similarity of
these applications, we believe that memory networks can also
be utilised in speech‐driven gesture generation to connect
modalities of speech and pose features.

3 | METHOD

In this section, we formulate the speech‐driven gesture gen-
eration problem and describe in detail how we introduce
memory networks to the generative model as dynamic dictio-
naries of connections between speech and pose features, which
breaks decoder's sole dependency on learnt parameters of the
encoders and bring diversity improvements for the result of the
speech‐driven gesture generation.

3.1 | Problem formulation

The speech‐driven gesture generation problem is the problem
of generating non‐verbal gesture sequences synchronised with
input speech audio or text. A gesture sequence can be defined
as a compound list of frames y containing 2D or 3D human
joint position or rotation. The speech audio can be pre-
processed and converted into spectrograms a so that they can
work better with common well‐performing feature extractors,
for example, convolutional networks or transformers. The text
is represented as a list of words aligned in time to the gesture
frames, one word for each frame, which can be further
embedded to vectors as network input t. For better non‐

TABLE 1 Advantages and disadvantages of existing speech‐driven gesture generation methods.

Category
Example
methods Advantages Disadvantages

Traditional methods Rule‐based methods [24, 25] High‐quality, smooth, and
meaningful
pre‐defined gestures.

Concatenation of limited gestures without new
gestures generated.

Probabilistic
modelling

[26, 27]

Large‐scale data‐driven
methods

Traditional generative
models

[2, 4–6] Automatic end‐to‐end learning with
targeted
design. New gestures generated
controllably.

Requires huge amount of training data. Increased
architectural complexity. Less‐than‐expected
diversity.

New architectural
designs

[29–31, 38]

New generative
models

[39, 40]
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sequential network compatibility, they are usually split into
subsequences with fixed lengths, padded if necessary. The goal
is to obtain a function y = F (a,t) that maps audio or text input
to the synchronising gesture sequence. Data‐driven methods
view this as a regression problem and design neural networks
to fit such functions. In this work, we design a neural network
which has a new architecture with memory networks that
improves the diversity of the generated results.

3.2 | Overview

The proposed architecture is designed in a multimodal fashion,
combining semantic and rhythmic connections between source
text or audio and target gesture modalities without specifically
designed NLP or other modules. The gestures are similarly
defined as in Ref. [2] to be sequences of human poses. For each
time frame in a sequence, 9 normalised directional vectors
converted from 3D coordinates of 10 upper body joints (spine,
head, nose, neck, left and right shoulders, left and right elbows,
and left and right wrists), centred at the spine, are listed in a
fixed order. Each directional vector points from a parent joint
towards a child joint and has a length of 1. The introduction of
directional vectors significantly stabilises the pose jittering
between frames by eliminating the influence of root translation

and bone length etc., since the locations of ground truth joints
are inaccurately extracted from in‐the‐wild videos. More details
of pose definition can be found in Ref. [1].

Before being fed into the generator or put into memory as
input, all modalities of synchronised data are subdivided into
groups of segments with equal temporal lengths lseq, padded if
necessary, and then processed by different feature extractors,
to features with fixed lengths, avoiding the instability and in-
accuracy of directly searching in raw data space. The text
feature extractor which takes the embedded text representation
as input is a sentence transformer fine‐tuned from a pre‐
trained MiniLM [7], a compressed model distilled from bidi-
rectional encoder representations from transformers (BERT)
[8] models. This compressed design enables the extractor to
provide text features that are distinctive enough with much less
time consumption when processing. The feature extractor for
audio that takes converted log‐Mel spectrogram as input is the
same as the audio encoder, which will be further introduced in
the following sections. Also, the raw pose sequences are
encoded by a CNN feature extractor trained in an unsuper-
vised auto‐encoder scheme from [2] as the pose features.

As illustrated in Figure 1, the whole model consists of two
sub‐networks: the dictionary network and the pose generation
network. The dictionary network stores previously seen key‐
value pairs of text and pose features, providing a dynamic

F I GURE 1 Overview of the proposed network architecture. The model is composed of two sub‐networks. The dictionary network stores key‐value pairs of
text and pose features for the pose generation network to look up. During querying, the dictionary network searches for the nearest key and returns the
corresponding value, where the keys and values came from the input text and pose features in the updating stage. The pose generation network then combines
the audio, seed pose, and fetched pose features to generate the expected gestures. The adversarial training scheme is used with a discriminator for more realistic
and human‐like results.
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dictionary with raw pose features that can be queried and
fetched by the pose generation network. The decoder of the
pose generation network then generates gestures combining
those features and encoded input audio features by its encoder.
In such a way, the decoder with access to the pre‐stored raw
pose features gains the ability to avoid the absolute dependency
on the learnt parameters of the encoder, making generated
gestures to be more diverse.

