
  

  

Abstract— Magnetic particle imaging (MPI) is a tomographic 

imaging method that quantitatively determines the distribution 

of magnetic nanoparticles (MNPs). However, the performance of 

MPI is primarily limited by the noise in the receive coil and 

electronic devices, which causes quantification errors for MPI 

images. Existing methods cannot efficiently eliminate noise while 

preserve structural details in MPI images. To address this 

problem, we propose a Content-Noise Feature Fusion Neural 

Network equipped with tailored modules of noise learning and 

content learning. It can simultaneously learn content and noise 

features of raw MPI images. Experimental results show that the 

proposed method outperforms the state-of-the-art methods on 

structural details preservation and image noise reduction of 

different levels. 

I. INTRODUCTION 

Magnetic particle imaging (MPI) is a tomographic imaging 
method with the advantages of high sensitivity and linear 
quantitative ability [1]. Due to these characteristics, MPI has 
been implemented in various realms of biomedical research, 
like the detection of atherosclerotic plaque [2] and the presence 
of hepatocellular carcinomas [3]. Under combined static and 
dynamic magnetic fields, MPI obtains a spatially resolved 
magnetic nanoparticles (MNPs) imaging signal. This signal is 
further processed to obtain the spatial distribution of MNPs 
after performing an image reconstruction. However, there are 
noise and background signals in the measured raw MPI 
signals, which leads to distortion in the reconstructed image, 
thus making errors in the quantitative analysis [4]. 

Previous studies based on background subtraction aim to 
improve the signal-to-noise ratio (SNR) in the received signal, 
thus improving the quality of MPI images [5]. Due to the 
difficulty of modeling the statistical characteristics of MPI 
signals with complex noise, the existing methods for directly 
processing signals cannot simultaneously eliminate image 
noise while keeping structural details. Therefore, more 
effective methods to improve the quality of MPI images are 
required to be developed. 

Recently, deep learning (DL) has proved to be effective in 

noise suppression for low-dose computed tomography (CT) 

[6], stripe elimination of light-sheet microscopic images [7]. 

Besides, Shang et al. proposed a deep-learning approach to 
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improve the spatial resolution of MPI by fusing a dual-

sampling convolutional neural network (FDS-MPI) [8]. 

These above methods have achieved good performance for 

medical image denoising, and they either learn content images 

(i.e., full-dose or high-resolution images) directly or learn 

noise images first and get the content images by subtracting. 

Both learning strategies have their inherent advantages: noise 

learning performs well in structural and contrast details 

preservation, while content learning shows more stable noise 

cancellation performance [9]. To apply the features of both 

the content and the noise to denoising MPI images, we 

proposed a Content-Noise Feature Fusion Neural Network 

(CNFFNet) equipped with tailored modules of noise learning 

and content learning in this work. Moreover, we verified the 

proposed model using a self-designed MPI image denoising 

dataset and authentic MPI images, the main contributions of 

this work are summarized as follows: 

1) We proposed a CNFFNet to improve the quality of 

MPI images that simultaneously learns content and 

noise features and utilize image information.  

2) We comprehensively investigated CNFFNet’s 

denoising performance over the MPI image 

denoising dataset. Experiment results show that 

CNFFNet outperforms the state-of-the-art methods 

in structure preservation and noise reduction of 

different noise levels.  

3) The proposed CNFFNet is validated on the 

authentic MPI image dataset. The results show that 

our method can deal with a larger MNPs 

concentration range than other methods. 

II. METHOD 

A.MPI Image Dataset  

We used the simulated MPI images and authentic noise 

images to build our dataset. For MPI process simulation, we 

took simulated phantom images as the distributions of MNPs. 

The magnetization of MNPs in response to an excited 

magnetic field was obtained by the Langevin equation as 

follows [8]: 

 �(�, �) = �	(�) × ���ℎ ��|�(�,�)|
��� � − ���

�|�(�,�)|� (1) 
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�	(�) = �(�)�
�� ,        (2) 

where �(�, �) denotes the total magnetic field at position r 

and time t; � refers to the magnetic moment;  (�) indicates 

the number of particles each contributing a magnetic moment 

� =  !
" #$%�&'� ; �&'�  is the saturation magnetization. We 

used the X-space reconstruction method to process the 

imaging signals and got MPI images [10]. All the MPI 

simulation parameters are listed in Table I. 

