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Abstract—Recently, Electronic Health Records (EHR) have become valuable for enhancing medical decision making, as well as online
disease detection and monitoring. Meanwhile, deep learning-based methods have achieved great success in health risk prediction and
diagnosis prediction based on EHR. Nevertheless, deep learning-based models usually require high volumes of data due to the vast
amount of parameters. In addition, a considerable proportion of medical codes appear rarely in the EHR data which poses huge
difficulties for clinical applications. Hence, some works propose to adopt medical ontologies to enhance the prediction performance and
provide interpretable prediction results. However, these medical ontologies are often small-scale and coarse-grained, most of
diagnoses and medical concepts are not included, lacking many diagnoses and medical concepts, let alone various relationships
between these concepts. To overcome this limitation, we propose to incorporate existing large-scale medical knowledge graphs (KGs)
into diagnosis prediction and devise a Stage-aware Hierarchical Attentive Relational Network, named HAR. Specifically, for each visit,
a personalized sub-KG is extracted from the existing medical KG, on which HAR conducts relation-specific message passing and
hierarchical message aggregation to refine representations of nodes that correspond to medical codes in visits. HAR takes the specific
stage of a patient’s disease progression into consideration, which participates in the computation of relation-level and node-level
attention. Extensive experiments on two public datasets demonstrate the effectiveness of HAR in improving both the visit-level
precision and code-level accuracy of the diagnosis prediction task.

Index Terms—diagnosis prediction, electronic health record, knowledge graph, relational graph neural network.

✦

1 INTRODUCTION

E LECTRONIC Health Records (EHR) [1] have become a
pervasive healthcare information technology. EHR data

are represented by a temporal sequence of visits, where each
visit includes multiple medical codes that represent clinical
diagnoses. Even though EHRs were initially designed to im-
prove healthcare efficiency from an operational standpoint,
researchers have found secondary use for health services
and clinical research [2], [3]. To be more specific, EHR data
are employed for such tasks as medical concept extraction
[4], [5] and disease prediction [6], [7], [8].

Meanwhile, deep learning models have achieved great
success among various domains, including computer vision
[9], [10], natural language processing [11], [12], [13], graph
neural networks [14], [15], [16] and data mining [17], [18],
[19]. Naturally, a lot of deep learning-based methods [20],
[21], [22], [23], [24], [25] have been proposed to model EHR
data. These deep-learning-based methods not only require
less preprocessing and feature engineering but also achieve
better performance.
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Fever is a temporary rise in body temperature which is one part of an overall 
response from immune system. Fever is usually caused by an infection.

The patient:
A Child
without any medical history

The patient:
An old man 
suffering from cancer

Medical knowledge graph:
A fever on a cancer patient usually heralds more serious 
complications.

Electronic health records 
with exiting large-scale 
medical knowledge 
graph.

Take physical methods to reduce the 
fever

Take immediate procedures to avoid 
more serious complications.

Fig. 1: An example to illustrate the employment of an
external medical knowledge graph in treating patients with
a fever.

One critical task based on EHR data is predicting future
diagnoses using a patient’s historical EHR data, known
as diagnosis prediction. Recurrent neural networks are
adopted to model temporal correlation among EHR se-
quence data. For instance, Dipole [26] employs an attention-
based bidirectional recurrent neural network for learning
low-dimensional representations for patient visits, which
are then used for future diagnosis prediction.

Nevertheless, deep learning-based EHR models usually
require high volumes of data due to the vast number of
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parameters. Hence, the performance is usually unsatisfac-
tory when the size of the training dataset is limited. In
addition, a considerable proportion of medical codes appear
infrequently in the EHR data. Then, it is challenging to learn
accurate representations for these rare medical codes. In
this situation, researchers propose to incorporate external
medical knowledge to boost the performance. For example,
GRAM [27] proposes to infuse a medical ontology – Clinical
Classifications Software (CCS) into deep learning models
via neural attention [12]. However, the use of a medical
ontology has limited benefits for two main reasons. On the
one hand, the scale of most medical ontologies is relatively
small. For example, CCS only contains hundreds of con-
cepts. Most diagnoses have no corresponding concepts in
the ontology. On the other hand, ontology is essentially a
disease classification tree and contains no information about
various kinds of relationships between different diseases, let
alone, reflecting the progression of diseases. Hence, we pro-
pose to incorporate existing large-scale medical knowledge
graph, SemMed, into diagnosis prediction.

Even though some existing works [25], [28], [29] also pro-
pose to make use of existing large-scale medical knowledge
graphs, they fail to take the specific stage of the patient into
consideration. As illustrated in Figure 1, taking diagnosis
fever as an example, it can appear in different stages and
reflect different degree of severity. Encountering a patient
with a fever, an experienced doctor may take physical meth-
ods to reduce the fever if the patient is a child without any
medical history. But if the patient is an old man suffering
from cancer, the doctor must take immediate procedures
to avoid more serious complications that the fever heralds.
Existing large-scale medical knowledge graph contains a
large amount of information covering different stages of
disease. Only a small part of the knowledge applies to the
patient at a specific stage. Blind application of the medical
KG may result in adverse outcomes. Therefore, it is essential
to take the specific stage of the patient into consideration
when incorporating existing medical knowledge graph into
diagnosis prediction or health risk prediction.