3.3 | Dictionary network

We choose memory networks as the backbone of the dictio-
nary network. It works as a dynamic dictionary enabled by the
ability of neural networks to learn from data. Inside the
network, a list of previously stored key‐value pairs of text and
pose features, called the memory, is maintained for the
generator to interact directly. Given a query as input, the dic-
tionary network searches for the most approximate key in the
memory and returns the corresponding value as output. For
each key‐value pair, an additional age value is attached for the
updating process to determine the proper operation along with
a threshold. This threshold is also used in the training process
of the network. The structure of the dictionary network is
shown in Figure 2, which is set up similarly to the one used in
Ref. [3] for most mentioned attributes.

Formally, the memory M is a set of slots of key‐value pairs
with key Ki,i = 1, 2, …,m, and value Vi, with an attached
age Ai ∈ N:

M ¼ fðK1;V1;A1Þ; ðK2;V2;A2Þ;…; ðKm;Vm;AmÞg; ð1Þ

where all keys and values are randomly initialised and all ages
are initialised at 0. To perform a query action, the input text
feature X extracted from raw embedded text x is firstly pro-
cessed by the query encoder Q(X ) and then normalised to
construct the query q as in:

q¼
QðXÞ
kQðXÞk

; ð2Þ

where ‖q‖ = 1. In this work, a simplified linear query encoder
with weights W and bias b

QðXÞ ¼WX þ b; ð3Þ

is sufficient to fulfil its purpose, which is to make the
search in memory keys more accurate by making the keys more
distinctive, given the query, since all keys are coming from
previously accepted queries. Then, the network calculates the
cosine similarity between the query and keys in all slots, which
are all guaranteed to be normalised, and the ones with top k
similarity are selected as the k‐nearest neigh-
bours

�
ðKn1;Vn1;An1Þ;…;

�
Knk;Vnk;Ank

��
:

fn1; n2;…;nkg ¼ arg maxðkÞi q · Ki; ð4Þ

where ‖q‖ = ‖Ki‖ = 1. The pose feature value Vn1 of the 1‐
nearest neighbour ðKn1;Vn1;An1Þ is then chosen to be the
output of the dictionary network ND:

F I GURE 2 Detailed view of the dictionary network. When queried with input text features, the network calculates the cosine distances between the
encoded query and the keys in memory and searches for k‐NNs. The value of 1‐NN is then returned as the result. The memory can then be updated if needed
under different circumstances comparing the KL divergence between the value of 1‐NN and the input pose features. The query encoder is also needed to be
trained using a triplet loss constructed using the cosine distances according to different situations of the KL divergence between the value of k‐NNs and the
input pose features.
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Vn1 ¼ NDðXÞ; ð5Þ

to complete the query process.
Each time a new input with the expected output or the

ground truth pose features is provided, the memory can be
updated under certain rules in the training stage of the model.
Given input text feature X and target pose feature Y, as usual,
the k‐nearest neighbours of the constructed query are selected.
Additionally, the ages of all slots are increased by one in this
process. Then, we calculate the Kullback–Leibler (KL) diver-
gence [9]:

KL ðvkuÞ ¼
X

l

vl · log
vl
ul
; ð6Þ

between the value of the neighbours Vnj; j ¼ 1; 2;…; k; and
the target output Y and compare that to a neighbouring
threshold δn defined as a hyperparameter. Here, we define a
positive neighbour if the calculated divergence from the
neighbour is equal to or less than the threshold, which is

Vnj ∈ fv j KL ðvkY Þ ≤ δng; ð7Þ

and a negative neighbour if the divergence is greater, which is

Vnj ∈ fv j KL ðvkY Þ > δng: ð8Þ

If the 1‐nearest neighbour turns out to be positive, we
consider that the memory slot containing the neighbour is
reusable for this target since they share a similar value. The key
is then updated by averaging the old key and the new query,
followed by normalisation, and the age is reset to zero:

Kn1 ←
qþ Kn1

kqþ Kn1k
;An1 ← 0: ð9Þ

And if it is determined negative, it can indicate that there is
no matched value in any memory slot that is similar enough to
the target. In that case, one of the memory slots with the oldest
age (Kr,Vr,Ar) is randomly selected and overwritten:

Kr ← q;Vr ← Y ;Ar ← 0: ð10Þ

Note that only the 1‐nearest neighbour is updated if
necessary instead of all neighbours.