The workflow of the dataset construction is shown in Fig. 

1. Firstly, we designed four kinds of phantoms, each phantom 

has four parameter vectors, including position, size, spacing, 

and intensity gradient change coefficient. The parameter 

vectors are dynamically changing in a certain range by a 

program based on OpenCV. We generated 4,000 phantoms of 

each kind through the program. Secondly, we took simulated 

phantoms as the input of the simulated X-space reconstruction 

algorithm [10]. The simulated reconstruction is carried out 

without noise, so its output was chosen as the ground truth 

label. Thirdly, we use the preclinical MPI scanner 

(MOMENTUM, Magnetic Insight Inc. Alameda, CA, USA) 

to scan phantoms without MNPs to obtain authentic MPI 

noise images. Fourthly, we randomly cropped the real noise 

images to a size of 128 × 128. Finally, noisy images were 

generated by randomly adding one of the cropped noise 

images to the clean MPI image. σ is a coefficient that 

represents the intensity of the added noise images. We 

constructed three datasets with the noise of different levels: 

(1) σ = 0.3, (2) σ = 0.25, (3) σ = 0.2. Each dataset contains 

16,000 pairs of images. 

TABLE I 
PARAMETERES FOR MPI SIMULATION 

Symbol Parameters Value Unit 

+	 Permeability of vacuum 4#-./ N 1.2 

$ Nanoparticle diameter 20 4� 

�& Saturation magnetization 4.77-.7 A�.! 

� Magnetic moment 6.75-.!: A�2 

; Kelvin temperature 293.15 > 

>� Boltzmann constant 1.38-.2% ?>.! 

@ Gradient 5.7 ;�.! 

ABC Field of view 20 × 20 ��2 

 

 

Fig. 1. Illustration of the workflow of dataset construction 

B. Feature Fusion Learning 

In the image domain, the degradation process of MPI can 

be expressed as: 

DEF��GH�IJ =  DEFK�IK� L  DKFM&I                         (3) 

Here, DEFK�IK�  is the clean image that needs to be recovered, 

which precisely reveals the concentration distribution of 

MNPs. DEF��GH�IJ  is the noisy image. There are two learning 

strategies for existing image denoising methods based on 

deep learning. One learns a function to map the corrupted 

image to the content image directly, called content learning 

(CL): 

DEFK�IK�N =  OEPDEF��GH�IJQ        (4) 

  OEPDEF��GH�IJQ = ARME �AMRE PDEF��GH�IJQ�     (5) 

DEFK�IK�N  denotes the predicted content image, and OE refers to 

the content prediction model composed of two parts: AMRE  

extracts image features from DEF��GH�IJ , and ARME  recovers the 

content image from these image features. The other learns a 

residual mapping and gets the content image by subtracting 

the inputted image from the learned noise image, called noise 

learning (NL): 

      DEFK�IK�N =  DEF��GH�IJ −  DKFM&IN      (6) 

DKFM&IN = OKPDEF��GH�IJQ = ARMK �AMRK PDEF��GH�IJQ�,  (7) 

where DKFM&IN  refers to the predicted noise and OK denotes the 

noise prediction model. ARMK  and  AMRK  are the corresponding 

image regressor and image feature extractor. 

In order to make full use of the features from DEF��GH�IJ . 

We proposed a content-noise feature fusion neural network 

based on feature fusing learning for MPI image denoising. 

And the whole denoising process of CNFFNet can be 

expressed with a function S: 

DEFK�IK�N = SPDEF��GH�IJ Q 
= AMR

R PT(TEFK�IK�N , TKFM&IN )Q 
               =  AMR

R UT �AMRE PDEF��GH�IJQ, AMRK PDEF��GH�IJQ�V    (8) 

DEF��GH�IJ  is used as the input of AMRE  and AMRK  to get content 

features TEFK�IK�N  and noise features TKFM&IN  respectively. Then, 

the fusion function T  combines the  TEFK�IK�N , TKFM&IN , and 

translate the fused features to AMR
R

 to obtain the final output 

DEFK�IK�N . 