To tackle all the aforementioned problems and chal-
lenges, we propose a Stage-Aware Hierarchical Attention
Relational Network, named HAR, for diagnosis prediction
task in this paper. HAR consists of four components: stage-
aware relation-level attention, stage-aware node-level at-
tention, relation-specific message passing and hierarchical
message aggregation. Our model is designed as a general-
purpose plug-in module, which can be built on all kinds
of temporal prediction models. Specifically, for each visit of
a patient, we extract a personalized sub knowledge graph
from the existing large-scale medical knowledge graph –
SemMed1. Compared with the raw large-scale knowledge
graph, personalized sub-knowledge graph avoids message
propagation between nodes not related to the patient and
decreases the difficulty of learning significantly. On the ex-
tracted personalized sub-knowledge graph, HAR conducts
relation specific message passing and hierarchical message
aggregation based on both relation-level and node-level
attention. Compared with existing works that also make use
of medical KGs, HAR takes the specific stage of the patient

1. https://skr3.nlm.nih.gov/SemMed

in disease progression into consideration while calculating
the relation-level and node-level attention coefficients. Fi-
nally, the obtained refined representations of nodes which
have corresponding medical codes in the original EHR
data are fed into downstream existing prediction models.
Prediction models pass their hidden states back to HAR to
represent the current stage of the patient.

Applying GNN to knowledge enhanced diagnosis pre-
diction, while theoretically feasible, faces lots of difficulties
in practice and thus requires novel model design. Since there
are multiple kinds of nodes and relations in the knowledge
graph, we propose specialized network structures that can
handle heterogeneous graph input. Even after extracting the
subgraph, there are still a large number of nodes and edges
in the sub-knowledge graph. Therefore, we design sophis-
ticated attention mechanisms considering current stage of
patients to assign different weights in message propagation
and aggregation. The main contributions of this work can
be summarized as follows:

• We incorporate a large-scale medical knowledge
graph (KG) – SemMed into diagnosis prediction and
propose a hierarchical stage-aware attention mecha-
nism which extracts informative knowledge from the
KG to assist the prediction task.

• We propose HAR, a general-purposed framework for
diagnosis prediction which can be built on various
temporal prediction models.

• We conduct extensive experiments on two public
benchmark datasets to verify the effectiveness of
HAR framework.

2 RELATED WORK

In this section, we first review some recent works about
health risk prediction and diagnosis prediction based on
EHR data. We also provide a brief introduction about recent
progress in multi-relation graph neural networks which
serve as a useful and powerful tool in enhancing prediction
models with external medical knowledge graph.

2.1 Deep Learning based Methods for Diagnosis Pre-
diction
EHR data contain rich historical health information of
patients. Building powerful health risk prediction models
based on EHR data paves the way for web-enabled per-
sonalized health care applications. Recently, deep learn-
ing techniques, including convolutional neural networks
(CNNs), recurrent neural networks (RNNs) and graph neu-
ral networks (GNNs) have achieved great success in various
applications among multiple domains, including health risk
prediction and diagnosis prediction based on EHR data. In
viewing that EHR data exist in temporal sequential form,
it is natural to adopt RNNs or LSTMs to model disease
progression in time dimension. In comparison, CNNs are
adopted to capture local dependence in EHR data.

In Dipole [26], bidirectional recurrent neural networks
are employed to remember all the information of both
the past visits and the future visits, and three attention
mechanisms are introduced to measure the influence of
different visits for the prediction. RETAIN [30] develops a
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reverse time attention model for EHR data which achieves
high accuracy while remaining clinically interpretable. Its
two-level neural attention detects influential past visits and
significant clinical variables within those visits (e.g. key
diagnoses).

Another line of works try to model disease progression
by taking time intervals into consideration. For example,
T-LSTM [31] proposes a novel LSTM [11] unit called Time-
Aware LSTM (T-LSTM) to handle irregular time intervals in
longitudinal patient records. StageNet [32] integrates inter-
visit time information into LSTM cell states to capture the
stage variation of patients’ health conditions.

2.2 Knowledge-Enhanced Methods for Diagnosis Pre-
diction
Deep learning based methods for EHR often require vast
sample size to achieve satisfactory performance. In addi-
tion, some diagnoses of rare diseases appear in the EHR
data much infrequently, making it even harder for accurate
prediction for them. To address these problems and learn a
robust prediction model, researchers propose to incorporate
existing medical knowledge.

As an instance, GRAM [27] infuses information from
a medical ontology DAG (Directed acyclic graph) [33] –
CCS (Clinical Classifications Software) 2 into deep learn-
ing models via neural attention. GRAM can learn accu-
rate and interpretable representations for medical concepts
and show significant improvement in the prediction per-
formance, especially on low-frequency diseases and small
datasets. HAP [34] adopts the same medical ontology DAG
with GRAM [27], but hierarchically propagates attention
across the entire ontology structure with two rounds of
knowledge propagation. Nevertheless, in both GRAM and
HAP, medical ontology information is only used when
learning code representations which implicitly affects the
final predictions. Hence, Ma et al. [35] propose KAME which
directly exploits medical knowledge in the whole prediction
process, i.e. learning code representations, generating visit
embeddings and making predictions. However, compared
with our HAR, the ignorance of considering patient’s spe-
cific stage limits the performance improvement brought by
knowledge graphs.

In viewing that the domain knowledge introduced by
GRAM, HAP and KAME are only coarse-grained division
of medical concepts where causal relationships are not
included, KnowRisk [28] and DG-RNN [29] incorporate a
more powerful and larger scaled knowledge graph KnowL-
ife [36]3 to enrich the information extracted from insuffi-
cient inputs and guide the prediction. And they propose
sophisticated knowledge graph attention to obtain the latent
information from embeddings of the input events in the
knowledge graph.

2.3 Knowledge Graph and Graph Neural Networks
Knowledge graphs [37] reflect structural relations between
entities in the real world which pave the way for cognition
and intelligence. A knowledge graph consists of entities

2. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
3. http://knowlife.mpi-inf.mpg.de/

TABLE 1: Some Important Notations Used in This Paper

Variable Description

C The set of all the unique medical codes
Vi EHR sequence for the i-th patient
Ti The length of EHR sequence for the i-th patient
vt Medical codes appeared in the t-th visit
Nvt The set of nodes corresponding to the codes in vt
xt |C|-length multi-hot vector to represent vt
Xi 0-1 valued matrix that encodes all the EHR data
G External medical knowledge graph
gt Extracted sub-graph from G according to vt
ft Hidden state of prediction model after the t-th timestep

and relationships between entities. From the perspective
of graph, a knowledge graph could be viewed as a multi-
relation graphs in which there are multiple kinds of edges.