Furthermore, we also need to train the query encoder to
generate queries and later keys with better distinguishability
from one another. To do this, we use a triplet loss [10] with
compatibility modifications to make it applicable to our situ-
ation. The original triplet loss is suitable for supervised situa-
tions since the positive or negative class labels of the samples
are known to the model, which is not the case in this unsu-
pervised setup. Therefore, similar criteria in the updating
process with the threshold δ can be reused to determine the
positive or negative class labels for the triplet loss. Given a
query and the selected k nearest neighbours, we construct the

triplet loss using the positive and negative neighbour with the

smallest index
�
Knp;Vnp;Anp

�
; ðKnn;Vnn;AnnÞ in the ordered

neighbour list:

Ltriplet ¼max
�
q · Knn − q · Knp þ α; 0

�
; ð11Þ

where α is the margin between positive and negative neigh-
bours. The loss is truncated to be above zero to work with this
margin. We can see that if the cosine similarity between the
query and the positive neighbour is greater than that between
the query and the negative neighbour added by a margin alpha,
this loss will not be effective since in this case it is already
distinctive enough for searching. The optimisation of this
triplet loss

min
W ;b

Ltriplet; ð12Þ

will maximise the similarity of the constructed query with
the positive neighbours and at the same time minimise the
similarity with the positive neighbours, allowing the keys to be
more distinctive.

3.4 | Pose generation network

The pose generation network is an encoder‐decoder network,
with a similar architecture that can be commonly found in
other generative setups, as seen in Figure 3. Since it is not the
main focus of our network design, we reuse the basic structure
from the translation model in Ref. [4] with additional modifi-
cations such as decoder input adjustments and backbone re-
placements. The network is composed of two encoders, which
are the audio encoder Ea and the seed pose decoder Es and a
pose decoder Dp.

The audio encoder processes the log‐Mel spectrogram M
converted from the raw audio input and produces expected
audio features U:

U ¼ EaðMÞ: ð13Þ

As shown in Figure 4, the backbone of the audio encoder
can be chosen from a UNet [12], a fine‐tuned Audio Spec-
trogram Transformer (AST) [13], or a mixed architecture of
UNet and AST. A UNet audio encoder consists of ConvNorm
modules connected residually which can process features hi-
erarchically with a simplified UNet architecture. A single
ConvNorm module here consists of a convolutional layer
appended by a batch normalisation [41] layer and finally acti-
vated by a Leaky ReLU function [42]. In such architecture, the
feature information extracted in the contracting path (left) at
each layer can be reused by concatenating that with the spatial
information at the corresponding layer in the expansive path
(right). More spatial information is included in the features
after UNet processing, making it easier for the decoder to
produce gestures. An AST audio encoder is a fine‐tuned
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transformer originally pre‐trained for audio spectrograms. It
has original transformer encoders based on multi‐head self‐
attention with prepending and appending linear layers for
processing input spectrograms and generating output audio
features. The spectrograms are first split into patches and

linearly projected as spectral embeddings, which is then added
with trainable positional embeddings before being fed into the
encoder. This AST configuration with a similar number of
parameters (6 million) can be less time‐consuming than UNet
when processing data of the same scale due to the wider but

F I GURE 3 Detailed view of the pose generation network. The decoder receives concatenated audio, seed pose, and queried pose features to generate the
expected gestures. The seed pose encoder utilises the last lseed = 4 frames of the generated poses to initialise the next segment. The backbone of the audio
encoder can be chosen from three different configurations. The network is supervised by the ground truth poses and trained in an adversarial scheme with a
discriminator for more realistic and human‐like results.

F I GURE 4 Three different backbones of the audio encoder, AST, UNet, and a mixed architecture of both. An AST audio encoder is a fine‐tuned
transformer model pre‐trained for spectrograms with self‐attention encoders. A UNet audio encoder uses residually connected convolutional layers with batch
normalisation (ConvNorm) for hierarchical feature processing. A mixed audio encoder introduces AST as the bottom‐layer feature processer to UNet for better
output features.
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shallower structure with more parameters per layer and less
layer count. Compared to other image transformer models
without pre‐training at all or pre‐trained on general image
datasets, AST is chosen here for the reason that it is pre‐trained
on similar spectrogram data as ours, saving a huge amount of
time to train a transformer from scratch. Also, according to
[14], sometimes a mixed usage of UNet and transformer can
improve the final results in practice. Such architecture com-
bines the ability of both UNet and transformer for hierarchical
and attentional feature extraction. Thus, we also design a mixed
architecture to evaluate this insight. In this mixed architecture,
an AST model is inserted between the last layer of the con-
tracting path of a further simplified UNet and the first layer of
the expansive path, with a linear layer prepended, increasing
the number of parameters to more than 10 million. Note that
before being fed into a UNet or a mixed audio encoder, the
spectrogram is first processed by a fully convolutional (FC)
[11] pre‐extractor of multiple ConvNorm modules.

