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Abstract— The rapid development of face forgery technology
has posed a significant threat to information security. While
deepfake detection has proven to be an effective countermeasure,
it often struggles to detect fake images generated by unknown
forgery methods. Thus, the generalization ability of deepfake
detectors to unseen forgery data is a critical concern. Despite
many efforts aimed at discovering new forgery artifacts, they
often fail to generalize to new manipulation technologies. In this
paper, we tackle this challenge by focusing on the difference in
texture patterns between training forgeries and unseen forgeries,
which can lead to a degradation of generalization. Based on
this principle, we propose a new conjecture that encourages
deepfake detectors to reduce their sensitivity to forgery texture
patterns, thereby improving the detection performance. To this
end, we introduce an additional gradient regularization term to
the original empirical loss during training. However, computing
the Hessian matrix in the gradient calculation process of the
regularization term poses a computational complexity. In order
to overcome this issue, we optimize the formulation of the
gradient regularization term using a first-order approximation
method based on Taylor expansion and design a Perturbation
Injection Module (PIM) to simplify the implementation pro-
cess. Additionally, we provide a theoretical analysis from an
optimization perspective and explore an interesting aspect of
our method. Extensive experiments demonstrate the effectiveness
of our approach in improving the generalization ability of
deepfake detectors. Importantly, our method is orthogonal to
recent advancements in powerful backbones and training data
augmentation techniques. When combined with other effective
techniques, our method achieves state-of-the-art experimental
results.

Index Terms— Deepfake detection, forgery texture patterns.
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I. INTRODUCTION

RECENTLY, the computer vision community has wit-
nessed the remarkable progress of face forgery gener-

ation methods [1], [2], [3], [4], [5], [6] due to the success of
deep learning, especially the rapid development of generative
adversarial networks (GAN) [7]. This raises a security issue
that an attacker can easily utilize these face forgery tools to
achieve malicious purposes, e.g., spreading fake news, defam-
ing celebrities, and falsifying evidence. To mitigate the abuse
of the manipulated faces (called deepfakes), the community is
keen on developing deepfake detection methods.

Most existing deepfake detection methods [8], [9], [10],
[11], [12] exhibit excellent performance on in-domain datasets.
This is because CNN models are strongly biased to tex-
tures [13]. For a trained deepfake detector, it can easily
capture method-specific fake textures [14]. Therefore, if testing
data is generated by the same forgery methods as training
data (in-domain testing scenario), the learned textures help
detectors distinguish forgery samples from pristine ones well.
However, different forgery algorithms always have unique
network architectures and processing streams, which results in
different fake textures [15]. For the fake samples manipulated
by unseen forgery methods, the performance of trained deep-
fake detectors always drops significantly, as some previous
works [16], [17], [18], [19], [20] mentioned.

To address this limitation in generalization, many solu-
tions have been proposed from the perspective of effective
forgery artifacts detection [20], [21], [22], [23], [24], [25]
or improving feature representations [9], [10], [26], [27].
To ensure that detectors can learn method-agnostic forgery fea-
tures, some previous studies [21], [28], [29], [30], [31] focus
on utilizing semantic information to explore some universal
inconsistency or anomaly in forgery images. These works
first extract semantic information from various methods by
some pretrained models, and then explore their inconsistency
or anomaly as deepfake detection clues to improve general-
ization performance. This is because that the semantic clue
extraction is barely affected by the forgery textures. Some
methods train the detectors with synthetic data [8], [11],
[12], [32], [33], [34]. These methods utilize pristine data to
synthesize training samples without any generative models,
which causes the training process not impacted by any fake
textures. The synthetic data is applied to imitate the blending
process in the deepfake generation pipeline. The blending
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artifact is a generic clue in deepfake samples. Besides, some
works [9], [11], [26], [27], [35], [36] also employ the attention
mechanism and frequency-aware methods to improve feature
representations for better performance. However, the previous
methods always require network architecture designs or data
synthesizing strategies to improve the generalization ability
of deepfake detection. The former easily suffer from extra
computational overhead in the inference phase, while the
latter may be invalid with the advancement of generative
methods. Therefore, we would like to explore a method to
further develop the capabilities of deepfake detectors without
additional architecture modifications and training data.

In this paper, we improve the generalization performance of
deepfake detectors from a novel perspective. Different from
the previous methods, we focus on further exploiting the
capabilities of detectors themselves. Our method can help the
detectors further enhance their generalization ability, without
introducing additional architecture modifications or training
data. Specifically, we propose a novel loss function, which is
comprised of the original empirical loss and a proposed gra-
dient regularization item, to train deepfake detectors. We aim
to further exploit the capabilities of detectors and achieve
better generalization performance. To this end, we first analyze
the reasons of poor generalization ability in the previous
deepfake detectors. According to previous works [15], the poor
detection performance on cross-domain forgeries is ascribed to
the difference of image texture patterns due to different manip-
ulation algorithms. Inspired by AdaIN [37] and MixStyle [38],
we use feature statistics from shallow layers to represent image
textures, and demonstrate that fluctuations in these statistics
can impact the performance of deepfake detection. Building
on this observation, we propose a new conjecture: enhancing
detector robustness to perturbations in shallow feature statistics
can improve detection performance, particularly with respect
to generalization ability. To this end, we devise a gradient
regularization item to impose on the original empirical loss.
This improved loss function is utilized to further develop
the capabilities of deepfake detectors for better generalization
performance.

