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Bidirectional Sentence Ordering with Interactive Decoding
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Sentence ordering aims at restoring orders of shuffled sentences in a paragraph. Previous methods usually

predict orders in a single direction, i.e., from head to tail. However, unidirectional prediction inevitably causes

error accumulation, which restricts performance. In this article, we propose a bidirectional ordering method,

which predicts orders in both head-to-tail and tail-to-head directions at the same time. In our bidirectional

ordering method, two directions can interact with each other and help alleviate the error accumulation prob-

lem of ordering. Experiments demonstrate that our method can effectively improve performance of previous

models.
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1 INTRODUCTION

Sentence ordering [3] is an important task in natural language processing (NLP), which is to
automatically organize shuffled sentences in a paragraph into the correct order. Besides better
reading and understanding text, sentence ordering is useful for many other tasks in NLP, such as
concept-to-text generation [16–18], retrieval-based question answering [36, 41], answer summa-
rization [9], and extractive multi-document summarization [2, 10, 24, 26, 28, 38, 43].

Recently, with development of deep learning, neural models are proposed for sentence ordering
and achieve significant improvements [7, 8, 13, 23, 27, 29, 40, 45]. Typically, these models employ
a pointer network [37] as a decoder and predict orders in a single direction, i.e., from head to tail.
However, unidirectional prediction inevitably causes error accumulation, which makes it difficult
to correctly predict orders at farther timesteps. As shown in Figure 1, there are results predicted
in a single direction by the typical model [7]. We can see it performs well at earlier timesteps
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Fig. 1. The head-to-tail and tail-to-head are accuracy curves at different positions in head-to-tail and tail-
to-head directions, respectively. The curve “size” shows the accuracy with different numbers of shuffled
sentences (length of paragraph). The number of samples causes some fluctuation.

and performs poorly at farther timesteps. Specifically, the accuracy gradually decreases when the
timestep increases. Moreover, when the number of shuffled sentences is larger, the accuracy is
worse. These statistics demonstrate that the error accumulation problem does exist and restricts
performance. Besides, we can see the accuracy is significantly higher at earlier timesteps. This
is because both the beginning and ending of a paragraph have obvious features to identify. For
example, in the paper abstract dataset [23], the first sentence usually contains “in this paper ...” to
describe contribution, and the last sentence usually contains “experiments demonstrate ...” to talk
about empirical results. Therefore, simultaneously using head-to-tail and tail-to-head prediction
may take advantage of this feature and alleviate the error accumulation problem.
In this article, we propose a bidirectional ordering method for sentence ordering. Comparing

with previous unidirectional methods, our method can predict orders in both head-to-tail and tail-
to-head directions at the same time. Specifically, we bridge the connection between two different
directions by their decoding history. At every timestep, the decoding history of both head-to-tail
and tail-to-head directions is stored. When predicting, two different directions interact with each
other through decoding history. With the interaction, we can simultaneously utilize information
from different directions and alleviate the error accumulation problem. Our method has compati-
bility and is easy to apply in other models of sentence ordering. We conduct experiments on four
datasets. The results demonstrate that our method can effectively alleviate the error accumulation
problem and improve performance of previous models.
In brief, our main contributions are shown as follows:

—We find that (1) the error accumulation problem in sentence ordering, (2) the forward model
does well in predicting the head (3) and the backward model does well in predicting the tail.
Thus we propose to make use of backward prediction to enhance forward prediction (vice
versa).
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Fig. 2. An example of sentence ordering task.

—We propose a bidirectional ordering method for sentence ordering, which is able to fuse the
forward prediction and the backward prediction to alleviate the error accumulation problem
and reduce the difficulty of finding the correct order.

—We verify the effectiveness of the bidirectional ordering method for sentence ordering, and
the experimental results demonstrate that our proposed method is useful to improve previ-
ous models.

2 PRELIMINARY

2.1 Task Definition

The sentence ordering task aims at ordering a set of shuffled sentences in a paragraph as a coherent
text. An example is shown in Figure 2. There are three shuffled sentences s1, s2, and s3. The ordering
models need to obtain the correct order s2→s3→s1.
Formally, L shuffled sentences are denoted by x = [so1 , so2 , . . ., soL ], where o = [o1, o2, . . ., oL]

is the shuffled order list. The goal is to find the correct order o∗ = [o∗1, o
∗
2, . . ., o

∗
L] for them from

the order space (L!). With the correct order o∗, the whole sentences have the highest coherence
probability:

P (o∗ |x) > P (o|x),∀o ∈ ψ, (1)

where o indicates any order of input sentences, and ψ indicates all possible orders of these
sentences.