Then, the seed pose encoder with a linear design processes
seed poses S to form the seed pose features p in a similar fashion:

P ¼ EsðSÞ: ð14Þ

Here, seed poses are used to shape the beginning frames of the
generated pose segment and guarantee the continuity between
segments. For the first segment, seed poses can be set to all
zero or initialised by specified values by choice. For the second
and subsequent segments with index s > 1, they are set to the
last lseed frames of the previous segment's generated poses:

SðsÞ ¼

8
><

>:

S0; s¼ 1;

Sðs−1Þ
ðlseg−lseedþ1;lsegÞ

; s > 1;
ð15Þ

where S0 is the initialisation value of the seed poses, and the
parenthesised superscript and subscript of S represent the in-
dex of the segment and the range of frame indices in the
segment, respectively, and lseg is the length of the segment.
Guided by the losses, the network is required to generate the
exact same poses at the beginning of the pose segment as the
seed poses input. Thus, with extra post‐generation smoothing,
the last frames of the previous segment can be seamlessly
merged with the beginning frames of the current segment.

Finally, the pose decoder generates the final pose segment
output ŷ by processing the encoded information combining
the output of the dictionary network, the audio encoder, and
the seed pose decoder:

ŷ ¼DpðVn1 ⊕ U ⊕ PÞ; ð16Þ

where ⊕ is the concatenation symbol.
For simplicity, we simultaneously optimise all encoders and

decoders with the L1 loss between ground truth and the
generated poses:

LL1 ¼ Ekŷ − yk1: ð17Þ

Instead of directly optimising this loss, we adopt the
adversarial training scheme [15] for better realisticity and
human‐likeness of the generated results. We design a CNN
binary discriminator D optimised to better distinguish between
the ground truth and generated gestures, as “real” and “fake”
gestures. Viewing it as a generator G, the forementioned part
of the network should work to make the generated gestures as
realistic as possible to fool the discriminator to be one that is
unable to differentiate between generated and real gestures.
This can be achieved by alternatively optimising the discrimi-
nator and the generator using the L1 loss and the adversarial
losses with minimax optimisation. When the discriminator is
being trained, the generator is fixed and the discriminator tries
to better distinguish between real and fake gestures by max-
imising the discriminator loss:

max
D

LadvD ¼min
D

− LadvD; ð18Þ

where

LadvD ¼ E log DðyÞ þ E logð1 − DŷÞ: ð19Þ

When the generator is being trained, the discriminator is fixed
and the generator tries to confuse the discriminator by mini-
mising the generator loss:

min
G

LG; ð20Þ

where

LG ¼ γL1LL1 þ γadvG LadvG; ð21Þ

in which γL1 and γadv are the weights for the respective L1 and
adversarial losses, and

LadvG ¼ E logð1 − DŷÞ: ð22Þ

This makes the generated gestures and the real ones to be
more similarly distributed, which pushes the generated gestures
to be more natural and human‐like.

4 | EXPERIMENTS

In this section, we introduce the quantitative and qualitative
evaluations and ablation studies we performed on the pro-
posed model to demonstrate our achieved improvements are
plausible and reproducible with the proposed objective metric
for gesture diversity.

4.1 | Objective metric for gesture diversity

The simplest way to objectively evaluate a gesture generation
model is to directly or indirectly [2] compare the generated

8 - ZHAO ET AL.
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sequences of pose landmarks, or in our case directional vectors,
to the ground truth. Nevertheless, due to the indeterministic
nature of the speech‐driven gesture generation problem, such a
comparison can be unsuitable in many cases. In theory, there
exists an infinite number of possible gestures that can match the
given input audio or text. In practice, different models trained
on different datasets give totally different gestures which, on the
contrary, can all be seen as valid for the same input. Over the
years, major enhancements on objective evaluation metrics in
related studies that are popular and widely used are still primarily
made for this kind of comparison to evaluate how well the
generated results match the ground truth. Some new high‐
quality metrics for better evaluating qualities such as rhythmic
synchronisation are also proposed in some works. Compared to
these metrics, the metrics for diversity are relatively neglected.
Some of these works do provide their own basic metrics for
diversity, but we find them weak in discernibility and inaccurate
in our practice, rendering our improvements on diversity un-
traceable between different models.