In the training phase, the gradient calculation of the pro-
posed regularization item involves the complex Hessian matrix
computation. Inspired by [39] and [40], we find an approx-
imation solution of the regularization item by leveraging
Taylor expansion, and optimize the total loss function. Besides,
we propose a plug-and-play module to implement our method
in the training phase. The module can be ignored in the
inference process, such that no extra computation overhead
is introduced.

We then comprehensively evaluate the effectiveness of our
method on improving the generalization ability of deepfake
detectors. When equipped with the powerful backbone (e.g.
ConvNeXT-base) and advanced self-blended synthetic training
data, the proposed detection model can generalize better on
unseen manipulations compared to previous works.

Furthermore, we analyze our method from the perspective of
optimization process. Different from the previous optimization
methods, our method can be regarded as searching for a
flat minimum along the variation of image texture patterns

instead of network parameters. Based on this, we explore a
straightforward improvement by combining our method with
a previous optimization method [39], [40]. The experimental
results show the superiority of our method in the deepfake
detection task.

Our contributions can be summarized into four-folds:
• We propose to impose a novel regularization item on

the original empirical loss for further developing the
capabilities of deepfake detectors and achieving better
generalization performance. It is an orthogonal improve-
ment to existing techniques.

• We empirically demonstrate that our method can reduce
the model sensitivity to forgery texture patterns. And we
also devise a simple approximation solution for avoiding
the computation of Hessian matrix.

• Equipped with other effective techniques for improv-
ing generalization, the detectors trained by our method
achieve state-of-the-art cross-domain evaluation results.
The extensive experiments validate the effectiveness of
our proposed method.

• We further explore our method from the perspective
of optimization process, and provide a straightforward
improvement based on it. The experiments verify the
superiority of our method in boosting generalization
ability of deepfake detectors.

II. RELATED WORK

A. Face Manipulation

Recent face manipulation methods can be roughly divided
into three categories, i.e. face swapping, face reenactment and
face attribute editing. Face swapping is replacing the face
of one person in a video or image with the face of another
person. The methods have gradually developed from specific
face-swap objects [1], [41] to arbitrary objects [2], [3]. In the
early stage, face swapping is achieved by a shared encoder and
two individual-specific decoders. When swapping faces, a face
is decoded by another decoder after encoding to the latent
space. However, these face-swapping methods require to train
a decoder for each person, which is not sufficiently flexible.
FSGAN [2] first proposes a subject-agnostic face-swapping
method by adjusting both pose and expression variations of
source faces, which can simultaneously achieve face swapping
and face reenactment. Different from FSGAN, FaceShifter [3]
achieves face-swapping by thorough and adaptive integration
of target attributions. After that, more identity preservation
based methods [4], [5], [6] are emerged and achieve better
performance. These methods first decouple the identities and
attributes of source and target faces. After this, the source
identity and target attributes are integrated to regenerated the
swapped faces. Face reenactment, also named facial expression
swap, is to modify the facial expression of the person. The
most popular techniques are Face2Face [42] and NeuralTex-
tures [43]. The former aims to animate the facial expressions
of the target video based on 3D facial information, while
the latter optimizes a neural texture in conjunction with a
rendering network to compute the reenactment result [44].
Besides, talking face generation [45], [46], [47], [48], [49] is
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also an interesting topic, which aims to synthesize a sequence
of face images that correspond to a clip of speech. And face
attribute editing [50], [51] can edit the attributes in a fine-
grained manner, like changing the color of hair and wearing
eyeglasses.

With the advances of face manipulation technology, deep-
fakes are more realistic than before. Some flaws in the previous
deepfakes have been fixed, which makes some deepfake detec-
tion methods lose effectiveness.

B. Face Forgery Detection

Recent studies of deepfake detection achieve remarkable
success. Although in-domain deepfake detection has been
solved well, the generalization ability on the cross-domain
scenarios is still a challenging problem. Some efforts [8],
[11], [12], [32], [33], [34], [52] focus on designing more
efficient network architectures for enhancing the learning
ability of the networks. In these efforts, some researchers [9],
[10], [53], [54], [55], [56] focus more on deeply mining the
forgery artifacts by utilizing spatial and temporal attention
mechanism. In addition, for improving the generalization,
an effective solution is to train models with synthetic data,
which encourages models to learn generic representations for
deepfake detection, such as DSP-FWA [21], Face X-ray [22],
PCL+I2G [24], ICT [25], SBI [20] and so on. Utilizing
these synthetic data can remove the impacts of the artifacts
of specific manipulation methods, which makes the learned
features more generalizable. Specifically, these methods aim
to learn some semantically related clues, which are caused
by the blending process in the deepfake generation pipeline.
DSP-FWA focuses on the resolution differences between the
swapped face regions and other regions. Face X-ray aims
to make detectors learn the blending boundaries, while SBI
concentrates on the mismatch between the blended regions and
the original regions, including resolution, color, boundary and
landmarks. PCL+I2G utilize the synthetic data to explore the
local source features in a suspected image and measure their
self-consistency to detect forgeries. Different from them, ICT
focuses on the identity inconsistency between the inner and
outer face to detect face-swapping images. And then, there
are still some methods to address this problem from other
perspectives, such as frequency domain [27], [57], [58], meta-
learning methods [59] and reinforcement learning [60]. Some
researchers [61] also direct their attention towards ensuring the
fairness of deepfake detectors across demographic variables,
aiming for broad applicability in practical scenarios. Another
interesting solution of deepfake detection is proactive defense,
such as [62]. The authors [62] propose to embed a unique
watermark at an assigned location of fake images to spot the
deepfakes in general.