2.2 Framework

For sentence ordering, the input is shuffled sentences in a paragraph and the output is their correct
order. Recently, the encoder-decoder framework in Figure 3 obtains state-of-the-art results. In this
article, we adopt this framework.
Sentence Encoder: First, a sentence encoder is used to obtain a sentence-level representation of
each single sentence:

soi = SentEnc(w1,w2, . . . ,wT ), (2)

where soi denotes the representation of the sentence soi with T words. Word embedding of every

word can be obtained with a shared word embedding matrix We ∈ Rne×de , where ne denotes the
vocabulary size and de denotes the embedding size. Then word embedding is sent to the sentence
encoder SentEnc() to obtain the sentence-level representation. Typically, previous models adopt
bidirectional LSTM [14] as the sentence encoder SentEnc() and regard the output of the last hidden
state as the sentence representation.
Paragraph Encoder: Then, a paragraph encoder is used to obtain a paragraph-level representa-
tion of these sentences:

vpara = ParaEnc(so1 , so2 , . . . , soL ), (3)
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Fig. 3. The encoder-decoder framework with a pointer network for sentence ordering.

where the paragraph encoder ParaEnc() encodes the whole sentences and obtains the paragraph-
level representation vpara , which can capture global dependencies among sentences and help pre-
dict orders for the decoder. In recent studies, ParaEnc() is made up of multiple self-attention [32,
34, 35] layers. vpara can be obtained by average pooling for all sentences at the last self-attention
layer.
Decoder: Finally, a pointer network [37] is employed as the decoder to predict the order of input
sentences:

−→
h i =

−−−→
Func(

−→
h i−1, s−→o i−1 ), (4)

−→u i
j = g� tanh(W1soj +W2

−→
h i ), (5)

P (−→o i |−→o i−1, . . . ,−→o 1,x) = softmax(−→u i ), (6)

where −→ denotes the head-to-tail direction.
−−−→
Func() is a function for recurrent prediction. Both self-

attention and LSTM can be employed as
−−−→
Func(). −→o i−1 is the predicted order at last timestep and its

sentence is sent to predict the next order. The initial state
−→
h0 ∈ Rd is the paragraph-level represen-

tation vpara and the first input s−→o 0
is zero vector. g ∈ Rd ,W1 ∈ Rd×d andW2 ∈ Rd×d are learnable

parameters.
−→
h i is used to output the conditional probability of the order P (−→o i |−→o i−1, . . . ,−→o 1, s)

with these parameters.

3 THE PROPOSED METHOD

3.1 Bidirectional Ordering with Interactive Decoding

Previous unidirectional models inevitably cause error accumulation. Therefore, we propose a bidi-
rectional ordering method, which predicts orders in both head-to-tail and tail-to-head directions at
the same time. When decoding orders, different directions can interact with each other by decod-
ing history and reduce the difficulty of ordering. The architecture of the method is illustrated in
Figure 4. Similarly, studies in [42] also propose to use a bidirectional decoder for machine transla-
tion. However, our method has some obvious differences. In sentence order, the output to predict
is fixed sentences that can be predicted once and only once. Thus, our model is not generative.
Moreover, our model handles the symmetrical characteristic in sentence order.
In bidirectional ordering, we also adopt the encoder-decoder framework in Section 2.2. The

difference is that there are two synchronous bidirectional decoders interacting with each other.
Specifically, Equation (5) in Section 2.2 is changed as follows:

−→u i
j = g� tanh(W1soj +W2 ((1 − −→λ i )

−→
h i +

−→
λ i
←−mi )), (7)
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Fig. 4. Architecture of our bidirectional ordering method. Head-to-tail and tail-to-head directions interact
with each other by the memory of decoding history.