During evaluating and experimenting with different met-
rics, we observe that the degree of rhythmic properties
approximately matches the simple subjective perception of the
gesture diversity level by human evaluators. It is easy to see that
when a rhythmic shifting event occurs, sudden changes in
frame‐to‐frame motion velocity appear in the motion se-
quences. Thus, we take advantage of this feature of velocity to
form the new objective metric for diversity. By differentiating
respective directional vectors between frames, we obtain the
interframe velocity in the form of 3D vectors with magnitude
and direction:

vp ¼ yp − yp−1; ð23Þ

where p = 2, 3, …,lseg. Some existing metrics utilising velocity
vectors focus on the change of magnitude, which is hard to
eliminate even small unrelated interferences such as different
ranges of motion, interframe jittering, or random noises etc., in
Euclidean space. We experimented on utilising the direction
changes of the velocity vectors and found that the angle dif-
ference between frames is a good indicator of sudden changes
in velocity at a rhythmic shifting event.

Specifically, we describe these changes by finding the angles
between adjacent interframe velocities in degrees:

av;t ¼ degarccos
vt · vt−1
jvtjjvt−1j

; ð24Þ

where t = 3, 4, …,lseg. Then, the angles are compared to an
activation threshold δav which should be set empirically
considering framerate etc. This threshold defines the minimum
angle that should be viewed as the indicator of any sudden
change in velocity direction. Finally, the ratio of angles above
the threshold is calculated to be the absolute diversity metric:

eabsdiv ¼
P

a∈av1ða > δavÞ
lseg − 2

; ð25Þ

where 1 (·) is the indicator function that returns 1 when the
criterion behind is satisfied, or else it returns 0. Evidently,
higher eabsdiv indicates more sudden changes in velocity di-
rections which means better diversity in a pose sequence.

Nevertheless, this score can be fooled to be falsely high by
very strong random noises or interframe jittering in the gesture
sequences that are beyond our designed limits. This happens
when properties such as rhythmicity or smoothness of the
generated results are reduced or degraded. This makes the
diversity quality unmeasurable using this metric and should be
avoided by all means. Through experiments, we find that these
interferences can be further eliminated by guaranteeing the
rhythmic synchronisation between generated and ground truth
gestures. As explained above, direct comparison in landmark
coordinates is not suitable for this task. It strictly limits the
generated poses to be the same in every aspect for higher
similarity, which conflicts with the indeterministic nature of the
problem. Hence, other ways to measure this synchronisation
property are required to be found. Taking simplicity into
consideration, we finally agree on what is suggested in Ref.
[30], that two pose sequences with similar rhythm should have
velocities with magnitudes that are temporally related. Sta-
tionary parts of gesture sequences share small magnitudes of
velocities since in those frames the poses are similar to one
another. If large movements in two matching sequences
happen at the same point in time, regardless of the directions,
there should be simultaneous increases in the magnitudes of
the velocities. Therefore, we can form the synchronisation
metric by directly comparing the magnitudes of the velocities:

esyn ¼ E kjv̂ j − jvjk1; ð26Þ

where v̂ and v are velocities calculated from generated and
ground truth gestures using the same method as above,
respectively. For two sequences of gestures with good syn-
chronisation, lower esyn should be true since they are more
similar in the velocity magnitudes. With the synchronisation
score as the calibration factor, we can now form a simple
relative diversity metric:

ediv ¼
eabsdiv
esyn

: ð27Þ

4.2 | Dataset

For comparability and convenience, we train, test, and evaluate
the proposed models on an extended version [2] of the TED
gesture dataset [5], which is widely used and continuously
improved in a number of studies. 1766 videos of TED talks
containing people giving speeches on stages in the English
language are collected and processed as the raw source of all
data. Using OpenPose [16], 2D landmarks of human poses on
each frame of the videos are detected and converted to 3D by a
temporal convolutional estimator [17] trained on large‐scale
motion capture datasets. Transcribed English speech texts
with onset timestamps of each word are extracted from the

ZHAO ET AL. - 9
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consisting audio using the Gentle forced aligner [18]. The
extracted poses only contain the upper body part, with the
segments where the full upper body cannot be clearly seen
filtered out, resulting in 97 h' worth of synchronized sequences.
The sequences are resampled to be 15 frames per second and
subdivided into 34‐frame segments (lseq = 34) with a stride of
10. The length of the seed poses is set at lseed = 4. When
training, the initialisation value of the seed poses S0 in the first
segment of a sequence is set to be the same as ground truth
value. Direction vectors introduced above are converted from
the raw landmarks of the pose joints before being fed into the
model. The dataset is divided the same way as the original
authors [2], producing 199,384; 26,795; and 25,930 segments,
respectively, for training, validation, and test sets.