Most previous methods for improving generalization aim to
find common forgery artifacts and learn generic representa-
tions among various deepfakes. Different from them, we are
interested in searching for a set of network weights which is
relatively stable to the variation of forgery texture patterns.
Theoretically, it can be combined with any of the above
methods for further improving their generalization.

TABLE I
THE GENERALIZATION PERFORMANCE OF CONVNEXT-BASE [63]

DETECTOR ON UNSEEN FORGERIES

III. METHOD

In this section, we begin by outlining the motivation behind
our work and provide supporting evidence through a series
of experiments (Sec III-A). Building upon these findings,
we introduce a regularization term to enhance the original
empirical loss function (Sec III-B). To streamline the imple-
mentation process, we also present a theoretical approximation
of the loss function formulation (Sec III-C). Subsequently,
we elaborate on the implementation details of our method
across various neural networks and provide a comprehensive
algorithm (Sec III-D). Finally, we validate the effectiveness of
our proposed approach in mitigating the degradation of deep-
fake detection performance caused by variations in shallow
feature statistics (Sec III-E).

A. Motivation

It is well known that deepfake detection easily suffers
from the distribution mismatch problem, which means we
can obtain a very promising performance when evaluating
the model on the in-dataset scenario (seen forgeries in the
training phase) but poor performance on the cross-dataset
scenario (unseen forgeries) [20]. The reason is that the
deep CNN models learn to capture the method-specific
color textures for forgery detection [14], [15]. Once a CNN
model has been biased to one kind of fake textures, it is
hard to generalize to another one. As shown in Table I,
we respectively train ConvNeXT-base [63] detectors on four
forgeries (i.e. Deepfakes (DF), FaceSwap (FS), Face2Face
(F2F) and NeuralTextures (NT)) of FaceForensics++

(FF++) dataset [44]. When evaluated on unseen forgeries,
the performance of detectors drops significantly.

Inspired by AdaIN [37] and MixStyle [38], image textures
can be represented by instance-level channel-wise means and
variances of shallow features. Therefore, an intriguing question
arises: are the first-order (mean) and second-order (variance)
statistics of shallow features correlated with deepfake detec-
tion performance? To investigate this hypothesis, we employ
ConvNeXT-base detectors trained on the DF and F2F datasets
as our example. Figure 1 demonstrates Umap [64] visualiza-
tions of feature vectors from the last layers of the models.
In the first row of Figure 1, it is evident that the detectors can
effectively differentiate between forgery and genuine data.

To assess the impact of shallow feature statistics on deep-
fake detection performance, we introduce perturbations to
the statistics (scaling the mean and variance to 1.2 and
0.65 times their original values to limit variation). In our
experiments, we consider all three blocks of the first stage
in the ConvNeXT-base model as the shallow layers, while
the last features prior to the fully connected layers serve
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Fig. 1. Feature space visualizations of the trained deepfake detectors on
Deepfakes and Face2Face datasets of FF++. The classification feature distri-
bution before (the first row) and after (the second row) adding perturbations
on the shallow feature statistics are respectively shown here.

TABLE II
THE IMPAIRED DETECTION PERFORMANCE AFTER IMPOSING PERTURBA-

TIONS ON THE SHALLOW FEATURE STATISTICS

as classification features. The second row of Figure 1 also
showcases the distribution of classification features after per-
turbing the shallow feature statistics, revealing significant
changes where the separability between real and forgery image
classification features diminishes. Additionally, we present
deepfake detection results in Table II, using Accuracy (Acc)
and Logloss as evaluation metrics. The imposed perturbations
notably degrade the detection performance, indicating that
fluctuations in shallow feature statistics can indeed impact
deepfake detection performance.

The aforementioned experiment inspires us to explore
methods for improving the deepfake detection performance,
particularly in terms of generalization ability, by enhancing
the robustness of detectors to perturbations in shallow feature
statistics. However, in theory, detectors should be robust
to perturbations in any direction. Implementing non-unique
fluctuation directions in detail can be challenging. To address
this issue, we propose an alternative strategy to reduce model
sensitivity to shallow feature statistics. Specifically, we suggest
adding an additional regularization term to the empirical loss
function. Our goal is to minimize the variation in model per-
formance when there are changes in the first- and second-order
statistics of shallow features. This regularization item aims to
enhance the stability and robustness of the detector against
variations in shallow feature statistics.

B. Loss Function and Regularization

For deepfake detection tasks, when given a training dataset
Dtrain = {(xi , yi )}

N−1
i=0 , a neural network model fθ is trained

to adapt the training data distribution, where θ = {θs, θd}

includes the network parameters in shallow (θs) and deep (θd )
layers. In the training process, fθ is generally optimized by
the objective function minθ L(x, y, θ), where

L(x, y, θ) =
1
N

N−1∑
i=0

C E( fθd ( fθs (xi )), yi ), (1)

is the empirical loss. Here, C E(·, ·) denotes the cross entropy
loss function, and N is the number of training samples. It
is noticed that in the subsequent derivations, we may utilize
L( fθs (x), y, θd) to represent L(x, y, θ), particularly when it
relates to the formula for fθs (x).

As mentioned above, our objective is to reduce the model
sensitivity to the variation of the shallow features fθs (x).
Since we have no knowledge about the unseen forgeries, the
statistics of fθs (x) are unpredictable. We utilize directional
derivatives to represent this model sensitivity to fθs (x). It can
be formulated as follows:

||
∂L( fθs (x), y, θd)

∂ fθs (x)
||2. (2)

For simplification, we rewrite Eq (2) as

||
∂L( fθs (x), y, θd)

∂l
||2, (3)

where l represents any variation direction of (µs, σs). µs
and σs are respectively the mean and variance statistics of
the shallow features ( fθs (x)). By adding this regularization
to the empirical loss function, its fluctuations with respect to
the shallow feature will be suppressed, by which the model
sensitivity is reduced.

