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ABSTRACT

Accurate segmentation of cerebrovascular structures is
crucial for scientific research and clinical applications.
However, manual labeling of the whole brain’s sophisticated
and complex vasculature network is costly and limited, and
could potentially compromise the performance and
generalizability of supervised model which solely relies on
high-quality labels. Semi-supervised strategies have been
investigated to effectively take advantage of abundant
unlabeled data. In this study, we propose a novel confident
learning-based mean-teacher framework (CL-MT), which
integrates noisy label refinement to alleviate the adverse
effects of label noise and consistency regularization tailored
for noisy labeled regions to learn useful representations
from unlabeled data. In addition, we propose a backbone
model UST-Net, which incorporates convolution and
Transformer in both the encoder and decoder. This
architecture enables the model to capture long-range
dependencies at various scales. Comprehensive experiments
demonstrated that our model outperformed state-of-the-art
supervised and semi-supervised methods and can be
generalized to diverse human and non-human primate
datasets.

Index Terms— Cerebrovascular segmentation, TOF-MRA,
semi-supervised learning, confident learning, Transformer

1. INTRODUCTION

Cerebrovascular system plays a vital role in delivering blood,
oxygen and nutrients to the brain. Abnormalities within this
system, such as developmental defects, vascular stenosis,
duplications, and deficiencies, can lead to various
cerebrovascular diseases that impact brain functionality [1].
Non-invasive medical imaging techniques, such as
time-of-flight magnetic resonance angiography (TOF-MRA),
can capture the variation of cerebral vessels without contrast
agents. Deep learning techniques such as 3D U-Net models
have shown promising results in TOF-MRA based
cerebrovascular segmentation task [2-4]. Nevertheless,
supervised learning heavily relies on large amounts of high-
quality labeled data. Manual labeling of the whole brain’s
sophisticated and complex vasculature network is costly and

limited, and thus could potentially compromise the
performance and generalizability of supervised model for
vessel segmentation.

In contrast, semi-supervised learning takes the
advantage of a large number of unlabeled data, focusing on
two main approaches: pseudo-labeling and consistency
regularization. Pseudo-labeling involves generating pseudo
labels, which are combined with original labeled data for
training [5]. However, given limited TOF-MRA labels,
ensuring the reliability of voxel-wise pseudo labels is
particular challenging, especially when overfitting occurs,
model may confidently generate incorrect pseudo labels.
Consistency regularization, often used in mean-teacher
model, encourages consistency between student and teacher
model’s outputs [6]. For instance, some studies proposed
that consistency loss should calculate on reliable predictions
[7]. GCS introduced reconstruction consistency to generate
input images to ensure robustness [8]. In addition, some
studies have investigated consistency regularization from
the perspectives of co-training [9] and interpolation
consistency [10]. However, little attention has been paid to
consistency target selection, which often has an impact on
model’s performance [7].

In this paper, we propose a novel semi-supervised
model called confident learning-based mean-teacher
framework (CL-MT). Our framework builds upon mean-
teacher architecture, along with synergistic noisy label
refinement and ambiguity-guided consistency regularization
modules. We adapt the confident learning to refine noisy
labels [11], thereby reducing mislabeled voxels and
providing more accurate supervision for training.
Furthermore, we preserved predictions on noisy regions
characterized by confident learning for consistency loss,
which encouraged perturbed stability in these ambiguous-
yet-informative regions, driving the model to learn useful
representations from unlabeled data. We conducted
comprehensive experiments on heterogeneous multi-center
datasets comprising images from different scanners for both
humans and non-human primates. Compared to state-of-the-
art supervised and semi-supervised methods, our model
achieved superior segmentation performance and
generalizability.



2. METHODOLOGY

2.1. Model overview

The proposed cerebrovascular segmentation model CL-MT
was designed to robustly learn from a small amount of high-
quality labeled data (Set-HQ) and a large amount of low-
quality noisy labeled data (Set-LQ), as illustrated in Fig. 1.
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Fig. 1. The architecture of proposed confident learning-
based mean-teacher (CL-MT) framework.