−→
λ i = sigmoid(W�

λ [
−→
h i ;
←−mi ] + bλ ), (8)

where i denotes the timestep.
−→
h i denotes the hidden layer of head-to-tail decoding. ←−mi denotes

the memory of decoding history from reverse tail-to-head direction. Through←−mi , the connection

between two directions is bridged.
−→
λ i is the weight to decide which direction is more reliable

at the ith timestep. We expect that reverse direction has higher weight at farther timesteps and
alleviate the error accumulation problem. Wλ ∈ R2d and bλ are learnable parameters. [;] denotes
concatenation.
Similarly, the tail-to-head order is synchronously predicted by the same framework and can also

be boosted by the memory of decoding history from its reverse head-to-tail direction:

←−
h i =

←−−−
Func(

←−
h i−1, s←−o i−1 ), (9)

←−u i
j = g� tanh(W1soj +W2 ((1 −←−λ i )

←−
h i +

←−
λ i
−→mi )), (10)

←−
λ i = sigmoid(Wλ[

←−
h i ;
−→mi ] + bλ ), (11)

P (←−o i |←−o i−1, . . . ,←−o 1,x) = softmax(←−u i ), (12)

where head-to-tail and tail-to-head directions share the same timestep i . −→mi denotes the memory
of decoding history from head-to-tail direction.−→mi and

←−mi are the memory of decoding history from different directions, which play an impor-
tant role in bidirectional ordering. They contain the information of different directions and can

send the information from a direction to the other direction. With −→mi and
←−mi , head-to-tail and

tail-to-head directions can interact with each other at the same time and reduce the difficulty of

ordering by decoding history of the other direction. Formally, −→mi can be obtained according to
decoding history as follows:

−→mi =

i−1∑

j=1

−→α i j

−→
h j , (13)

−→α i j =
exp (−→e i j )∑i

j′=1 exp (
−→e i j′ )

, (14)

−→e i j =W�
m tanh(W4 (

−→s oj + tj ) +W5 (
←−
h i + tL−i+1)), (15)
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where −→mi consists of hidden layers in head-to-tail direction with attention mechanism [1], which

contain information of decoding history. At the first timestep, −→mi is zero vector. −→α i j denotes the
weight of attention mechanism. Intuitively, decoding history at different timesteps has different
importance.W4 ∈ Rd×d andW5 ∈ Rd×d are learnable parameters. t ∈ Rd denotes position embed-
ding and the subscript of t denotes the position index. L denotes the number of timesteps (total
number of shuffled sentences).
Similarly, the tail-to-head prediction is formulated as

←−mi =

i−1∑

j=1

←−α i j

←−
h j , (16)

←−α i j =
exp (←−e i j )∑i

j′=1 exp (
←−e i j′ )

, (17)

←−e i j =W�
m tanh(W4 (

←−s oj + tL−j+1) +W5 (
−→
h i + ti )), (18)

where two different directions share the same position embedding t. To obtain the final or-
der, we use predictions of both head-to-tail and tail-to-head directions. It will be described in
Section 3.3.
Specially, there is a symmetrical relation between head-to-tail and tail-to-head directions. For

example, there are 10 sentences, the head-to-tail prediction at the 4th timestep corresponds to the
tail-to-head prediction at the 7(10 − 4 + 1)-th timestep. Therefore, in reverse direction, we use
the symmetrical timestep (L − i + 1) for t. With the position embedding, we expect to capture
information around symmetrical positions of the reverse direction, and reduce the difficulty of
sentence ordering, especially at farther timesteps.

3.2 Training

We train the model with both the head-to-tail direction and the tail-to-head direction together by
minimizing the following loss function:

L =
1

N

N∑

j=1

1

Lj

Lj∑

i=1

log P (−→o ∗i |−→o ∗i−1, . . . ,−→o ∗1 |x)

+
1

N

N∑

j=1

1

Lj

Lj∑

i=1

log P (←−o ∗i |←−o ∗i−1, . . . ,←−o ∗1 |x)
(19)

where N denotes the number of shuffled paragraphs (batch size) and Lj denotes the number of

sentences in the jth paragraph. P (−→o ∗i |−→o ∗i−1, . . . ,−→o ∗1,x) denotes the probability of the correct head-
to-tail order at the ith timestep. Similarly, P (←−o ∗i |←−o ∗i−1, . . . ,←−o ∗1 |x) denotes the correct tail-to-head
order at the ith timestep.