To model knowledge graph data, researchers propose
various translational models such as TransE [38], TransR
[39] and TransH [40]. In order to better capture relationships
between entities, some studies [41], [42], [43] propose to
represent entities and relationships in complex space instead
of real-valued spaces. Each representation are split into real
part and imaginary part.

Graph neural networks (GNNs) aims to apply deep
neural networks to graph-structured data [44], [45]. Some
works generalize convolution operations to graph domain,
i.e. Graph Convolution Networks (GCNs) [14], [15], [46],
[47]. ChebNet [46] defines graph convolution operator in
the Fourier domain and approximates the filter through
Chebshev polynomials of the diagonal matrix of eigenval-
ues. Further, GCN [14] adopts first order Chebshev approx-
imation and bridge the gap between spatial and spectral
based graph convolution network approaches. GraphSAGE
[47] samples a fixed number of neighbors and employs
several aggregation functions. GAT [15] introduces attention
mechanisms into GNN and adopts attention coefficients as
information aggregation weights.

Later, a lot of works [48], [49], [50], [51] attempt to extend
graph neural networks for modeling multi-relational or het-
erogeneous graphs, especially knowledge graphs. For exam-
ple, Schlichtkrull et al. [52] propose RGCN (relational graph
convolutional networks) to model knowledge graphs which
adopts a distinct linear transformation for each kind of rela-
tion. Wang et al. [53] propose an extension of graph attention
networks (GAT) [15] by maintaining different weights for
different pre-defined meta-paths. Messages are passed and
aggregated through these meta-paths to convey high-level
semantic information. To tackle the problem that weights for
relation type with insufficient occurrences cannot be learned
accurately, instead of parameterizing each type of edges,
HGT [54] defines heterogeneous mutual attention according
to the edge types and types of source and target nodes.

3 PRELIMINARY

In this section, we mainly provide some background knowl-
edge about EHR data and external medical knowledge
graphs. Basic notations are summarized for easier under-
standing. Finally, we formulate the diagnosis prediction
task.
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3.1 Electronic Health Records
Electronic Health Records (EHR) is a special kind of data
which consist of medical history of a patient and provide
rich information for the prediction of the future health
status of the patient. Even though EHR data were initially
designed for improving healthcare efficiency from an oper-
ational standpoint, researchers have found secondary use
for health services and clinical research such as medical
concept extraction and disease prediction. For each visit to
the hospital of a specific patient, the diagnoses appeared
are recored as medical codes in a pre-defined system such
as ICD4 (International Classification of Diseases) or CUI 5

(Concept Unique Identifiers). In this paper, we mainly focus
on diagnosis prediction based on EHR data.

3.2 External Medical Knowledge Graph
External medical knowledge graphs such as KnowLife [36]
and SemMed [55] consist of triplets extracted from pub-
lications in medical domain. These triplets provide rich
information about disease progression and can improve
prediction accuracy. Each triplet consists of a head entity,
a type of relation and a tail entity. The head and tail entities
are concepts in the medical area. Part of those entities appear
in EHR data as medical codes which are usually diagnoses
given by doctors. The relation type reflects the relationship
between the two concepts. For instance, triplet <Heart Valve
Disorder, Causes, Heart Failure> reflects that heart valve
disorder is the cause of heart failure. With this triplet, model
can make prediction of heart failure if heart valve disorder
has appeared on the patient.

3.3 Basic Notations
In this paper, all the unique medical codes from EHR data
are denoted as c1, c2, . . . , c|C| ∈ C , where C is the set
consisting of all the medical codes. For the i-th patient, the
EHR data are denoted as Vi = {v1, v2, . . . , vTi

}, in which
Ti is the total number of visits. Visit vj is a subset of C ,
representing medical codes appeared in the j-th visit. For
the convenience of calculation, vj can also be represented
as a |C|-length multi-hot vector xj , where each element is
zero or one, representing each medical code appears or not
respectively. By stacking those multi-hot vectors, we reach
a 0-1 valued matrix Xi ∈ {0, 1}Ti×|C| to represent all the
historical EHR data for the i-th patient. Denote the adopted
external knowledge graph as G, for visit vt, the personalized
sub-graph extracted from G is gt. We summarize some
important notations used in this paper in Table 1.

3.4 Diagnosis Prediction Task
Diagnosis prediction is one of the most important tasks in
health care area which aims to predict potential diagnoses
according to historical EHR data. Here, we give the formu-
lation based on notations provided before. For a specific pa-
tient, denote his or her EHR data for T consecutive visits as
X ∈ {0, 1}T×|C|, the goal is to tell which diagnosis is likely
to appear in the next visit, i.e. the value of xT+1. Hence,

4. https://www.cdc.gov/nchs/icd/icd9.htm
5. https://www.nlm.nih.gov

clinical doctors could intervene in advance for better health
service. In addition, interpretability is of great importance in
diagnosis prediction scenario. Accurate attribution analysis
enable doctors figure out causes in an efficient manner.

4 METHODOLOGY

In this section, we first provide an overview of our model.
After that, the architecture and function of each component
are explained in detail. It is worthy note that HAR is a
general-purposed plug-in module, it should be combined
with a downstream temporal prediction model. Then, joint
end-to-end training of HAR and existing prediction models
is described. Finally, model interpretation for prediction
results is provided.

4.1 Overall Architecture of HAR
As illustrated in Figure 2, HAR is a flexible framework that
can be combined with any existing prediction model. For
visit vt, HAR first adopts a sub-graph sampler to extract a
personalized knowledge graph gt from the external knowl-
edge graph G. In sub-graph gt, medical codes in visit vt
are represented as nodes constituting a node set Nvt . In
addition, nodes with less than k-hop distance to those nodes
in Nvt are also included in sub-graph gt. Nodes in Nvt

represent symptoms that have already appeared while the
neighboring nodes reflect the potential development trend
of the disease.