The CL-MT framework integrates a label refinement
module for noisy labels in Set-LQ and a consistency
regularization module for perturbed Set-LQ data. The
student model is optimized by minimizing the supervised
loss Lis on Set-HQ, calibrated supervised loss Lis on Set-LQ
for refined labels, and ambiguity-guided consistency loss L
between the predictions of student and teacher models
within error mask.

2.2 Confident learning-based noisy label refinement

To alleviate potential misleading guidance from low-quality
noisy labels, we adapted a confident learning-based label
refinement module which aims to use the noisy labels while
minimizing the impact of label noise. Based on the
assumption of the classification noise process [12], label
noise should be minimized in accordance with -class
probability. Confidence learning [11], originally developed
for image-level classification tasks, has demonstrated its
effectiveness in categorizing and quantifying labeling errors.
In our context, we adapted confidence learning for teacher
model’s output and use it to guide the student model.
Specifically, given a voxel x with observed noisy label y;
and latent true label y;", the out-of-sample predicted
probabilities p can be obtained via the teacher model. If
voxel x with y;= i has high p; (x), i.e., p; (x) >= ¢, the true
label y;* of x should be j instead of i. Here, the threshold ¢
can be obtained by calculating expected predicted
probabilities p; (x) of the voxels labeled with j. # can be
formulated as:
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According to this threshold, the confidence joint matrix is
defined by:
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With the confidence joint matrix, we can estimate the joint

distribution matrix by:
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where M denotes the number of classes. Next, we can select
the noise X., with lowest confidence by using the joint
distribution matrix and the prune-by-class strategy:
Xer =N Z (thy? [T‘] [JD (5)
jeCsji
where N denotes the number of voxels in the image X, ‘1’ in
Xerr means the voxel is wrongly labeled. By utilizing error
map Xerr, the refined label y;' is calculated by:
Y=+ X - (1) (6)

2.3. Ambiguity-guided consistency regularization

Consistency regularization is a commonly used strategy that
aims to encourage consistent predictions for the same input
under different perturbations. However, research on the
selection of consistency targets is still limited. One related
study is UA-MT [7], which selects reliable predictions with
lower uncertainty from teacher model when calculating the
consistency loss. In contrast, AC-MT [13] argues that low-
uncertainty regions contain less valuable information and
have less prediction volatility, while high-uncertainty
regions contain more informative clues. Encouraging
consensus in these ambiguous-yet-informative regions may
be worthwhile.

In our model, the ideas of AC-MT were adopted. We
take the foreground of error map Xe.. as the consistency
targets. Therefore, the ambiguity-guided consistency loss L.
can be calculated as follows:
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where E, denotes the binary indicator at the vth voxel. fi,c
and f;,c represent the predictions from teacher and student
models for each class ¢ € C at the vth voxel, respectively.

2.4. Segmentation backbone

We proposed a backbone network called U-shaped hybrid
Swin Transformer Network (UST-Net) as the student and
teacher model. This network architecture combines
convolution and Swin Transformer [14], as shown in Fig. 2.



We incorporate the Transformer module into each layer of
the encoder and decoder (except for the first layer), which
enables the network to capture long-range dependencies
across multiple scales without pre-training.

Specifically, we pass the down-sampled features
through a convolution block and then Swin Transformer
block to capture global contextual features. In decoder, we
incorporate a skip attention block to better recover fine-
grained details [15]. Then, the outputs of the attention block
are passed through a convolution block to maintain a
symmetric structure with the encoder, as shown in Fig. 2.
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Fig. 2. The architecture of U-shaped hybrid Swin
Transformer Network UST-Net.

2.5. Loss function

The overall loss of the model consists of a supervised loss
Ly, a calibrated supervised loss Ly, and a consistency loss L.,
calculated as follows:

L= ﬁhs + A(E.: + Igﬁls) (8)
where Ly is the combination of cross-entropy loss and Dice
loss. Lis shares the same form as Ljs but applied to refined
labels, and L. is calculated by mean square error. The
parameter £ is set to an empirical value of 5. A is a ramp-up
trade-off weight commonly scheduled by the time-
dependent Gaussian function.