C. Content-Noise Feature Fusion Neural Network  

The proposed CNFFNet, as shown in Fig. 2, mainly 
consists of three parts: feature extract module, feature fusion 
module, and image regress module. 

The feature extraction module contains two identical feature 
extractors, which extract the input image's content features and 
noise features, respectively. Fig. 2(b) shows the detailed 
structure of our feature extract sub-network with the following 
components. Firstly, the extractor includes three down-
sampling and up-sampling layers. Each layer consists of a 3 × 
3 convolution operation, a batch normalization operation, and 
a dropout operation in case of overfitting. Secondly, down-
sampling is conducted by a convolution operation to extract 
more features. Finally, instead of directly concatenating low-
level and high-level features, we add a convolutional block 
attention module (CBAM) for each layer. 
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Fig. 2. Architecture and tailored modules of our proposed Content-Noise Feature Fusion Neural Network (CNFFNet). (a) Architecture of CNFFNet; (b) 

Attention Encoder-Decoder Feature Extractor architecture, CBAM denotes connect CAB and SAB in series; (c) Channel Attention Block architecture, GP 
denotes global average pooling. (d) Spatial Attention Block architecture, CP denotes channel average pooling. 

Since the feature extraction module extracts two different 

kinds of features from the input image, we need to fuse them 

efficiently through the attention mechanism. As shown in Fig. 

2(a), our feature fusion module consists of two channel 

attention blocks, two convolution layers and one spatial 

attention block. Firstly, we use the channel attention block to 

process the output of two feature extractors, respectively, and 

filter out important feature map channels. Secondly, we 

concatenate the output features directly and use a convolution 

layer to fuse the extracted features. Thirdly, a spatial attention 

block is conducted to determine the most critical regions in 

the feature maps. The fused feature maps will be the input of 

the image regress module and get the output. Furthermore, 

two convolution layers are added behind the two extractors as 

the corresponding regressors, and we trained our CNFFNet 

end-to-end with the following optimization problem: 

       X�Y �Z4
[

�∥∥]NL prediction − ]label ∥∥2
2 L  ∥∥]Output − ]label ∥∥2

2 L
∥∥]CL prediction − ]label∥∥2

2�     (9) 

III. EXPERIMENTS & RESULTS 

A.  Implementation details 

In experiments, we randomly divided the three datasets in 

7:1:2 to form the training, verification, and test sets. All the 

networks were trained on the training set (σ = 0.25). All the 

networks were tested on three test sets. All the networks were 

trained for 200 epochs using Adam optimizer with a batch size 

of 3. The initial learning rate was set at 0.003. For a 

quantitative assessment, three evaluation metrics were 

determined: root mean square error (RMSE), peak signal-to-

noise ratio (PSNR), and structural similarity index measure 

(SSIM). 

B. Ablation experiments 

To verify the superiority of our proposed network, a series 
of ablation experiments were conducted over the simulated 
dataset (σ = 0.25). 1) the effectiveness of learning content and 

noise features simultaneously through the CNFFNet. 2) the 
effectiveness of the feature fusion module. 

In detail, we removed the upper branch of CNFFNet to form 
Content Subnet (CSNet), which only extracted content 
features for MPI image denoising. We removed the lower 
branch of CNFFNet to form Noise Subnet (NSNet), which 
only extracted noise features for MPI image denoising. We 
removed the feature fusion module from the CNFFNet and 
formed No Fusion Net (NFNet). We compared CNFFNet with 
the networks above, and the experiment results are 
summarized in Table II. CNFFNet has achieved better 
performance than the CSNet and the NSNet in terms of RMSE, 
PSNR, and SSIM. Furthermore, the experiment results 
indicate that the feature fusion module is essential for 
CNFFNet. Without the feature fusion module, the 
performance of our proposed network decreased from 40.07 
dB to 37.56 dB. 