In order to make full use of the valuable informa-
tion, we decide to adopt message passing and aggrega-
tion framework. However, different from general homoge-
neous graphs, the personalized knowledge graph is a multi-
relational graph where edges between nodes have different
types. In addition, a medical knowledge graph contains vast
volume of information covering different stages of disease,
for a patient in a specific stage of a disease, only a small part
of the knowledge graph is informative for the diagnosis pre-
diction. Hence, instead of direct adopting multi-relational
graph neural networks on heterogeneous (multi-relational)
sub-graph gt, we devise a stage-aware hierarchical atten-
tion mechanism to capture relation-level and node-level
attention simultaneously. Specifically, downstream temporal
prediction models feed their hidden vectors to HAR as pa-
tient stage indiactor which enables discriminative adoption
of the knowledge graph. After that, hierarchical message
aggregation aggregates information from neighborhood and
update node representations. Finally, refined embeddings
for diagnoses are passed to the downstream existing tempo-
ral predictor.

4.2 Personalized Graph Extraction
Even though there are lots of sophisticated choices for sub-
graph samplers, we find direct extraction of a k-hop sub-
graph of Nvt from G works well, due to the relative small
size of Nvt .

gt = k-hop sub-graph(G,Nvt). (1)

As for the specific value of k, we tried different values
experimentally, and empirically we find k = 1 or 2 works
relatively well and larger values may result in computation
burden and even negative effect to the performance.
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Fig. 2: Data flow for joint-training of HAR and existing prediction models. For visit vt, a personalized sub-graph gt is
extracted from existing medical knowledge graph G. Then HAR conducts message passing and aggregation on gt to
update embeddings of nodes that correspond to codes in vt. Finally, refined embeddings are fed to existing prediction
model to reach final prediction results. Meanwhile, vector ft reflecting the current stage of the patient are returned back to
HAR.

4.3 Medical Code Embedding
An important step is to convert discrete medical codes to
reasonable and learnable representations. There are some
advanced strategies for medical code embedding, for exam-
ple, in KnowRisk [28], GRAM [27] is adopted. However, in
HAR framework, we simply employ a parameter embed-
ding matrix E ∈ R|C|×d, where each row encodes a medical
code. Parameter matrix E is learned automatically in an
end-to-end manner.

4.4 Stage-Aware Hierarchical Attentive Relational Net-
work
As Figure 3 shows, each HAR layer consists of four compo-
nents: (1) Stage-Aware Multi-Relational Attention, (2) Stage-
Aware Node-Level Attention, (3) Relation-Specific Message
Passing and (4) Hierarchical Message Aggregation. Multi-
head technique [15] is adopted in the first two components.
For the sake of brevity, only one head is assumed in the
following text.

4.4.1 Stage-Aware Relation-Level Attention
During the development of a disease, different relation types
in the medical knowledge graph may contribute unequally
during different stages. For example, in the early stage,
causes of a specific diagnosis may reveal more specific
and detailed information, which determines the trend of
development. However, in the late stage of a disease, cause
relation contributes less since diagnosis itself is evident
enough. Instead, complication relation in the medical knowl-
edge graph should be attached more importance because
serious complications are fatal.

To measure the weight of different relation types, we first
assign an embedding vector ri for the i-th relation. Stage-
aware multi-relational attention module operates on these

relation embeddings and the hidden state vector ft−1. In
order to obtain sufficient expressive power, following GAT
[15], we adopt a linear layer to transform these embeddings
and hidden state vectors into high-level features. After that,
inner product parameterized by wr,Wr is employed to com-
pute the importance of different relation types as follows:

ari = wT
r [Wrri||Wrft−1], (2)

where || means vector concatenation and ft−1 is hidden
state vector returned from downstream prediction models in
the last time step. Leaky ReLu activation and Softmax layer
are adopted for further normalization among all relation
types as follows:

αri =
exp(LeakyReLu(ari))∑|R|
j=1 exp(LeakyReLu(arj ))

, (3)

in which R is the set of all the relations in the KG.

4.4.2 Stage-Aware Node-Level Attention
In the medical knowledge graph, a concept usually has
dozens of neighbors most of which provide little help in
diagnosis prediction task. As a result, neighboring nodes
should be attached importance to different degree in mes-
sage passing and aggregation. Three factors should be take
into consideration in calculating the attention for a target
node: (1) the representation of the node itself, (2) represen-
tations for neighbor nodes, (3) current stage of the patient.
To take all the three factors into consideration, we design a
stage-aware node-level attention mechanism which operates
on source node embedding, target node embedding and
state vector together.

Note that source node embedding, target node embed-
ding and state vector may lie in different feature space and
have different distribution, so the first step is to map them
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Fig. 3: Illustration of the computation process of both visit-level and code-level attention, relation-specific message passing
and hierarchical aggregation between node o and s1, s2. Hidden state ft−1 returned by the prediction model participates
in the computation of attention at two levels.

into same feature space. To maximize parameter sharing
while maintaining feature space mapping, we propose to
parameterize feature space transformation through a weight
matrix Wn. Then transformed embeddings are concatenated
together and experience the following computation process
similar to relation-level attention:

an(o, si) = wT
n [Wnho||Wnhsi ||Wnft−1], (4)

in which ho, hsi represent embeddings for node target node
o and source node si.

αn(o, si) =
exp(LeakyReLu(an(o, si)))∑

sj∈No
exp(LeakyReLu(an(o, sj)))

(5)

4.4.3 Relation-Specific Message Passing
In parallel with the computation of relation-level attention
and node-level attention, information is passed from source
nodes to target nodes. Inspired by RGCN [52], we introduce
relation-specific transformations, i.e., depending on the type
of edges. This could be seen as an extension of regular graph
convolution:

msg(o, si) = Weihsi , (6)

in which, ei is the relation type of edge between si and o.