3. EXPERIMENTS AND RESULTS
3.1. Datasets and preprocessing

To improve model’s generalizability, heterogeneous MRA
datasets were used for model training. A total of 113 high-
quality manually labeled MRA images from three datasets
(MIDAS, Forrest and IXI) formed the Set-HQ, and 210 low-
quality labeled MRA images from six datasets formed the
Set-LQ (MIDAS, Forrest, IXI, BraVa, CHUV and ADAM).
The low-quality labels for Set-LQ were generated using
FFCM-MREF, which is a statistical model-based method for
cerebrovascular segmentation [16]. In addition, three human
and three macaque independent datasets were used to
evaluate the generalizability of our model (BraVa, CHUV,

ADAM, Maca-WH, Maca-B] and Maca-7T). All
independent datasets were labeled by trained annotators.
The MR scanning parameters and the number of subjects for
each dataset are shown in Table 1.

The preprocessing of MRA images included
3dAutoBox for image cropping and N4BiasFieldCorrection
for bias field correction. Note that we retained the skulls of
each subject to preserve essential features for skull and
small vessel identification in the present study.

Table 1. Dataset information.

Species Dataset H/L/I Scanner Resolution
data (mm)
MIDAS [17] 54/55/- 3T Siemens 0.51x0.51x0.80
Forrest ! 14/6/- 7T Siemens 0.30x0.30x0.30
Humans IXI? 45/28/-1.5T Siemens 0.26x0.26x0.80
BraVa[18] -/51/5 3T Philips 0.62x0.62x0.62
CHUV [19] -/55/5 3T Siemens 0.47x0.47x0.70
ADAM [20] -/15/5 1.5TGE 0.31x0.31x0.70

Maca-WH [16] -/-/36 3T Siemens 0.50x0.50x0.50
Macaques Maca-BJ[16] -/-/4 3T Siemens 0.21x0.21x0.32
Maca-7T [16] -/-/4 7T Siemens 0.19x0.19%x0.30

H = Set-HQ, L = Set-LQ, I = Independent dataset.

3.2. Implementation details

The proposed model was validated using 4-fold cross-
validation. The training process consisted of 100 epochs,
with 250 batches in each epoch. The batch size was set to 4,
including 2 patches from Set-HQ and 2 patches from Set-
LQ. The learning rate was set to 0.01. To avoid overfitting,
various data augmentation techniques including rotation,
scaling, gaussian noise and mirroring were used. The
segmentation results were evaluated using five metrics: Dice
score, precision, recall, average Hausdorff distance (AHD)
and 95th percentile Hausdorff distance (95HD).

3.3. Comparisons of UST-Net with other models

We conducted supervised experiments to compare UST-Net
with other widely used models, including 3D U-Net [21], V-
Net [22], UNet++ [23], UNETR [24], and Swin UNETR
[25]. As shown in Table 2, UST-Net demonstrated superior
performance compared with other backbone models, with
high Dice and recall scores and low AHD. UNETR and
Swin UNETR only use Transformer in the encoder. In
contrast, UST-Net incorporates Transformer and
convolutions in both the encoder and decoder, suggesting
that the proposed model may be a good identifier of vessels.

3.4. Comparisons with other semi-supervised strategies

We further conducted experiments to compare our semi-
supervised strategy with several state-of-the-art semi-

! https://openneuro.org/datasets/ds000113/versions/1.3.0
2 https://brain-development.org/ixi-dataset/



supervised strategies, including UA-MT [7], RC-MT [26],
CPS [27], ICT [10] and DCT [9] based on the UST-Net
backbone. As shown in Table 3, our method outperforms
these methods in terms of all metrics except precision, and
shows better performance than baseline. Results of UA-MT
and RC-MT are poorer compared with the baseline model.

Table 2. Quantitative comparisons of backbone models.

Methods Dice (%) 1 Precision (%) 7 Recall (%) 1 AHD | 95HD |
3D UNet 85.54 (3.75) 88.58(5.14)  83.21(6.42) 0.48 (0.28) 55.27 (23.10)
VNet 85.20(3.92) 88.52(4.49) 82.66(7.09) 0.53(0.37) 53.79 (21.17)
UNet++ 85.70 (3.68) 88.92 (4.79) 83.19(6.36) 0.48 (0.29) 55.50 (24.98)
UNETR 83.52(3.81) 87.55(5.04) 80.41(6.89) 0.67 (0.43) 61.02 (22.94)

Swin
UNETR

UST-Net 85.84 (3.68) 88.86(5.02)

85.19(3.72) 88.50(5.00) 82.64 (6.50) 0.48 (0.30) 51.70 (23.82)

83.51 (6.27) 0.46 (0.28) 52.85 (24.33)

Table 3. Quantitative comparisons of semi-supervised
strategies.