3.3 Inference

Following previous methods, the coherence probability of the final output sentence order o is
formalized as

P (−→o |x) =
n∏

i=1

P (−→o i |−→o i−1, . . . ,−→o 1 |x), (20)

P (←−o |x) =
n∏

i=1

P (←−o i |←−o i−1, . . . ,←−o 1 |x), (21)
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ALGORITHM 1: Bidirectional Inference.

Input: sentences x = [so1 ,so2 ,. . .,soL ], beam size K , number of sentences L
Output: order o∗ = [o∗1,o

∗
2,. . .,o

∗
L]

1: Initialize head-to-tail/tail-to-head order oh2t /ot2h and probability ph2t /pt2h ;
2: for i = 1; i ≤ L do

3: oi
h2t
,pi

h2t
= BeamSearch([oi−1

h2t
, oi−1

t2h
], K );//descending

4: oi
t2h
,pi

t2h
= BeamSearch([oi−1

t2h
, oi−1

h2t
], K );//descending

5: end for

6: if pi
h2t

[0] > pi
t2h

[0] then

7: return o∗ = oi
h2t

[0];
8: else

9: return o∗ = oi
t2h

[0];
10: end if

P (o|x) = max(P (−→o |x), P (←−o |x)), (22)

where P (o|x) denotes the distribution of the final output order. x denotes the input shuffled para-
graph. −→ denotes head-to-tail direction and←− denotes tail-to-head direction.
For bidirectional inference, we design a special beam search in Algorithm 1, where each candi-

date prediction in a direction is incorporated into every path of beam search in the other direction.
Specially, each candidate prediction information in backward prediction is incorporated into every
path of beam search in forward prediction at one timestep (vice versa). Comparing with standard
beam search, function BeamSearch() has an extra input from the other direction, which means
we select top K paths from K2 candidates at each timestep. Finally, we select the order with the
highest probability between head-to-tail and tail-to-head predictions.

4 EXPERIMENTS

4.1 Data

Following previous studies, we adopt four datasets to conduct the experiments. The statistics are
shown in Table 1. Specifically, the four datasets are as follows:
NIPS, AAN: They are made up of abstracts from NIPS papers, ACL papers dataset, respec-
tively [23].
arXiv: It consists of abstracts from papers on arXiv website [6].
SIND: It contains photos and corresponding captions [15].

4.2 Evaluation Metrics

There are three evaluation metrics for sentence ordering.
Kendall’s tau (τ ): It is one of the most popular metrics for the automatic evaluation of text

coherence. It is formalized as τ = 1 − 2 × ninversion/
(
n
2

)
, where ninversion denotes the number

of pairs of incorrect relative order in the predicted sequence, n denotes the length of the sequence.
It ranges from −1 (the worst) to 1 (the best).
Accuracy (Acc): It measures how many absolute positions of sentences are correctly predicted. It
ranges from 0 (the worst) to 1 (the best).
Perfect Match Ratio (PMR): It calculates the ratio of exactly matching orders, which the most
stringent measurement in this task. It could only be 0 (not exactly match) or 1 (exactly match) for
a paragraph.
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Table 1. Statistics of the Data Size, Average Number of
Sentences in a Paragraph and Vocabulary Size

Train Valid Test Len Vocab

NIPS 2,248 409 402 6.0 16,721
AAN 8,569 962 2,626 4.9 34,485
arXiv 884,912 110,614 110,615 5.4 64,557
SIND 40,155 4,990 5,055 5.0 30,861

4.3 Comparisons

The methods to compare with are as follows:

(1) Sentence-level Neural Models: Pairwise Model [6]; Seq2Seq [22]; SIM [31]. These methods
employ neural networks to model sentence representation and predict orders.

(2) Paragraph-level Neural Models: CNN+PtrNet, LSTM+PtrNet [13]; RNN Decoder,
V-LSTM+PtrNet [23]; ATTNet [7]; TGCM [27]; SLM [12]; BERT4SO [44]; BERSON [8].
Besides sentence representation, these methods model paragraph representation. They
obtain state-of-the-art results.