4.4.4 Hierarchical Message Aggregation
With stage-aware relation-level and node-level attention
calculated and multi-relational message passed, the impor-
tance of different relations and neighbor nodes are mea-
sured. Based on the two-level attention mechanisms, we
design a hierarchical message aggregation module:

h̃(l)
o =

∑
r∈R

αr ·

 ∑
si∈N r

o

αn(o, si) ·msg(o, si)

 , (7)

where N r
o denotes the set of neighbor indices of node o

under relation r ∈ R. Two levels of summation in Equation
7 reflects the hierarchy of aggregation. The inner summa-
tion reflects message aggregation from nodes under each
relation. The outer summation reflects message aggregation
among multiple relations.

To ensure that the representation of a target node at
layer l + 1 can also be informed by the corresponding
representation at the l-th layer, a self-loop connection is
added. Hence, the refined node representation for target
node o becomes

h(l)
o = λh(l−1)

o +(1−λ)
∑
r∈R

αr·

 ∑
si∈N r

o

αn(o, si) ·msg(o, si)

 ,

(8)
where hyper-parameter λ controls the weight of self-loop
message.

Note that in Eq 8, no non-linear activation function is
included in node representation updating, since we find that
non-linear activation has no positive effect on diagnosis pre-
diction empirically. Similar phenomenon has been observed
in recommendation systems [?]. This can be explained as:
each node in the knowledge graph only has an ID which
contains no rich semantics. In this case, performing multi-
ple nonlinear transformations will not contribute to learn
better features; even worse, it may add difficulties to the
optimization.

4.5 Diagnosis Prediction
As mentioned before, for each visit, HAR refines node
embeddings of sub-graph extracted from knowledge graph
according to historical visits. Since existing temporal pre-
diction models cannot accept multiple node embeddings as
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Algorithm 1: The HAR framework (forward prop-
agation)

Input : EHR visists v1, v2, . . . , vt−1

Medical knowledge graph G
Sub-graph order k
HAR layer number L
Downstream Temporal Prediction Model P

Output: The next diagnosis predictions ṽt
1 // Personalized Graph Extraction.
2 gt ← k-order subgraph from the neighborhood of

Nvt in G
3 // The update of node embeddings by HAR.
4 for l ∈ [1 : L] do
5 Calculate relation-level attention coefficients ari

according to Equation 2 and 3.
6 Calculate node-level attention coefficients ari

according to Equation 4 and 5.
7 Obtain relation-specific message msg(o, si)

between node si and o according to Equation 6
8 Conduct hierarchical message aggregation

following Equation 7.
9 Update the representation of node o following

Equation 8.

10 // The prediction of next item.
11 Prediction model P feeds state vector ft back to

HAR.
12 x̂t ← P (H(1), . . . ,H(t))

input, we adopt a sum readout-function to obtain a graph-
level representation as follows:

hgt =
∑

u∈Nvt

h(L)
u , (9)

in which Nvt is the set of nodes corresponding to med-
ical codes in visit vt. Then, graph-level representation
hg1 , hg2 , . . . , hgT are fed into downstream temporal predic-
tion model P . After that, model P make predictions for next
time step. Most predictors contain RNN or similar modules
to model disease progression, hence hidden states are re-
turned back to HAR to represent current state of the patient.
These hidden states helps HAR absorb useful information
from external medical knowledge graph discriminatively.

4.6 End-to-End Training with Existing Prediction Mod-
els

HAR model is trained together with downstream prediction
model P in an end-to-end manner. Diagnosis prediction
task is essentially a multi binary-classification task, hence
we adopt cross-entropy loss. The prediction loss for all time
steps from the second visit is calculated as follows:

L(x1,x2, . . . ,xT ) = −
1

T

T∑
t=2

(xt log(x̂t)+(1−xt) log(1−x̂t)).

(10)
With the above loss function, HAR model and predictor
model P are optimized jointly through gradient descent
methods such as [56], [57].

TABLE 2: Basic statistics of MIMIC-III and MIMIC-IV
datasets. Those ICD-9 codes which have no responding
CUIs in SemMed knowledge graph are ignored. For all
datasets, we choose patients who made at least two visits.

Dataset MIMIC-III MIMIC-IV

Number of Patients 7,177 40,149
Number of Visits 19,203 153,419
Unique ICD-9 codes 1,086 1,271
Average Visits per Petient 2.68 3.82
Maximum Visits per Patient 42 120
Average Medical Codes per Visit 7.48 6.46
Maximum Medical Codes per Visit 31 29

4.7 Interpretation of Prediction

Interpretation of prediction results is of great importance
for clinical applications. In HAR, the stage-aware hierar-
chical attentive relational network could provide explicit
interpretations for predictions. As long as the knowledge
graph is large and complete enough, diagnoses in the pre-
diction would appear in the extracted sub-graph. Then, the
corresponding node would participate the computation of
relation-specific message passing and hierarchical message
aggregation. Through both node-level and relation-level
attention coefficients, we could reveal relationships between
different disease symptoms.

5 EXPERIMENTS

In this section, we first provide details of experimen-
tal settings including datasets, the public knowledge
graph, baseline methods, evaluation metric and imple-
mentation. Then, we provide experimental results and
analysis. In addition, we investigate the design of our
framework through an ablation study. Finally, a case
study is presented for an intuitive understanding of
HAR’s interpretability. To make our results fully re-
producible, source codes have been made public at
https://github.com/lipingcoding/HAR/tree/main.