Methods Dice (%) 1 Precision (%) 1 Recall (%) 1 AHD | 95HD |
UA-MT 84.52(3.80) 89.37(4.90) 80.67 (6.67) 0.52(0.34) 64.86 (25.95)
RC-MT 84.82(3.72) 89.16 (4.76) 81.31(6.10) 0.51 (0.34) 61.76 (25.12)
CPS  85.90(3.90) 89.42 (4.61) 83.12(6.67) 0.46(0.32) 54.21 (26.89)
ICT 85.84(3.96) 89.42(4.56) 82.98 (6.57) 0.46(0.33) 51.77 (22.44)
DCT 86.05(3.95) 89.34(4.57) 83.48(6.70) 0.45(0.33) 52.50 (25.15)
CL-MT 86.69 (3.84) 89.02(5.32) 85.00 (6.46) 0.43 (0.37) 49.53 (22.73)
Baseline 85.84 (3.68) 88.86(5.02) 83.51(6.27) 0.46 (0.28) 52.85 (24.33)

3.5. Comparisons with state-of-the-art methods

To further validate the performance of the proposed model,
we implemented state-of-the-art methods including the
supervised methods ER-Net [4], CS?-Net [3], nnU-Net [7]
and the semi-supervised method GCS [8]. Among all the
comparison methods, our method achieved the best
performance in terms of all metrics except precision, as
shown in Table 4.

Qualitative evaluations of each method are shown in
Fig. 3. Results demonstrated that our method can accurately
segment small vessels with low contrast and high curvature.
Moreover, our method gains more continuous vessels near
the intracranial borders of the image. These qualitative
evaluations verify the effectiveness and superiority of our
method.

Table 4. Quantitative comparisons with state-of-the-art
methods.

Methods Dice (%) 1 Precision (%) 1 Recall (%) 1 AHD | 95HD |
nnU-Net 85.90 (3.59) 89.63 (5.02) 82.97 (6.34) 0.45(0.28) 50.82 (25.83)
GCS  70.75(6.51) 85.39(9.90) 62.40 (11.75) 2.56 (1.49) 65.40 (26.38)
ER-Net 81.83(5.33) 89.13(5.39) 76.16(7.50) 0.54(0.43) 49.98 (26.48)
CS2-Net 80.28 (5.82) 88.21(5.85) 74.33(8.64) 0.65(0.49) 50.74 (28.49)
CL-MT 86.69 (3.84) 89.02(5.32) 85.00 (6.46) 0.43 (0.37) 49.53 (22.73)

ER-Net CS2Net nnU-Net CL-MT Ground truth

Raw image  GCS

Fig. 3. Qualitative comparisons of cerebrovascular
segmentation results on MIDAS dataset. These images have
been skull-stripped solely for visualization purpose.

3.6. Generalization experiments

To evaluate the generalizability of our method, we
conducted experiments on independent human and macaque
datasets. As shown in Fig. 4, our method achieved high
Dice scores on the ADAM, BraVa, CHUV, Maca-7T and
Maca-WH datasets, with large improvements on the Maca-
7T dataset. These results showed that our method exhibits
good generalizability independent of scanning sites and
species.
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Fig. 4. Quantitative evaluations of cerebrovascular
segmentation results using independent datasets.

4. CONCLUSION

In this work, we proposed a novel semi-supervised model
for cerebrovascular segmentation using a small amount of
high-quality labeled data and abundant low-quality noisy
labeled data. We demonstrated that our model is highly
accurate and reliable compared to state-of-the-art methods.
Furthermore, experiments on human and macaque
independent datasets demonstrated that the proposed model
could generalize to heterogeneous human and non-human
primate datasets, independent of variations in field strengths,
scanner platforms and acquisition parameters.
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