The objective function can be further formulated as

min
θ

max
l

L(x, y, θ) + λ||
∂L( fθs (x), y, θd)

∂l
||2, (4)

by only limiting the upper bound of Eq (3), which shows a
min-max gaming. Here, λ is a weight parameter for balancing
the regularization and empirical loss items.

C. Optimization

Based on Eq (4), we find two problems in the implemen-
tation. First, it is difficult to find the upper bound of the
regularization item by directly optimizing the direction of l.
Second, due to the computation involving the Hessian matrix,
the gradient of the regularization item is complicated to solve.

To address these problems, we adopt an approach similar
to [39] and [40]. Our derivations are also inspired by them. For
the first question, when employing min-max game-based train-
ing for our models as depicted in Eq (4), the computation of
derivatives for the regularization term during the optimization
process incurs a substantial computation overhead. Therefore,
we simplify the process by utilizing gradients to represent
the upper bound of the regularization term, referring to the
property of the directional derivatives. Eq (4) can be further
streamlined as follows:

min
θ

L(x, y, θ) + λ||∇µs ,σs L( fθs (x), y, θd)||2. (5)
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However, Eq (5) still involves the second problem. To tackle
it, we aim to search for an approximate solution of the
regularization term.

It is noticed that we define

fθs (x)norm =
fθs (x) − µs

σs
. (6)

And f ′
θs

(x) is obtained by injecting perturbations to the
shallow feature statistics of fθs (x), which is defined as follows:

f ′
θs

(x) = fθs (x)norm(σs + 1σs) + (µs + 1µs). (7)

where 1µs and 1σs are the increment of µs and σs . Based
on Taylor expansion, we have:

L( f ′
θs

(x), y, θd) = L( fθs (x), y, θd)

+ [∇µs ,σs L( fθs (x), y, θd)]T 1l

+ o(||1l||22), (8)

where 1l = (1µs ,1σs). In our problem, our primary focus
is solely on the gradient of L( fθs (x), y, θd) as depicted in
Eq (5). This inspires us to consider Taylor expansion only in
the gradient direction. We set

1l = r
∇µs ,σs L( fθs (x), y, θd)

||∇µs ,σs L( fθs (x), y, θd)||2
, (9)

where the value of r should be sufficiently small to ignore
the high-order infinitesimal term (o(||1l||22)). According to
the calculation formula of L2 norm (i.e. ||x ||

2
2 = xT

· x), the
Eq (8) can be approximated to

L( f ′
θs

(x), y, θd) ≈ L( fθs (x), y, θd)

+ r ||∇µs ,σs L( fθs (x), y, θd)||2. (10)

Then

||∇µs ,σs L( fθs (x), y, θd)||2

=
1
r
[L( f ′

θs
(x), y, θd) − L( fθs (x), y, θd)]. (11)

Hence, the objective function can be further reformulated as:

min
θ

(1 − α)L(x, y, θ) + αL( f ′
θs

(x), y, θd), (12)

where α = λ/r .
The simplified objective function can be directly employed

as our loss function in the training phase. Compared to the
initial objective function (Eq (4)), we leverage the property of
derivatives to streamline the min-max game process, avoiding
the substantial computation overhead in the maximization
process. And then we further provide an approximate solution
for the regularization term, eliminating the need for complex
Hessian matrix computations. These simplifications ensure that
the detectors can be trained by our method without heavy
computational costs.

D. Implementation on Neural Network

To implement our regularization term in deepfake detection
models, we design a Perturbation Injection Module (which
we called PIM) as shown in Figure 2. Based on Eq (6),
we first normalize the features of every channel in every

Algorithm 1 Implementation of Our Method

Input: Training set Dtrain = {(xi , yi )}
N−1
i=0 ; network f with

parameters θ (including θs and θd ) which is initialized
as θ0; empirical loss function L(x, y, θ); learning rate η;
total step T ; weight parameter α; approximation scalar r .

Output: Optimized parameters θ̂

1: θ0
= θ

2: for step t = 0 to T do
3: Get batch data pairs {(xi , yi )}

B−1
i=0 sampled from Dtrain .

4: Calculate the gradient g1 = ∇θ t L( fθ t
s
(x), y, θ t

d))

5: {1µt
s, 1σ t

s } = r
∇

µt
s ,σ t

s
L( f

θ t
s
(x),y,θ t

d ))

||∇
µt

s ,σ t
s

L( f
θ t
s
(x),y,θ t

d ))||2

6: Calculate f ′

θ t
s
(x) = fθ t

s
(x)norm(σ t

s +1σ t
s )+(µt

s +1µt
s)

according to Eq (6) and Eq (7).
7: g2 = ∇θ t L( f ′

θ t
s
(x), y, θ t

d))

8: g = (1 − α)g1 + αg2.
9: Based on (SGD) optimizer, update the parameters with

the final gradient, θ t+1
= θ t

− ηg
10: end for
11: return Finally optimized parameters θ̂

shallow layers as Norm fs , and respectively calculate their
mean (µ) and variance (σ ) values. For the regularization item,
we impose some perturbations (1µ and 1σ ) on the shallow
feature statistics along their gradient directions. And then the
features are denormalized by the new mean (µ′

= µ + 1µ)
and variance (σ ′

= σ +1σ ) values. It is noticed that 1µ and
1σ are shared among a batch in our implementation.