4.3 | Quantitative evaluation

The model is trained, evaluated, and tested in different con-
figurations. Most basic settings in the configurations are set to
be identical, including the margin of the triplet loss α = 0.3, the
weight for the L1 loss γL1 = 100, and the weight for the
adversarial loss in the generator loss γadv = 10 etc. Also, some
settings need to be adjusted dynamically for each different
configuration, such as the total number of epochs, batch size,
learning rate etc. These settings can affect the convergence
speed of the model but are limited by the computing and
memory performance of the running platform. We perform
these adjustments with the goal of getting the final training
losses to the same level with similar time consumption.

For the dictionary network, two memory configurations
with different neighbouring thresholds are applied: δn = 0.8
and δn = 0. When set at 0.8, the threshold allows multiple
similar pose features to share one memory slot with an aver-
aged query key. We call this the dynamic memory configuration
since the keys in the memory can be dynamically updated. With
the zero threshold, however, the memory slots become static
as every single pair of input text and pose features is a negative

neighbour and saved to the memory as a new key‐value pair.
This makes the memory update static and hence can be called
the static memory configuration. For the pose generation
network, we tried three different backbone configurations,
which are represented as UNet [12], AST [13], and Mixed [14],
also mentioned in the Method section. Also, we provide two
configurations of the activation threshold, δav ¼ 90 and
δav ¼ 120, to see if there is any difference for the diversity
metric when actions of smaller or larger magnitudes are
regarded as sudden changes.

As baselines, 4 models are trained, evaluated, and tested in
a similar manner using the same dataset, with different input
modalities of speech audio, text, and mixed. Seq2Seq [5] is an
attention‐based model that generates gestures from text using
RNN encoders and decoders with the attention mechanism.
Speech2Gesture [4] generates gestures from speech audio with
an architecture of UNet encoder‐decoder trained in the
adversarial fashion, which is also what our model is based on
without our pipeline modifications. Thus, the comparison be-
tween this and our model can also be considered as an ablation
study. JointEmbedding [6] uses a different representative
approach that maps the text and motion to the same embed-
ding space and creates motion from description text. Trimodal
[2] combines trimodal context of text, audio, and speaker
identity as joint input to learn co‐speech gestures. All experi-
ments are performed on the same machine with a 10‐core (20‐
thread) Intel Xeon Silver 4210R @ 2.40 GHz CPU and two
GeForce RTX 3090 GPUs.

Table 2 displays the comparison among the proposed
model and 4 baselines in different memory configurations. We
see that the proposed model with the static memory configu-
ration has the highest score on absolute and calibrated diversity
metric eabsdiv, ediv in all activation configurations, showing 30%
and 35% improvements in gesture diversity over the best‐
performing baselines, respectively. Close synchronisation
scores esyn (less than 7% difference) also indicate that the
rhythmic synchronisation between the generated and ground
truth gestures is at similar levels, which means the better

TABLE 2 Comparison among 4 baselines and the proposed models in different memory configurations. We evaluate the models with the activation
threshold δav of the diversity metric set at different levels and show the results separately (↓: Lower is better. ↑: Higher is better. Bold: Best in full comparison.
Underline: Best in ablation study).

Method

Evaluation metric

esyn↓

δav ¼ 90 δav ¼ 120

eabsdiv↑ ediv↑ eabsdiv↑ ediv↑

Seq2Seq [5] 0.01537 0.05164 3.35979 0.02905 1.89005

Speech2Gesture [4] 0.01599 0.17103 10.69606 0.09133 5.71169

JointEmbedding [6] 0.01439 0.01216 0.84503 0.00518 0.35997

Trimodal [2] 0.01450 0.10567 7.28759 0.05119 3.53034

Proposed (dynamic memory) 0.01694 0.21919 12.93920 0.11195 6.60862

Proposed (static memory) 0.01546 0.22272 14.40621 0.12244 7.91979

Note: The bold values indicates best in full comparison.
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performance in diversity is not likely caused by degraded re-
sults with random noises or interframe jittering etc. In the
ablation study, our proposed model with the static memory
configuration performs 3%, 30%, and 35% better in three
metrics, respectively, than Speech2Gesture, indicating that the
pose feature dictionary based on memory networks is the key
factor to achieve such improvements. As for the comparison in
the activation threshold, we do not see order‐changing dif-
ferences between the two configurations. Consistent with the
theory, we notice that with a bigger threshold δav ¼ 120, the
metric focuses on greater changes in vector directions, result-
ing in more precise scores with less sensitivity, which is better
matched with human evaluation. Thus, we make this the
default activation threshold in later‐introduced results.