(3) Bidirectional Ordering with Interactive Decoding: It’s our proposed method. We use BOID
to indicate it. Paragraph-level models (such as ATTNet, TGCM, and BERSON) are recent
sentence ordering models and all of them use a pointer-network type decoder framework.
Thus, ourmethod has compatibility and is easy to apply in othermodels of sentence ordering.
Specifically, we can get pointer vectors, candidate vectors, decoding history vectors from
these pointer-network basedmethods. Then, we add BOID into thesemodels with the related
vectors.

Models based on manual feature engineering perform significantly worse and thus we don’t
show their results. Besides, our method is used to enhance previous unidirectional models and we
use the same settings of them in BOID. Moreover, all baseline models are evaluated with using
beam search.

4.4 Results

The experimental results are shown in Table 2. First, we can see that the results of paragraph-
level neural models perform better than sentence-level neural models (e.g, Pairwise Model and
Seq2Seq). With employing a pointer network, these models can model the coherence of a para-
graph. Therefore, paragraph-level neural models can capture global dependencies among sen-
tences and have better ability to order sentences. Besides, we can see three recent models (ATTNet,
TGCM, BERSON) perform better and BERSON performs best with pre-trained parameters.

Moreover, we combine the three best models (ATTNet, TGCM, BERSON) with our proposed
method BOID. We can see the three best models have further improvements after combining
BOID. It demonstrates that the proposed BOID can enhance previous unidirectional models and
obtain better performance. Previous models predict orders in a single direction and ignore the
information of the other reverse direction. It inevitably causes error accumulation and makes
it difficult to predict orders at farther timesteps. BOID predicts orders in both head-to-tail and
tail-to-head directions at the same time, and prediction in two directions can interact with each
other. Therefore, BOID can alleviate the error accumulation problem and improve performance.

5 DISCUSSION

In discussion, we employ the typical model ATTNet [7] on NIPS abstract dataset [23] to conduct
experiments.
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Table 2. Sentence Ordering Results of Different Methods on Four Datasets

Models
NIPS abstract

τ PMR Acc

Pairwise Model 0.47 19.72 26.63
Seq2Seq 0.27 14.39 21.18
SIM 0.85 42.29 68.06
RNN Decoder 0.67 23.31 48.22
V-LSTM+PtrNet 0.72 27.87 51.55
CNN+PtrNet 0.66 26.79 48.64
LSTM+PtrNet 0.67 28.20 50.87
SLM 0.67 29.45 51.02
BERT4SO 0.75 24.13 -

ATTNet 0.72 29.87 56.09
ATTNet+BOID(Ours) 0.73 30.98 57.32

TGCM 0.72 29.02 57.67
TGCM+BOID(Ours) 0.74 31.61 59.22

BERSON 0.85 48.01 73.87
BERSON+BOID(Ours) 0.85 49.37 74.72

Models
AAN abstract

τ PMR Acc

Pairwise Model 0.58 21.54 41.82
Seq2Seq 0.40 18.09 36.62
SIM 0.86 59.79 75.96
RNN Decoder 0.66 21.31 52.06
V-LSTM+PtrNet 0.73 29.79 58.06
CNN+PtrNet 0.69 26.65 58.21
LSTM+PtrNet 0.69 30.41 58.20
SLM 0.71 31.85 59.97
BERT4SO 0.80 44.42 -

ATTNet 0.73 32.11 63.24
ATTNet+BOID(Ours) 0.75 34.04 64.72

TGCM 0.74 34.14 64.65
TGCM+BOID(Ours) 0.75 35.79 64.95

BERSON 0.85 59.79 78.03
BERSON+BOID(Ours) 0.86 61.08 79.16

Models
arXiv abstract

τ PMR Acc

Pairwise Model 0.66 33.43 50.79
Seq2Seq 0.52 29.43 45.67
SIM 0.82 51.34 66.79
RNN Decoder 0.66 35.53 48.31
V-LSTM+PtrNet 0.72 41.74 55.90
CNN+PtrNet 0.71 39.28 52.92
LSTM+PtrNet 0.72 40.44 54.31
SLM 0.73 42.75 55.63
BERT4SO 0.78 49.97 65.41