In the training phase, when a batch of data is given,
we first set 1µ and 1σ as zero vectors, and obtain f ′

θs
(x)

based on Eq (7). It is noticed that f ′
θs

(x) = fθs (x) at this
step. After the first back propagation, we can respectively
calculate the gradients of the first item in the loss function
(Eq (12)) with respect to the network parameters (θ) and
shallow feature statistics (1µ and 1σ ). Following Eq (9),
we only update 1µ and 1σ , and recalculate f ′

θs
(x). Based

on this, the second item in Eq (12) is obtained to solve
the gradient of θ . We accumulate both of the gradients and
update the whole network parameters. The whole process of
our method is shown in Algorithm 1. It is noticed that our
method is essentially an improved loss function with an extra
regularization item. The perturbation injection modules are not
involved in the inference phase. Therefore, it has no extra
computational overhead in the inference process.

E. Robustness to Variation of Shallow Feature Statistics

In order to verify the effectiveness of our method in
enhancing model robustness to variations in shallow feature
statistics, we conduct experiments following the same settings
as described in Section III-A. We train the ConvNeXT-base
detectors using our method. As depicted in Figure 3,
we observe a clear improvement in the separability between
real and fake images when introducing perturbations to the
shallow feature statistics. This observation is consistent with
the results presented in Table III. With the assistance of our
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Fig. 2. The overview of our method. The left part shows the deepfake detection pipeline of our method. The right part details the proposed perturbation
injection module.

Fig. 3. Feature space visualizations of the trained deepfake detectors on
Deepfakes and Face2Face datasets of FF++ when adding perturbations on
the shallow feature statistics. The classification feature distribution trained
without (the first row) and with (the second row) our method are respectively
shown here.

method, the detection performance is significantly enhanced.
Thus, we can conclude that our method effectively enhances
the model’s robustness to variations in shallow feature statis-
tics, demonstrating its ability to address the aforementioned
hypothesis.

IV. EXPLANATION FROM THE OPTIMIZATION
PERSPECTIVE

In this section, we provide another analysis of our method
from the perspective of optimization. In the optimization
process, data (including images and labels) and the trained
network are required to calculate the loss values. Previous
works (e,g. SAM [39] and GNP [40]) have proven that the
well-designed optimizers can help models improve generaliza-
tion by finding flat minima [65]. However, as mentioned above,
besides the model parameters, the optimizer loss function is
also affected by the training data. Revisiting our method from
this perspective, we find that our method can be regarded as
searching for a flat minimum along the variation of image
texture patterns. It means that we aim to find a set of network
parameters such that when the image texture pattern changes,
the fluctuation of the loss function is as flat as possible.

TABLE III
DETECTION PERFORMANCE OF DETECTORS TRAINED WITH/WITHOUT

OUR METHOD UNDER PERTURBATIONS ON SHALLOW FEATURE
STATISTICS

It is noticed that the flatness mentioned in the previous work
is different from that in our method. The former focuses on
the flatness along the network parameters, while our method
concentrates on the flatness along the data distribution varia-
tion (i.e. image texture patterns in our task). A straightforward
improvement is combing the solution procedure of SAM [39]
or GNP [40] and our method to simultaneously search for a
flat minimum along both directions.

As an interesting extension of our method (which we call
DualFlat), we first reformulate the loss function (Eq (1)) as
follows,

L ′(x, y; θ) = L(x, y, θ)

+ λ||∇µs ,σs L( fθs (x), y, θd)||

+ γ ||∇θ L(x, y, θ)||, (13)

where L ′ is the new loss version, and λ and γ are weight
parameters for balancing the regularization and empirical loss
items. Following the above simplification procedure, we have

L ′(x, y; θ) = (1 − α − β)L(x, y, θ)

+ αL( f ′
θs

(x), y, θd)

+ βL(x, y, θ + r ′
∇θ L(x, y, θ)

||∇θ L(x, y, θ)||
). (14)

Here, r ′ is also the approximation scalar, which should be
sufficiently small such that the high-order infinitesimal term
in Taylor expansion can be ignored in the approximation. And
β =

γ
r ′ which is also a balance coefficient.

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We adopt the widely used benchmark
FaceForensics++ [44] (FF++) as our training dataset.
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FF++ contains 1, 000 original videos collected from YouTube
and 4, 000 fake videos forged by four forgery algorithms,
i.e., Deepfakes [1] (DF), FaceSwap [66] (FS), Face2Face
[42] (F2F), and NeuralTextures [43] (NT). DF and FS are
utilized to swap faces between two different individuals,
while F2F and NT are utilized to achieve face reenactment.
For evaluating the generalization performance, we use four
extra deepfake datasets, including Celeb-DF-v2 dataset [67]
(CDF), Deepfake Detection Challenge Preview dataset [68]
(DFDCP), Deepfake Detection Challenge public test dataset
[69] (DFDC) and WildDeepfake dataset [70] (WDF). CDF
is comprised of 590 real videos and 5, 639 deepfake videos,
in which the former are chosen from publicly available
YouTube videos, corresponding to interviews of 59 celebri-
ties. The fake parts are generated by an improved deepfake
algorithm. DFDCP and DFDC are created for Deepfake Detec-
tion Challenge competition, in which all videos are created by
entering into agreements from paid actors. DFDCP contains
around 5, 000 videos, while DFDC has 4, 000 videos. WDF
is collected from varies video-sharing websites, containing
7, 314 face sequences (Real → 3, 805 and Fake → 3, 509)
from 707 videos. In our experiments, we only utilize the test
sets of CDF, DFDCP and WDF to evaluate our method, which
are officially provided.

