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ABSTRACT
The CTR (Click-Through Rate) prediction plays a central role in the
domain of computational advertising and recommender systems.
There exists several kinds of methods proposed in this field, such
as Logistic Regression (LR), Factorization Machines (FM) and deep
learning based methods like Wide&Deep, Neural Factorization Ma-
chines (NFM) and DeepFM. However, such approaches generally
use the vector-product of each pair of features, which have ignored
the different semantic spaces of the feature interactions. In this pa-
per, we propose a novel Tensor-based Feature interaction Network
(TFNet) model, which introduces an operating tensor to elaborate
feature interactions via multi-slice matrices in multiple semantic
spaces. Extensive offline and online experiments show that TFNet:
1) outperforms the competitive compared methods on the typical
Criteo and Avazu datasets; 2) achieves large improvement of rev-
enue and click rate in online A/B tests in the largest Chinese App
recommender system, Tencent MyApp.
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1 INTRODUCTION
The CTR prediction plays a central role in the domain of computa-
tional advertising and recommender systems, where an item could
whether be recommended is decided by the probability of whether
the user would click on it. Traditional methods to predict the prob-
ability of CTR are LR and FM [9]. However, these kinds of methods
can not obtain the higher-order interaction of different features.
Several deep learning methods have been proposed to this field in
recent years, such asWide&Deep [2], NFM [4] and DeepFM [3]. The
general architecture of these methods is simply concatenating the
first-order features and interactive second-order features, inputting
∗The first two authors contributed equally to this work.
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them into the Multilayer Perceptron (MLP) to learn higher-order
feature interactions and finally predicting the click-through rate.
For instance, the Wide&Deep [2] model jointly trains wide linear
models and deep neural networks.

However, there exists a potential limitation in suchmethods, they
all have ignored the different semantic spaces among the feature
interactions. In other words, the previous works generally use the
vector-product of each pair of features, considering them all in
one semantic space. Because of the features’ semantic diversities,
different interactive features may be in different semantic spaces.
For instance, in ads recommender systems, it is reasonable that the
interactions of feature pair (user, ad) and (banner-position, ad) are in
the different semantic spaces, where the former learns the effect of
the user’s preference on the ad while the latter represents the effect
of cost paid by the advertiser on this ad. Therefore, learning such
feature interactions via simple vector-product in just one semantic
space is obviously insufficient.

There are several fields of workswhich have utilized the semantic
interactions, such as Natural Language Processing (NLP) [11] and
recommender systems [6, 7, 10]. For example, the work in NLP [11]
introduces a tensor-based composition function to learn powerful
meaning of pairs of words vectors so as to realize better interactions
between each pair of words. Besides, in recommender systems field,
an operating tensor is used to explore the semantic effects on the
recommendation results [6].

Inspired by the works above, we propose a method named TFNet.
We introduce an operating tensor to elaborate feature interactions
via multi-slice matrices, by which we can acquire the difference in
multiple semantic spaces. The whole procedures of our model are
listed following: we firstly input the original features and embed
them into dense embedding vectors, then introduce the operating
tensor to carry out the tensor-based feature interactions between
each pair of field vectors. Further, we input the interactive features
and the embedding vectors into DNN separately to model higher-
order feature interactions and finally combine the original raw
features to make the ultimate prediction. We also demonstrate that
TFNet is a more general form of recent models in following sections.

In summary, our main contributions are as follows: 1) We pro-
pose a novel TFNet model, introducing a tensor-based approach to
learn feature interactions in multiple semantic spaces, which can
capture the interactive mechanism of different features more suffi-
ciently than the current deep learning based models. 2) Extensive
offline and online experiments show that TFNet not only outper-
forms competitive compared methods on typical Criteo and Avazu
datasets, but also achieves large improvement of revenue and click
rate in online A/B tests in the largest Chinese App recommender
systems.
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Figure 1: The architecture of our proposed TFNet model, which consists of the following parts: sparse input layer, embedding
layer, tensor-based feature interaction layer, higher-order feature interaction layer and the final output.

2 METHOD
The whole structure of TFNet model is shown in Figure 1. In this
section, we detail the implement and how they work.

2.1 Sparse Input and Embedding Layer
The sparse input layer imports sparse original features, and low
dimensional dense vectors of them are learned via the embedding
layer. Supposing there are 𝑛 feature fields 𝐹𝑖𝑒𝑙𝑑1, ..., 𝐹𝑖𝑒𝑙𝑑𝑛 in an ad
impression scenario, following previous works [5], we input them
into the sparse input and embedding layer, embedding each feature
𝐹𝑖𝑒𝑙𝑑𝑖 as v𝑖 ∈ R𝑑 , where 𝑑 is the dimension of 𝐹𝑖𝑒𝑙𝑑𝑖 ’s embedding
vectors. Therefore, we can obtain embedding vectors of all the fields
as {v1, v2, ..., v𝑛}. The concatenation of them is defined as x𝑣 .

2.2 Tensor-based Feature Interaction Layer
In this section, we aim to explore tensor-based feature interactions
from the embedding of input features, capturing the feature inter-
actions in different semantic spaces.