5.1 Experimental Setup

5.1.1 Datasets

In this paper, experiments are conducted on two pub-
licly available EHR datasets: MIMIC-III [58] and MIMIC-
IV, which include thousands of patients’ health records
from ICU. For both datasets, only diagnosis codes are used
for prediction task. It’s worthy note that medical codes in
MIMIC-III and MIMIC-IV are recored in ICD-9 while ones
in SemMed knowledge graph are recored in CUI. Hence, we
ignore those ICD-9 codes which have no responding CUIs
in SemMed. After the filtering, we choose those patients
who made at least two visits. We provide basic statistics
of datasets in Table 2.

5.1.2 SemMed: A Public Knowledge Graph

In this paper, the medical knowledge graph that we use
is SemMed [55] [25] which is a large-scale multi-relational
medical knowledge graph with more than 150,000 entities
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TABLE 3: Visit-Level Precision@k comparison on MIMIC-III and MIMIC-IV datasets between four existing prediction
models and their variants by adding our HAR. Average results for multiple values of k and relative improvement of HAR
variants compared with base models are included.

Dataset MIMIC-III MIMIC-IV
Visit-Level Precision @ k Visit-Level Precision @ k

Model 10 15 20 25 30 Average 10 15 20 25 30 Avgerage

LSTM 43.15 47.67 52.41 56.57 59.89 51.94 53.27 57.51 61.53 64.74 67.30 60.87
HAR-LSTM 43.75 49.03 54.28 58.42 61.44 53.38 (2.78%↑) 54.25 58.85 62.95 66.17 68.84 62.21 (2.20%↑)
Dipole 42.54 47.45 52.67 56.80 60.30 51.95 53.07 57.53 61.59 64.91 67.55 60.92
HAR-Dipole 42.04 47.48 52.83 57.17 60.70 52.04(0.17%↑) 53.10 57.59 61.82 65.14 67.92 61.11(0.31%↑)
RETAIN 44.51 49.39 54.12 58.12 61.29 53.49 54.44 58.80 62.92 66.14 68.78 62.22
HAR-RETAIN 45.41 50.15 55.51 59.51 63.06 54.73 (2.32%↑) 54.73 59.32 63.43 66.82 69.48 62.76 (0.86%↑)
RAIM 37.00 42.03 47.48 51.61 55.40 46.70 51.77 56.04 60.12 63.41 66.13 59.49
HAR-RAIM 41.07 45.86 51.12 55.26 58.53 50.37 (7.85%↑) 53.45 57.92 61.99 65.31 68.01 61.34 (3.10%↑)
StageNet 42.96 47.82 52.75 56.98 60.07 52.12 53.43 58.05 62.22 65.55 68.16 61.48
HAR-StageNet 43.81 48.69 53.76 58.14 61.51 53.18 (2.05%↑) 53.70 58.22 62.41 65.74 68.45 61.70 (0.36%↑)
HiTANet 45.50 49.90 55.25 59.19 62.61 54.49 57.35 61.81 65.96 69.18 71.77 65.21
HAR-HiTANet 46.70 51.66 57.09 61.31 64.86 56.32 (3.36↑) 57.91 62.91 67.28 70.65 73.36 66.42(1.86↑)

TABLE 4: Code-Level Accuracy@20 on MIMIC-III and MIMIC-IV datasets between four existing prediction models and
their variants by adding our HAR. Medical codes are divided to five groups according to their frequencies in the training
dataset. For example, 0-20 means the rarest ones while 80-100 means the frequent ones. Each group’s results and overall
results are reported at the same time.

MIMIC-III MIMIC-IV

Model 0-20 20-40 40-60 60-80 80-100 Overall 0-20 20-40 40-60 60-80 80-100 Overall

LSTM 6.71 24.23 46.31 84.03 96.27 50.59 18.79 35.68 54.90 87.96 97.16 58.89
HAR-LSTM 9.88 25.71 44.79 87.71 96.78 52.03 (2.85%↑) 20.91 37.16 55.97 89.82 97.23 60.22 (2.26%↑)
Dipole 7.46 24.15 46.00 84.59 96.51 50.82 18.75 35.13 54.36 88.52 97.22 58.78
HAR-Dipole 6.96 19.40 43.79 91.92 98.16 51.03 (0.41%↑) 17.75 34.73 54.73 90.51 98.31 59.20 (0.71%↑)
RETAIN 9.83 28.29 46.81 84.97 97.73 52.61 20.96 37.55 56.48 89.77 98.15 60.58
HAR-RETAIN 10.84 26.28 45.67 91.21 98.70 53.57 (1.82%↑) 21.37 37.05 56.50 91.46 98.53 60.98 (0.67%↑)
RAIM 0.88 10.55 35.08 92.92 97.89 46.31 13.83 32.93 55.53 89.45 97.85 57.94
HAR-RAIM 6.51 20.61 40.54 87.32 96.95 49.37 (6.60%↑) 19.85 35.61 53.93 89.07 97.32 59.14 (2.07%↑)
StageNet 6.63 24.40 45.34 86.12 97.13 50.98 18.45 34.93 55.95 90.14 97.59 59.43
HAR-StageNet 11.36 26.26 45.34 84.41 96.13 51.78 (1.57%↑) 19.47 35.46 56.19 89.62 97.47 59.65 (0.37%↑)
HiTANet 7.93 24.55 49.16 91.29 98.76 53.40 18.68 40.32 62.95 92.42 99.03 62.74
HAR-HiTANet 11.44 27.84 50.39 89.93 98.38 54.70(2.43%↑) 20.07 41.77 62.09 92.46 99.24 63.17(0.68%↑)

and 64 types of relation. SemMed consists of triplets ex-
tracted from the abstract part of medical publications on
Pubmed 6.

5.1.3 Baselines
As we mentioned before, HAR is a general-purposed plug-
in module, it can be combined with various temporal pre-
diction models. To validate the effectiveness of the proposed
HAR framework, without loss of generality, we choose four
baseline models: LSTM, RETAIN [30], Dipole, [26], RAIM
[59], StageNet [32], HiTANet [60]. On the one hand, they
serve as baseline models, on the other hand, they can be
used as base models on which the proposed HAR is built.