2) Evaluation Metrics: In our experiments, we report video-
level AUC (area under the receiver operating characteristic
curve) as the evaluation metric. We select 32 frames from
each video at equal intervals, and these frame-level scores are
averaged as the video-level prediction result. The experimental
results of other deepfake detection methods which we use for
comparison are directly cited.

3) Implementation Details: Due to the similar objective
function with [39] and [40], we respectively set the hyper-
parameters r in Eq (10) and α in Eq (12) as r = 0.1 and
α = 1 in our experiments. All models we train are initialized
with the pretrained weights on ImageNet [71] and trained for
a maximum of 100 epochs. In the training phase, we only
sample 8 frames per video and resize the crop faces with
specific size based on different trained models (e.g. the face is
resized to 224×224 for ConvNeXt-base [63] and 380×380 for
EfficientNet [72]). We levearage the recent ConvNeXT-base as
our backbone model, which shows excellent performance on
image classification tasks. The batch size is 64, and we do not
use any data augmentation in our experiments.

B. Effects on Various Backbones

To verify our assumption, we adopt several commonly used
deepfake detection backbones to explore the effects of our
methods on them. As shown in Table IV, we respectively
utilize ConvNeXT [63] (ConvNeXT-base), XceptionNet [73],
EfficientNet [72] (efficientnet-b4) and ResNet (ResNet-50) as
our backbones. We respectively plug PIMs into their shallow
layers to train with our loss function, and compare their gener-
alization performance on four cross-domain datasets with the
corresponding models trained by the empirical loss. To provide
a comprehensive comparison, we also evaluate their general-
ization performances when employing commonly used data

TABLE IV
THE EFFECTIVENESS OF OUR METHOD ON THE GENERALIZATION PER-

FORMANCE OF VARIOUS BACKBONES. THE BEST RESULTS ARE IN
BOLD

augmentations in the training phase, including HorizontalFlip,
RGBShift, HueSaturationValue, RandomBrightnessContrast,
ImageCompression, and GaussNoise.

From Table IV, it is obvious that the regularization item
in our proposed loss can help these commonly used deep-
fake detection models improve the generalization ability,
which also demonstrates that our method is a model-agnostic
generalization ability improvement strategy. For the training
phase without data augementaions, the early classification
model (ResNet) who is trained by our loss function, ResNet
achieves better AUC on CDF (76.37 VS 75.00), DFDCP
(70.72 VS 69.18) and DFDC (62.07 VS 61.06) datasets. For
the commonly recommended deepfake detectors (XceptionNet
and EfficientNet), XceptionNet+PIMs and EfficientNet+PIMs
respectively achieve better average generalization perfor-
mance on the four cross-domain datasets. Especially, the
former respectively achieves 2.41% and 3.47% better AUC
on DFDCP and WDF, and the latter respectively achieves
1.86% and 2.01% better AUC on CDF and WDF. And for
the recent powerful ConvNeXT, the usage of PIMs boosts
higher performance (+1.05% average AUC) by limiting the
model sensitivity to image texture patterns. When the data
augmentations are applied to the training data, we observe sig-
nificant improvements in the generalization ability of various
detectors. Our method further enhances their generalization
performances on various unseen forgery datasets, which is
consistent with our previous experimental results. The gen-
eralization performances of various detectors are universally
enhanced with the assistance of our method. It is noticed
that we introduce no additional architecture modifications
or training data. This demonstrates that our method indeed
helps the detectors further exploit their capabilities. This also
provides a potential application for our method to further
improve the performance, that is, replacing the empirical loss
with our proposed loss and applying PIM as a plug-and-play
module to other SOTA methods.

C. Comparison With State-of-the-Art Methods

In this part, we focus on investigating how to fully take
advantage of our method for better generalization. In our
method, we improve the deepfake detection generalization
ability by alleviating the model sensitivity to image color
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Fig. 4. Saliency map visualization of convnext-base detectors (trained with/without our method) on different datasets. The first row is the fake faces in
different datasets. The middle and last rows are separately the saliency maps of the detectors trained without and with our method.

textures. This is because that, inspired by the previous
work [15], CNN-based detectors are biased to capture the
specific forgery texture patterns. This leads to poor gener-
alization performance when they encounter unseen forgery
methods. In other words, our method weakens the effect of
image texture patterns on deepfake detection. However, the
generalization of deepfake detection is affected by multiple
factors. An interesting question is whether we can further
improve the generalization performance of deepfake detection
by combining our method with other recent improvements.

In our implementation, we integrate the designed PIMs into
shallow layers of the detection backbone for improving its
generalization ability with our proposed loss function. From
the perspective of network architecture, we demonstrate the
effectiveness of our method by combining with multiple detec-
tion backbones. To comprehensively evaluate our method,
we leverage SBI [20] data to train the networks equipped
with our PIMs and loss function to further improve the
generalization performance from the perspective of combining
with this SOTA data augmentation method.