In Table 3, we show the results of different backbone
configurations of the audio encoder in the pose generation
network. We see that despite our targeted AST design, the
UNet‐based audio encoder still results in better performance in
diversity. Nevertheless, the introduction of AST does bring a
considerable reduction in time (29%) consumption while
maintaining roughly the same level of performance as the
UNet‐based model in dynamic memory configuration, which
can outweigh the performance degradation in certain scenarios
that require faster inference. As suggested in Ref. [14], the
mixed configuration outperforms the other two with the best
score in synchronisation and diversity with still less time
consumption than UNet. If real‐time generation is not
required, the mixed configuration should be used to guarantee
the best generation results.

4.4 | Qualitative results

We visualise the generated results for human evaluation by
rendering videos of both stickman‐like skeletons and retar-
geted animation of rigged 3D human models. Skeletons in 3D
space can be rendered as 2D frames by re‐converting direc-
tional vectors in gesture sequences back to joint landmarks and
drawing lines between parent and child joints using off‐the‐

shelf plotting tools such as Matplotlib [19]. Based on the
conversion, joint rotations in the skeletons can be further
calculated and retargeted to the skeleton of a rigged 3D human
model using linear blend skinning (LBS), with the assistance of
scriptable 3D animating software such as Blender [20]. For this,
we develop tools that can read and parse the mesh, skeleton,
and animation data from the compressed custom data files
provided by the famous 3D open‐world video game Grand
Theft Auto V (GTAV) [21]. Released in the year 2013, the
game contains a large number of rigged 3D human models
with good design at that time to construct a huge world that
allows players to interact freely with non‐player characters
(NPC) from different cultural backgrounds and in different
personal styles. The popularity of the game spawned a huge
modding community that provides all kinds of modding tools
with continuous support, such as CodeWalker [22], which
makes the development of our tools much easier. Since videos
cannot be displayed on paper, we still use sequences of stick
skeletons to demonstrate the generation results in static figures
for clarity. Rendered videos of animated 3D human models are
used in the user study that is later introduced.

To better demonstrate the generation results of pose se-
quences, we manually select frames with expected posing be-
haviours in different circumstances, for example, in a sentence
or at rest, from the gesture segments generated by the pro-
posed and baseline models from the same input and make
static figures of stick skeleton sequences, as shown in Figures 5
and 6. In Figure 5, we show an example of generation results of
the proposed model in two configurations. In Figure 6, we
compare gestures generated by baselines and the proposed
models. We can see that for the same speech in both modalities
of text and audio, the gestures generated by the proposed
model contain noticeably more drastic motions with improved
diversity than the baselines. When there is a short silence in
audio, the model produces gestures with more scene‐
transition‐like gestures than the baselines. When a long
silence in audio is encountered, however, the model produces
normal gestures with a similar level of motion shifts as the
baseline models instead of gestures that look random caused
by the improved diversity. This further proves that our im-
provements in diversity are not coming from interframe jit-
tering or random noises.

Also, six sets of rendered videos of retargeted animation on
rigged 3D human models are shown to human evaluators as
questionnaires in the user study of the generation results. As
shown in Figure 7, for each set of videos, we transfer the
movements of each upper‐body gesture sequence generated by
the six baseline or proposed models from the same speech to
the upper part of a randomly chosen full‐body rigged 3D
human model from the video game GTAV. The visibility of the
original gesture sequence in the form of a stickman‐like skel-
eton can be toggled on and off according to our needs. The
resulting six videos are then reorganised into 15 pairwise
comparison questions as a single questionnaire. We find 12
human evaluators unrelated to the field and send three ques-
tionnaires to each. The results of this user study are shown in
Figure 8. We see that for two sequences of gestures generated

TABLE 3 Comparison among the backbone configurations of the
audio encoder. Time consumption for processing the entire test set is
recorded for all configurations (↓: Lower is better. ↑: Higher is better. Bold:
Best in comparison).