• LSTM: We adopt the same embedding method as
Dipole [26]. Then, the embeddings of each visit are
fed into a LSTM [11] layer. After that, all hidden
states are added together to obtain a final feature
vector. In the end, a linear classifier and Softmax
Layer are employed to reach final predictions.

• Dipole: Dipole employs bidirectional recurrent neu-
ral networks to remember the information of both
the past visits and the future visits and introduce

6. https://pubmed.ncbi.nih.gov/

three attention mechanisms to measure the influence
of different visits.

• RETAIN: RETAIN is a competitive prediction model
that adopts a two-level neural attention model that
detects influential past visits and significant clinical
variables with those visits.

• RAIM: RAIM introduces an efficient attention mech-
anism for continuous monitoring data, which is
guided by discrete clinical events. With the guided
multi-channel attention, high-density multi-channel
signals are integrated with discrete events and prove
very useful in risk prediction.

• StageNet: StageNet is a state-of-the-art model that
extract disease stage information from patient data
and integrate it into risk prediction.

• HiTANet: To leverage time information for risk pre-
diction in a more reasonable way, HiTANet imitates
the decision making process of doctors in risk pre-
diction through a hierarchical time-aware attention
network.

5.1.4 Evaluation Metric

Following KAME [35], we adopt two metrics to measure the
performance of all methods for diagnosis prediction task,
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i.e. visit-level precision@k and code-level accuracy@k.
For a visit, its precision@k is defined as the correct ratio

among the top-k highest-scoring prediction results:

precision@k =
1

min(k, |C|)

|C|∑
i=1

1x[i]=1 and x̂[i]∈top−k(x̂),

(11)
where 1 is an indicator function and top-k(x̂) means the
set of k greatest elements in x̂. The average value of
precision@k among all the visits is reported.

For a medical code, its accuracy@k is defined as the
ratio of the number that it is correctly predicted to the
total number of its occurrences. What we call correctly
predicted here means that the code are predicted with a
top-k highest score, otherwise falsely. On the one hand, we
report the average value of accuracy among all the medical
codes. On the other hand, we sort the medical codes by
their frequencies in the training dataset in non-decreasing
order, and then divide them into five different groups. For
example, 0-20 means the rarest ones while 80-100 means the
most frequent ones. Average code-level accuracy in different
groups reflects the prediction performance for codes with
varying frequencies.

5.1.5 Implementation Details
In this paper, all the baselines and our models are imple-
mented with PyTorch 7 [61] and DGL 8 [62]. Both MIMIC-III
and MIMIC-IV datasets are randomly divided into training,
validation and testing sets in a 0.7:0.1:0.2 ratio. Embedding
size d is set 64 for all approaches. The same dropout strategy
with a 0.5 drop rate is applied to all the methods. All
methods are trained with Adam optimizer [56] with a mini-
batch of 16 patients. Learning rate is fixed at 0.0005 for all
methods.

5.2 Experimental Results
5.2.1 Performance Comparison
For each baseline method, we first test the vanilla model.
Then, we build on the vanilla model and add our HAR.
Comparison results at visit level are shown in Table 3,
in which, precision results for different values of k are
reported. For code level comparison, we report accuracy@20
results in Table 4. More specifically, in addition to the
overall performance in code-level accuracy, we also report
the results for each group which are obtained by dividing
the medical codes according to the percentile of their fre-
quencies in the training dataset. For example, 0-20 are the
rarest diagnoses while 80-100 represent the most common
ones. As Table 3 and 4 illustrate, compared with vanilla
models, HAR improves the prediction performance on both
visit and code level. Especially, the improvement is more
significant for codes that appear less frequently, reflecting
that HAR successfully incorporate outside medical knowl-
edge to improve prediction accuracy of rare diseases or
diagnoses. This also reveals the necessity of using outside
medical knowledge in EHR domain.

To more fully assess the performance of the model, we
compare HAR with other methods on MIMIC-III dataset

7. https://pytorch.org/
8. https://www.dgl.ai/

TABLE 5: The comparison between HAR and methods
utilizing medical knowledge on MIMIC-III dataset.

Model Prec.@10 Acc.@10 Prec.@20 Acc.@20

GCN 34.45 30.77 45.46 44.27
RGCN 43.28 38.18 53.03 51.36
DGRNN 39.04 33.62 48.71 45.55
MedPath 43.04 37.87 53.35 51.81
HAR 43.75 38.40 54.28 52.03

which also utilize external medical knowledge and report
results in Table 5. For fairness of comparison, all methods
have access to the same knowledge graph, i.e. SemMed.
Specifically, GCN and RGCN operate on the extracted sub-
knowlege graph as HAR and are built on the same LSTM
temporal prediction model with HAR. DGRNN [29] and
MedPath [25] are the latest methods adopting external med-
ical knowledge graphs for health prediction. From Table
5, we can observe that HAR obtains the best performance
which reflects the effectiveness in utilizing external knowl-
edge for diagnosis prediction.

5.2.2 Ablation Study
After validating the effectiveness of HAR framework, we
want to figure out how the stage-aware hierarchical at-
tentive relational network design can improve the perfor-
mance. Hence, we investigate our framework design by an
ablation study. HAR is essentially a sort of multi-relation
graph neural network, hence we compare the performance
of HAR with two representative models, i.e. GCN [63]
and RGCN [52]. Meanwhile, we compare the performance
with MedPath [25], which is also a pluggable module
and incorporates outside medical knowledge. To validate
the reasonableness of the stage-aware hierarchical atten-
tion mechanism, we evaluate three model variants: HAR-
R, HAR-N, HAR-no-state. In HAR-R, node-level attention is
omitted and relation-level attention is kept, while in HAR-
N, the situation is just the opposite. For HAR-no-state model
variant, stage vector returned by downstream predictors
does not take part in the computation of attention. We
build GCN, RGCN, MedPath and the three HAR variants on
different prediction models, and report both the visit-level
precision and code-level accuracy on MIMIC-III dataset in
Table 6.