For demonstrating the superiority of our method, we also
show the performance of other recent methods, as shown in
Table V. The state-of-the-art detectors we utilize for com-
parison includes Face X-ray [22], LRL [74], FRDM [15],
PCL+I2G [24], RFM [10], MultiAtt [11], LipForensics [29],
RECCE [12], FTCN [75], SLADD [76], Wavelet [77], Dis-
GRL [78], STC [79], MRL [55] and SBI [20]. The training
data of their experiments are all based on FF++ dataset.
It is noticed that we retrain a ConvNeXT-base model on SBI
data, following the official code, denoted as SBI* in Table V.
SBI* has similar performance to the official reports. Due to
the same training environment and settings as ours, we use
it as the baseline of our results for fair comparison. It is
shown that equipped with our method, the ConvNeXT-base
model trained on SBI data beats its competitors (SBI*) on
CDF and DFDC by large margins (1.25% and 2.59%, respec-
tively), although they have identical architectures and training

data. This demonstrates the effectiveness of our method in
enhancing the capability of the state-of-the-art detector. Unlike
previous approaches focused on discovering new forgery
artifacts, our method improves generalization by enhancing
the inherent capabilities of deepfake detectors themselves.
Hence, it introduces no additional computational overhead or
requires new training data. Compared to other state-of-the-
art methods, our method provides additional improvements in
generalization performances.

D. Analysis of Saliency Map Visualization

In this section, we employ Grad-CAM [80] to visualize
the regions that deepfake detectors focus on when analyzing
deepfake faces. Figure 4 illustrates the results. For in-domain
deepfake faces (DF, F2F, FS, and NT), our method-trained
detector tends to make decisions based on more forged regions.
This suggests that our method encourages the detector to iden-
tify more forgery clues, such as blending artifacts, as observed
in the DF example. On the other hand, for cross-domain
deepfake faces (CDF, DFDCP, and DFDC), our method helps
the detector reduce its attention to irrelevant regions when
confronted with unseen forgeries. Furthermore, the detector,
with the assistance of our method, focuses more on forgery
artifacts, even if they are subtle (as demonstrated in the DFDC
example). This observation may explain why our method
improves the detection performance, particularly in terms of
generalization ability.

E. Ablation Study

In this section, we focus on analyzing the effects of the
approximation scalar r in Eq (9) and balance coefficient α in
Eq (12) on model generalization performance.

1) Approximation Scalar: The approximation scalar r is
utilized to ignore the high-order infinitesimal term o(||1l||22)
in Eq (8). Based on this, we can obtain an approximation
of the second item in Eq (5) for evading the complex Hessian
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TABLE V
COMPARISON OF GENERALIZATION ABILITY WITH STATE-OF-THE-ART METHODS USING AUC. THE BEST RESULTS ARE IN BOLD. AND THE

SECOND-BEST VALUES ARE UNDERLINED. THE RESULTS OF OUR METHOD ARE THE CONVNEXT-BASE MODEL TRAINED ON SBI DATA,
WHICH INTRODUCES PIM INTO THE ORIGINAL ARCHITECTURE AND IS TRAINED WITH OUR LOSS FUNCTION. * DENOTES THE RESULTS

ARE EVALUATED BY OURSELVES FOLLOWING THE OFFICIAL CODES. SBI* DENOTES THAT WE RETRAIN THE CONVNEXT-BASE
MODEL ON SBI DATA, WITH THE OFFICIAL CODE. † DENOTES THE RESULTS ARE CITED FROM [12], [77], [78]. THE OTHER

RESULTS ARE DIRECTLY CITED FROM THE OFFICIAL PAPERS OR [20]

matrix solution in the optimization process. The approximation
scalar r should be set carefully, since it would directly affect
the approximation precision. The scalar should be sufficiently
small for ignoring the high-order infinitesimal term. However,
if it is excessively small, the shallow feature statistics variation
(1l) will be too weak, which makes Eq (10) equal to the
empirical loss L( fθs (x), y, θd).

To investigate its effect on the model generalization per-
formance, we fix the balance coefficient (α = 1) and choose
different approximation scalars (r = {0, 0.05, 0.1, 0.2}) in our
proposed method to train the deepfake detectors. According
to Eq (12), when r equals 0, the loss function is actually the
empirical loss. As depicted in Table VI, when our method is
introduced (i.e. r>0), the generalization performance exhibits
improvements, demonstrating the effectiveness of our method.
However, as previously mentioned, the scalar r should be
sufficiently small to disregard the high-order infinitesimal
term. It is noticed that when r equals 0.2, the improvement of
generalization performance is significantly impaired, aligning
with our previous analysis. This demonstrates the importance
of selecting an appropriate scalar value. If the approximation
scalar is not sufficiently small, the high-order infinitesimal
term in Taylor expansion may not be ignored. This directly
affects the approximation precision of Eq (10), resulting in
the limited improvement of the generalization performance.
Conversely, when r equals 0.05 and 0.1, the model achieves
similarly good generalization performance, significantly out-
performing the baseline. This highlights that the appropriate
scalar values enable our method to more effectively enhance
the generalization ability of deepfake detectors.

2) Balance Coefficient: The balance coefficient α is related
to the balance between the empirical loss item and the reg-
ularization item in the loss function. As shown in Eq (12),
after simplifying the latter formulation to avoid complex
calculations on Hessian matrix, α is transformed into a balance

TABLE VI
THE IMPACT OF THE APPROXIMATION SCALAR (r ) ON GENERALIZA-

TION ABILITY IN THE PROPOSED METHOD. THE METRIC IS AUC.
AVG-AUC DENOTES THE AVERAGE AUC VALUES ON THE FOUR

CROSS-DOMAIN DATASETS

between the original empirical loss and the empirical loss with
the shallow feature statistics perturbation. It is noticed that we
only explore its impact when α does not exceed the range of
[0, 1]. This is because that when α < 0, λ in Eq (5) is negative,
which encourages the model more sensitivity to the shallow
feature statistics. This breaks the assumption of our method.
And if α > 1, this may encourage the model to increase
the empirical loss to achieve a lower total loss value. This
may cause the model to focus more on the model sensitivity
while ignoring the deepfake detection performance. Therefore,
we limit the variation range of α in the following experiments.