ATTNet 0.73 42.19 56.11
ATTNet+BOID(Ours) 0.75 43.37 57.28

TGCM 0.73 42.51 55.16
TGCM+BOID(Ours) 0.75 44.06 56.98

BERSON 0.83 56.06 75.08
BERSON+BOID(Ours) 0.84 58.82 75.45

Models
SIND caption

τ PMR Acc

Pairwise Model 0.32 10.43 30.75
Seq2Seq 0.21 8.64 26.18
SIM 0.61 25.42 41.89
RNN Decoder 0.38 10.68 31.53
V-LSTM+PtrNet 0.45 13.44 35.26
CNN+PtrNet 0.48 12.32 35.52
LSTM+PtrNet 0.48 12.34 34.45
SLM 0.50 16.22 37.41
BERT4SO 0.60 18.83 -

ATTNet 0.49 14.01 36.24
ATTNet+BOID(Ours) 0.51 15.77 37.89

TGCM 0.51 14.41 36.75
TGCM+BOID(Ours) 0.53 16.12 38.25

BERSON 0.65 31.69 58.91
BERSON+BOID(Ours) 0.67 34.22 59.26

“-” indicates the number was not reported in the original paper.

5.1 Effectiveness of Direct Hard Bidirectional Decoding

We employ hard-bidirection decoding to show whether bidirectional ordering in BOID can be
directly replaced by a simple bidirectional ordering algorithm. This simple method directly puts
the prediction of head-to-tail decoder and tail-to-head decoder into the final order, where predicted
ones of a decoder will become hardmasks for the other and avoid predicting it again. In themethod,
head-to-tail decoder and tail-to-head decoder don’t share the same timestep, and the total timesteps
of both the head-to-tail decoder and the tail-to-head decoder will be cut into a half. For example,
from the timestep 1 to 5, the prediction order is: [1 (head-to-tail), 5 (tail-to-head), 2 (head-to-tail),
4 (tail-to-head), 3 (head-to-tail)].

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 22, No. 2, Article 45. Publication date: March 2023.



45:10 G. Bai et al.

Table 3. Results of Direct Hard Bidirectional Ordering

τ PMR Acc

base 56.09 29.87 0.72
hard bidirection 49.45 25.32 0.64
BOID 57.32 30.98 0.73

Table 4. Results at the Head and the Tail
with/without BOID

unidirectional bidirectional

head 0.796 0.824

tail 0.687 0.725

Table 5. Results of Different Directions

τ PMR Acc

head-to-tail 56.09 29.87 0.72
tail-to-head 55.73 29.43 0.71
bidirectional 57.32 30.98 0.73

Table 3 shows the results. It is shown that direct hard bidirectional ordering performs worse
than ours. Through the results, we can know soft limit with vectors from BOID is better than hard
limit with masks. This is because vectors can be smoothly and selectively merged into the model,
but masks may bring error accumulation. So the soft limit of BOID is more reliable.

5.2 Performance at the Head and the Tail

We want to know whether BOID can help improve the performance at the head and the tail. Be-
sides, the performance at the head and the tail can reflect whether BOID with bidirectional predic-
tion can reduce the difficulty of ordering at farther timesteps and alleviate the error accumulation
problem.
Table 4 shows the results. We can see BOID improves the performance at both the head and the

tail. Previous unidirectional models predict the tail at the last timestep and the error accumulation
problem is serious at the end. BOID can employ the other direction and help alleviate the error
accumulation problem. Therefore, the performance at both the head and the tail has improvements.

5.3 Reliability of Reverse Direction

Here, we show whether the reverse tail-to-head prediction is reliable. Table 5 shows the results
of head-to-tail direction and its reverse tail-to-head direction. We can observe that the model also
has comparable results when trains and predicts in reverse tail-to-head direction. It can prove that
the information of tail-to-head direction is reliable and can be used to model the coherence of sen-
tences. Meanwhile, we find that head-to-tail direction performs better than tail-to-head direction,
which shows that the head-to-tail direction is a little easier for modeling coherence. It is intuitive
that the first sentence is easier than the last one to identify in most cases.

5.4 Performance on Different Paragraph Lengths

We explore the performance on different paragraph lengths (number of sentences). The results are
shown in Figure 5. We can see the accuracy gradually decreases when the length of paragraphs is
longer. BOID decreases more slowly and performs better. This is because BOID can synchronously
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Fig. 5. Changing curves of accuracy with different lengths of paragraphs. There are three results, which
belong to the single head-to-tail model, the single tail-to-head model, and BOID, respectively. BOID with
bidirectional prediction can perform better for longer lengths.