From Table 6, we can observe that for each vanilla
model, HAR variant obtains the best performance. After
removing state information from HAR, there will be an
obvious accuracy decrease. This reflects the necessity of take
state information into consideration for diagnosis predic-
tion. Similar phenomenon happens when relation-level or
node-level attention mechanisms is removed.

5.2.3 Sensitivity Analysis
Since the hyper-parameter λ controls the degree that out-
side medical knowledge participates, we conduct sensitivity
analysis on the impact of different values of λ on the
performance. As illustrated in Figure 4, when λ = 1.0,
medical knowledge is not involved and HAR + base model
degenerates to the base model. In this situation, there is a
sharp decline in the performance, reflecting the effectiveness
of the incorporation of existing medical knowledge. We can
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TABLE 6: Visit-level precision@20 and code-level accuracy@20 for HAR and its variants built on each existing prediction
model on MIMIC-III dataset.

Models LSTM RETAIN RAIM StageNet

Metric Prec.@20 Acc.@20 Prec.@20 Acc.@20 Prec.@20 Acc.@20 Prec.@20 Acc.@20

Vanilla 52.41 50.59 54.12 52.61 47.48 46.31 52.75 50.98
GCN 45.46 44.27 54.00 52.27 49.13 47.40 53.32 51.24
RGCN 53.03 51.36 54.79 53.09 50.87 49.30 50.27 48.61
MedPath 53.35 51.81 55.12 53.42 50.74 49.12 53.03 51.17
HAR-R 53.66 51.86 54.59 52.95 50.80 49.22 45.38 44.16
HAR-N 53.96 51.94 55.26 53.36 50.91 49.18 53.31 51.67
HAR-no-state 53.78 51.79 55.48 53.55 50.69 49.06 53.58 51.46
HAR 54.28 52.03 55.51 53.57 51.12 49.37 53.76 51.78
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Fig. 4: Code-Level Accuracy@20 and Visit-Level Preci-
sion@20 on MIMIC-III dataset with λ varying from 0 to 1.

observe that HAR is relatively robust to the value of λ.
In a wide range of value ([0, 0.9]) for λ, HAR can bring
improvement to different degrees.

5.3 Model Interpretability

In clinical applications, interpretation of prediction results
is of great importance. In HAR, the stage-aware hierarchical
attentive relational network we propose not only improves
the performance, but also provide explicit explanations to
interpret prediction results and reveal the relationships be-
tween symptoms in disease progression. To verify our claim,
we provide a case study on how to interpret the diagnosis
prediction results in Figure 5. This case is randomly sampled
from the test set and the patient ID is 46836. For easier
understanding, we provide codes and their meanings in
Table 7. For the last visit, the prediction results are also
provided. Take code 038.8 as an example, in the prediction
result for v3, code 038.8 gets the highest prediction score. By
searching the personalized sub-KGs, i.e. g1, g2, we found
that in g1, there is an edge of preceded-by between 038.8
and 486. What’s more, the attention coefficient (the prod-
uct of relation-level attention and node-level attention) on
that edge is the largest one among all the edges with 486
as target. This serves as an explicit interpretation for the
prediction.

6 CONCLUSION

In this paper, we propose a novel stage-aware hierarchical
attentive relational network, named HAR, for diagnosis
prediction task based on EHR data. Our model is designed
as a general-purpose plug-in module that can be built on
various prediction models. We incorporate the pre-existing
large-scale medical knowledge graph (KG) – SemMed into

TABLE 7: ICD-9 codes and their meanings appearing in
Figure 5.

Code Meaning

486 Pneumonia
401.9 Essential hypertension
428.0 Heart failure
424.0 Other diseases of endocardium
427.3 Cardiac dysrhythmias
244.9 Acquired hypothyroidism
578 Gastrointestinal hemorrhage
038.8 Septicaemia
599.0 Urinary tract infection
785.5 Symptoms involving cardiovascular system

486

424.0
428.0

401.9 401.9

578244.9

427.3

038.8 785.52
599.0

!" 486(Pneumonia), 401.9(Essential hypertension), 428.0(Heart failure), 424.0(Other 
diseases of endocardium)

!# 401.9(Essential hypertension), 427.3(Cardiac dysrhythmias), 244.9(Acquired 
hypothyroidism),  578(Gastrointestinal hemorrhage)

!$
038.8(Septicaemia), 599.0(Urinary tract infection), 401.9(Essential hypertension), 
785.5(Symptoms involving cardiovascular system)

Prediction
for !$

codes sorted by score: [038.8, 785.52, 599.0, …]
scores: [0.102, 0.021, 0.016, …]

Neighbors in KG

preceded_by caused_by predisposed _by

!" !#

038.8

785.52
599.0

401.9

427.3

!$

0.0344 0.0235 0.0141

Codes appearing
in visits

Relations in KG
434.91

cause

0.0008

278.0

affect
0.0001

Fig. 5: Case study results for diagnosis prediction to show
the participation of existing medical knowledge graph and
model interpretability. Attention coefficients extracted in
personalized sub-KG according to historical visits reflect
their contribution to the prediction.

diagnosis prediction. For each visit, a personalized sub-
KG is extracted, on which HAR conducts relation-specific
message passing and hierarchical message aggregation. Ac-
cording to the current stage of the patient in the disease
progression, HAR assigns different weights to relation types
and neighboring nodes based on the current stage of the
patient in disease progression. Extensive experimental re-
sults on two public benchmark datasets show that our
model can improve the performance of existing prediction
models in terms of both visit-level precision and code-level
accuracy. An ablation study verifies the rationality of the
network design and the effectiveness of each component in
HAR. In addition, through the case study, we verify that
interpretation can be provided by analyzing the attention
coefficients generated by HAR.
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