TABLE II 
EVALUATION RESULTS OF ABLATION STUDY 

 RMSE(× 10.2) PSNR SSIM 
Input 12.61h1.60 18.05h1.05 0.24h0.12 
CSNet 1.48h1.08 37.20h2.94 0.92h0.11 
NSNet 1.16h0.48 39.24h2.96 0.92h0.06 
NFNet 1.53h1.44 37.56h3.90 0.90h0.14 

CNFFNet 1.13h0.98 40.07h3.76 0.98h0.02 

C. Comparisons with existing denoising methods. 

To evaluate the performance of CNFFNet, we compared it 

with three methods: fusing dual-sampling convolutional 

neural network (FDS-MPI) [8], residual encoder-decoder 

convolutional neural network (RCNN) [6], and residual 

channel attention network (RCAN) [11]. All the networks 

were trained on the training set (σ = 0.25) and tested on the 

three test sets. The experimental results are summarized in 

Table III, our network achieves better performance than other 

methods on three datasets with different noise levels, which 

shows that our method has good generalization. Furthermore, 

CNFFNet outperforms on structural details preservation. As 

shown in the red box in Fig. 3, the shape of the low-

Authorized licensed use limited to: Taiyuan University of Technology. Downloaded on June 11,2024 at 04:12:29 UTC from IEEE Xplore.  Restrictions apply. 



  

concentration sample changes from a circle to a triangle after 

being processed by other methods.  

 
Fig. 3. Illustrations of the results from different methods 

TABLE III 
PERFORMANCE COMPARISON BASED ON DIFFERENT METHODS ON 

THREE TESTING DATASETS. 

Noise level Methods RMSE(× 10.2) PSNR SSIM 
 
 
 

σ=0.3 

Input 15.90 h 2.09 16.04 h 1.09 0.22 h 0.08 
RCNN 2.88 h 1.10 31.33 h 2.93 0.84 h 0.06 

RCAN 3.66 h 1.24 29.14 h 2.63 0.83 h 0.07 

FDS-MPI 2.45 h 1.09 32.96 h 3.50 0.93 h 0.05 

CNFFNet u. vv h w. ux yz. w{ h x. y| v. }~ h v. vx 

 
 
 

σ=0.25 

Input 12.61h1.60 18.05h1.05 0.24h0.12 

RCNN 1.99h0.84 34.62h3.15 0.89h0.17 

RCAN 2.41h1.01 32.97h3.19 0.90h0.07 

FDS-MPI 1.89h0.88 35.21h3.54 0.95h0.04 

CNFFNet 1.13h0.98 40.07h3.76 0.98h0.02 

 
 
 

σ=0.2 

Input 9.56 h 2.20 20.60 h 1.85 0.28 h 0.12 

RCNN 2.06 h 0.85 34.33 h 3.13 0.88 h 0.07 

RCAN 2.53 h 0.97 32.44 h 2.80 0.91 h 0.06 

FDS-MPI 1.87 h 0.91 35.43 h 3.75 0.95 h 0.04 

CNFFNet w. zu h w. xv y|. yu h z. uz v. }{ h v. vx 

D. Phantom verification 

 
Fig. 4. Illustrations of the results of phantom verification. 

TABLE IV 
EVALUATION RESULTS OF PHANTOM VERIFICATION 

Metric Input RCNN RCAN FDS-MPI Proposed 
RMSE(× 10.2) 14.18 7.66 9.87 7.38 7.01 
To evaluate the performance of CNFFNet on the real MPI 

images, we supplemented the experiment with a phantom that 

consists of six cylinders of equal volume of 25+�, as shown in 

Fig. 4. The concentration of MNPs in the first cylinder is 

10  �Y ∙ ��.! , each of the remaining cylinders has a 

concentration half of the previous one. The experimental 

results are shown in the Fig. 4. There is some noise between 

samples of different concentrations in the images processed by 

other methods, as shown by the red box in the figures. We 

simulate the ground truth image according to the shape of 

phantom, and the evaluation results are summarized in Table 

IV. CNFFNet performs better than other methods on the real 

MPI image. Moreover, CNFFNet has a larger concentration 

processing range than other methods. It can roughly recover 

the shape of the fifth particle sample, while other methods 

remove it as noise, as shown by the red arrow in the figures.  

IV. CONCLUSION 

In this study, we proposed a content-noise feature fusion 
neural network for MPI image denoising. CNFFNet is 
equipped with tailored modules of noise learning and content 
learning to utilize image information from corrupted MPI 
images. The advantage of CNFFNet is that it performs well in 
structures preservation and can handle noise of different 
levels. Furthermore, it is validated over the authentic MPI 
image dataset. 
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