Fig. 6. Visualization for the weight of different directions. The number and color depth denote the weight
value. We can see that our method can adaptively adjust the weight of different directions with timestep
increasing.

utilize bidirectional information and alleviate the error accumulation problem, especially at farther
timesteps.
Although our method alleviates error propagation to a certain extent, we can observe that the

performance still drops significantly with longer lengths. Longer distance means more predictions
to output and brings more possible errors, which is natural and inevitable. This problem limits our
proposed model and is difficult to handle.

5.5 Visualization for the Weight of Different Directions

In Section 3.1, we design the weight
−→
λi and

←−
λi to decide which direction is more reliable at the

ith timestep. When predicting, we expect that reverse direction has higher weight at farther
timesteps and alleviate the error accumulation problem. To show how the weight changes when

ordering, here we sample a real example of the head-to-tail decoder (
−→
λi ). The visualization is

shown in Figure 6.
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We can see that the weight of the reverse direction becomes higher when the timestep increases.
It is intuitive that reverse direction is more reliable at farther timesteps. The results demonstrate
that the weight can adaptively change to alleviate the error accumulation problem. Besides, the
weight significantly fluctuates around the middle timestep. This is because we introduce position
embedding to capture the symmetrical positions of bidirectional ordering. After timestep crossing
the middle timestep, a head-to-tail position can correspond to a symmetrical tail-to-head position
and thus position embedding can effectively help adjust the weight.

6 RELATEDWORK

The methods for sentence ordering can be divided into three categories. The first is based on man-
ual feature engineering, such as Probabilistic Model [19], Content Model [4], Entity Grid [3], and
Utility-Trained Model [33]. However, these methods rely heavily on expensive handcrafted fea-
tures. The second is based on sentence-level neural models, which utilize neural networks tomodel
sentence representation. For example, WindowNetwork [21] considers the coherence in a window
of text, Pairwise Ranking Model [6] orders sentences in a pairwise way, and Seq2Seq [22] models
employ an end-to-end framework for sentence ordering. However, they can’t capture global de-
pendencies among sentences in a paragraph. The third is based on paragraph-level neural models,
which employs LSTM [14] or self-attention [35] as the encoder to model paragraph representation
and then a pointer network [37] is used as the decoder to predict orders, such as [7, 8, 13, 23, 27, 40].
However, these methods always order sentences in a single direction, which may aggravate the
error accumulation problem, especially at farther timesteps. To this end, we design two interactive
decoders to alleviate the problem.
Multiple decoders are proved effective in some other tasks such as machine translation [39, 42]

and dialogue generation [25]. However, our method has some obvious differences from them. First,
tasks in abovemethods are generative and their models can’t be directly used for sentence ordering.
Then, there is an error accumulation problem in sentence ordering, and thus the reverse direction
in sentence ordering is expected to have higher weight at farther timesteps. To adaptively ad-
just the weight, our method models the reliability of different decoders. In addition, candidates in
sentence ordering must be predicted once and only once. Therefore, sentence ordering has a sym-
metrical characteristic. To make use of this characteristic, our method introduces special position
embedding.
The easy-first decoding method is also related. For NLP, easy-first decoding was first applied to

transition-based parsing in [11]. Similar to curriculum learning [5], easy-first decoding proposes
to output sequences with an easy-to-hard direction as a human. Recently, non-autoregressive se-
quence generation models such as [20] appear, which is not limit to a directional decoding order.
However, some studies [30] demonstrate that the difficulty of non-autoregressive generation cor-
relates on the target token dependency, and knowledge distillation as well as alignment constraint
reduces the dependency of target tokens and encourages the model to rely more on source context
for target token prediction.

7 CONCLUSION

Through statistics of sentence ordering, we find that there is an error accumulation problem in pre-
vious unidirectional models. To alleviate the problem, we propose a bidirectional ordering method.
It predicts orders in both head-to-tail and tail-to-head directions at the same time. Besides, two
different directions are interactive and can enhance each other. Our method has compatibility and
is easy to apply in other models of sentence ordering. We conduct experiments on four datasets.
Experimental results demonstrate that our method can alleviate the error accumulation problem
and improve performance of previous unidirectional models.
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