Method

Evaluation metric

esyn↓ eabsdiv↑ ediv↑ Time (s)↓

UNet [12] (dynamic memory) 0.01694 0.11195 6.60862 53.2

UNet [12] (static memory) 0.01574 0.11971 7.60546 51.1

AST [13] (dynamic memory) 0.01721 0.09376 5.44800 36.4

AST [13] (static memory) 0.01615 0.10164 6.29350 36.8

Mixed [14] (dynamic memory) 0.01710 0.11160 6.52632 47.2

Mixed [14] (static memory) 0.01546 0.12244 7.91979 46.9

Note: The bold values indicates best in full comparison.
Abbreviation: AST, Audio Spectrogram Transformer.
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by any two of the baseline or proposed models, the evaluators
generally agree that the one with higher ediv score has better
diversity than the other one with very few anomalies. All

human evaluators agree that our model produces gestures with
better diversity than the baselines without sacrifices in human
likeness or smoothness.

F I GURE 5 An example of generated gestures in stickman‐like skeletons. Provided with a group of input audio waveform and text split (for demonstration
only) into three segments (a), (b), and (c), the proposed model in (a) dynamic and (b) static memory configurations generates the gestures, respectively. Shorter
segments of typical gestures are then selected in this figure. Note that each gesture segment has an appended stacked view of all poses. Frame numbers and
arrows indicating directions of movements are shown below and on the skeletons.

12 - ZHAO ET AL.
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5 | CONCLUSIONS

In this work, we introduce dynamic dictionaries to neural
models for speech‐driven gesture generation by coupling
memory networks with encoder‐decoder generative networks,

allowing the pose generation network to utilise pre‐stored pose
features in the dictionary network for better diversity of the
generated gestures. It solves the problem that gestures gener-
ated by neural methods are averaged and with an inadequate
amount of movement shift due to their training schemes,

F I GURE 6 Qualitative comparison between results of different models in stickman‐like skeletons. In the figure, we have (a) the testing audio waveform
with time stamps indicating the approximate starting position of four selected ranges of frames for four different circumstances, which are (i) early in sentence,
(ii) at short rest, (iii) late in sentence, and (iv) at long rest; and (b) corresponding text; and selected frames from gestures generated by (c) Seq2Seq,
(d) Speech2Gesture, (e) JointEmbedding, (f) Trimodal, and the proposed model with (g) dynamic and (h) static memory configuration, with (j) frame numbers
and corresponding labels of the four different circumstances with variable sampling intervals. Note that for each range of selected frames, the stacked view of
each range is shown above the circumstance labels for a clearer comparison on the level of movement shifts.

F I GURE 7 Examples of (a) retargeting animation of the skeletons to a rigged 3D human model and (b) some frames from the rendered videos.
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which can be described as slow or dull. By breaking decoder's
sole dependency on the learnt encoder in the pose generation
network, the model we designed successfully generates ges-
tures with improved diversity. To demonstrate this, we propose
a new objective metric for the evaluation of gesture diversity
that utilises velocity direction changing angles to capture the
occurrence of sudden changes in the gesture sequences, which
is calibrated by a score of synchronisation to the ground truth.
Quantitative experiments are conducted with the baseline and
proposed models in different configurations. The results are
compared in metrics with different settings showing that the
proposed method can achieve best performances in diversity.
User studies on the diversity improvements are also performed
as qualitative evaluations to further guarantee those improve-
ments are valid to potential human users.

As mentioned in Ref. [1], the model performs better in
static memory configuration than in dynamic memory
configuration, which is still the case in this work. However, we
noticed that the diversity metric used in that work is far too
sensitive, and further tests with different threshold settings are
performed to make it better matched with human evaluation.
In the future, we will conduct more experiments to see if the
better performance is coming from the nature of the static
memory configuration since it does provide richer and more
specific keys than the dynamic one for different queries. Be-
sides, this architecture of ours sees properties of the gesture
data that can be decoupled into different types, such as
rhythmic and sematic properties, as the same. It contains no
structure specifically designed for these types that may improve
the quality of generated gesture using hierarchical generation.
Thus, we will also try new architectures of generation networks
for better performance and look for greater uses of memory
networks in other aspects of speech‐driven gesture generation.
Finally, this method cannot be directly used in some specific
scenarios, such as real‐world tasks, where training samples are
lacking or extremely difficult to obtain. We will also look for
ways to apply techniques like few‐shot learning to our model
for better generalisability and practicality.
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