To investigate the impact of balance coefficient α on model
generalization, we conduct ablation studies on our optimiza-
tion strategy. As shown in Table VII, we fix the approximation
scalar (r = 0.1) and vary the balance coefficients (α =

{1, 0.75, 0.50, 0.25, 0}) to optimize our models. It is evident
that as α increases, the generalization performance shows an
increasing trend. When α = 1, the trained model shows the
best generalization performance (Average AUC) on the cross-
domain datasets. Conversely, when α is too small (especially
for α = 0.50, 0.25), there is a noticeable degradation in
average generalization performance. Through the comparison
in Table VII, it can be concluded that the value of α does affect
generalization performance to some extent because it is related
to the punishment of the model sensitivity to image texture
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TABLE VII
THE IMPACT OF THE BALANCE COEFFICIENT (α) ON GENERALIZA-

TION ABILITY IN THE PROPOSED METHOD. THE METRIC IS AUC.
AVG-AUC DENOTES THE AVERAGE AUC VALUES ON THE FOUR

CROSS-DOMAIN DATASETS

TABLE VIII
THE IMPACT OF THE BALANCE COEFFICIENTS (α AND β) ON GENER-

ALIZATION ABILITY IN THE PROPOSED DUALFLAT OPTIMIZATION
STRATEGY. THE METRIC IS AUC. THE BEST RESULTS ARE IN

BOLD. AVG-AUC DENOTES THE AVERAGE AUC VALUES ON
THE FOUR CROSS-DOMAIN DATASETS

patterns. This observation further validates the rationality of
our method.

F. Comparison With Flat Minima Optimization

To explore the effectiveness of the flat minima along
both directions, we conduct some experiments on different
combinations of two optimization directions, i.e. different
combinations of α and β. We fix r = 0.1 and r ′

=

0.05 according to our approximation scalar ablation study
and SAM [39]. The trained model is ConvNeXT-base and
the rest of the experiment settings are the same as before.
As shown in Table VIII, we explore different combinations of
balance coefficients (i.e. α : β = {0.8 : 0.2, 0.5 : 0.5, 0.2 :

0.8}) based on various values of α + β ({1, 0.8, 0.5, 0.2}).
These combinations allow us to consider both data distribution
flatness (our method) and network parameter flatness (SAM)
simultaneously during the optimization process. In addition,
according to Eq (14), it is evident that SAM and our method
represent two special implementations of DualFlat, when we
respectively set {α = 0, β = 1} and {α = 1, β = 0}. We also
provide their results for comprehensive comparisons.

From Table VIII, it can be concluded that DualFlat has the
best generalization performance when it is degraded to our
method (i.e. {α = 1, β = 0}). It is undeniable that simulta-
neously searching the flat minimum in both data distribution
and network parameter directions has remarkable improvement
in generalization performance compared to SAM. However,
when we only search flat minimum along the data distribution
variation, the trained model can obtain the best generalization
ability. It can be seen that DualFlat may be not a better

TABLE IX
THE IMPACT OF THE BALANCE COEFFICIENTS (α AND β) ON GENER-

ALIZATION ABILITY IN THE PROPOSED DUALFLAT OPTIMIZATION
STRATEGY. THE TRAINING DATA IS FF++-REAL AND SBI. THE

METRIC IS AUC. THE BEST RESULTS ARE IN BOLD. AVG-
AUC DENOTES THE AVERAGE AUC VALUES ON THE FOUR

CROSS-DOMAIN DATASETS

optimization method in our tasks. The flatness along the
network parameters may even drag down our generalization
performance. Therefore, it demonstrates that our optimization
method has the superiority of improving the generalization in
deepfake detection.

In addition, to more comprehensively investigate the gener-
alization ability of DualFlat optimizer, we further demonstrate
the generalization results of combining DualFlat with state-of-
the-art method. Specifically, we repeat the above experiments
with SBI settings. In the experiments, the combination strate-
gies of α and β in DualFlat are the same as above. And the
training data are substituted by SBI data and the real part of
FF++ dataset.

As shown in Table IX, DualFlat also has the best gener-
alization ability when it is degraded into our method (i.e.,
{α = 1, β = 0}). It is clear that with the balance coefficient of
our method (α) increasing, the generalization performance of
DualFlat gradually improves. This indicates that in DualFlat
mechanism, our method plays a vital role to improve the
generalization ability of deepfake detection models, which is
consistent with the previous experimental results. Therefore,
compared to SAM and DualFlat, our method shows the best
generalization ability in deepfake detection tasks.

VI. CONCLUSION

In this work, we investigate the generalization ability of
face forgery detection from the perspective of the forgery
texture pattern variation. Based on this, we design a novel
regularization item to improve the original empirical loss. The
improved loss function aims to reduce the model sensitivity
to forgery texture patterns. To simplify the implementation
process, we theoretically approximate the formulation of the
regularization item. In addition, we also investigate an analysis
from the perspective of optimization process, and provide an
interesting generalization of our method. Extensive experi-
ments demonstrate that our method consistently helps deepfake
detectors achieve better generalization performance. Besides,
we also verify that our method can generalize better to unseen
manipulations when equipped with the powerful backbone and
self-blended synthetic training data.
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