Tensor-based Semantic Interaction.We bring in the operat-
ing tensor T1 to learn how to model the interaction between each
pair of features v𝑖 and v𝑗 , where T1 ∈ R𝑑×𝑚×𝑑 is a third-order op-
erating tensor and𝑚 is the number of slices. Each slice T[𝑖 ]

1 ∈ R𝑑×𝑑
can represent an operation over paired-features in a semantic space.
That is to say, the T1 stores several kinds of semantic operations
spaces, for example, the user preference space and the advertiser
preference space in the ads impression scenario. Based on the op-
erating tensor T1 and the embeddings of input instances, we can
generate an interactive feature s𝑖 𝑗 ∈ R𝑚 of v𝑖 and v𝑗 as follows,

s𝑖 𝑗 = v𝑇𝑖 T1v𝑗 . (1)

Then we can concatenate all the interactive features to construct
matrix S ∈ R𝑞×𝑚 , where 𝑞 = 𝑛 ∗ (𝑛 − 1)/2 .

Adaptive Gate. Because of the diversity of semantic spaces,
modeling all feature interactions in different semantic spaces with
the same weight may be not sufficient. For example, when learning
the interactions of feature pair (user, ad), the semantic space of user
preference tends to be more important than the space of advertiser
preference. Therefore, it is necessary to introduce an importance
weight to the operating tensor, by which we can discriminate the
importance of different semantic spaces during learning the feature
interactions. In order to realize it, we introduce an adaptive gate

Adaptive Gate

Figure 2: The architecture of how to learn the weighted op-
erating tensor T1.

with different importance weights to learn the operating tensor T1 .
The architecture of how to learn the weighted T1 is shown in Figure
2. As is illustrated, T1 can be obtained via attention mechanism on
meta-semantic operation tensor T2 ∈ R𝑑×𝑚×𝑑 as

T1 = g𝑎 ⊙ T2 , (2)

where ⊙means element-wise multiplication of a vector and a tensor,
and the adaptive gate g𝑎 ∈ R𝑚 is the importance weight of meta-
semantic operations for a specific pair of features interaction (v𝑖 , v𝑗 ).
Thus T[𝑖 ]

1 of tensor T1 can be further interpreted as T[𝑖 ]
1 = g[𝑖 ]𝑎 T[𝑖 ]

2 .
Moreover, to learn the attention score of g𝑎 , another operating
tensor in the adaptive gate is introduced, which is the T3 ∈ R𝑑×𝑚×𝑑 ,
and the g𝑎 is computed via g𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (v𝑇

𝑖
T3v𝑗 ).

Control Gate. Among all the generated interactive features
above, it is noted that not all of them are useful for the target
prediction, therefore, we need to select important features from all
generated interactive features. Similar to [12], each new feature
is associated with a control gate g𝑐 ∈ R𝑞 to decide whether the
feature is useful for prediction. g𝑐 should be non-negative and
sparse, which is regularized by L1-Norm. Finally, the critical tensor-
based interactive features can be obtained, defined as sℎ = S𝑇 g𝑐 .

2.3 Higher-order Feature Interaction Layer
To model higher-order feature interactions, we further introduce a
stack of fully connected layers as hidden layers 𝐻𝑙 . Formally, the
definition of fully connected layers is as follow:

z𝑖 = 𝜎𝑖 (W𝑖z𝑖−1 + b𝑖 ) , 𝑖 = 1, 2, ..., 𝑙 (3)
𝐻𝑙 (𝑥) = z𝑙 (z𝑙−1 (...z1 (𝑥))) , (4)

where 𝑙 denotes the number of hidden layers, and theW𝑖 , b𝑖 and 𝜎𝑖
is the weight matrix, bias vector and activation function of the 𝑖th
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layer. As is illustrated in Figure 1, there are two parts of higher-order
feature interactions in the TFNet, including the tensor-based inter-
active features and the embedding vectors. For the tensor-based
interactive features, we input the critical features sℎ into the 𝑙1-
layer fully connected layers, obtaining the higher-order interactive
features tℎ = 𝐻𝑙1 (sℎ). Besides, for the higher-order feature interac-
tions of embedding vectors, the 𝑙2-layer fully connected layers are
constructed and the formulation of it is xℎ = 𝐻𝑙2 (x𝑣).

2.4 The Output Layer
Finally, in the output layer, we concatenate three parts of features
to make the ultimate prediction, including the original raw input
features and the higher-order interactive features of embedding
vectors and tensor-based critical features. The formulation of the
final prediction score is as follow,

𝑝 = 𝜎𝑠 (w𝑇 concat(c, xℎ, tℎ) + b), (5)
where 𝑝 is the final prediction score of the TFNet model, c is the
concatenation of original raw features. And the concat function
denotes the concatenation of the three parts.w and b are the model
weight and the bias vector respectively. Furthermore, we use a
non-linear activation function 𝜎𝑠 to output the probabilities, which
can be modified according to different tasks, for example, we use
sigmoid for a classification task here. Given the label 𝑦 ∈ {0, 1}, the
loss function is defined as the cross-entropy of prediction over the
labels, formulated as

L = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 ), (6)

where 𝑁 is the total number of training samples and 𝑖 indexes the
training samples. Finally, the model can be trained in an end-to-end
way efficiently using stochastic gradient descent algorithm.

3 EXPERIMENTS
In this section, we evaluate the performance of the proposed TFNet
model in both offline and online environments. We first describe the
datasets and settings of the experiments, then report and analyze
the experimental results.

3.1 Experiment Settings
Datasets.A common application scenario of user click prediction is
the task of click prediction of ad impression. The offline experiments
are conducted on two typical and large real-world datasets.

Criteo1 contains 45 million click records of ad impression. There
are 13 continuous features and 26 categorical ones. Considering
the higher volume and higher unbalance of data, we do negative
down-sampling on the Criteo dataset as [8]. Avazu2 contains 40
million click records of ad impression with 22 categorical features,
such as site category, time, device type, banner position, etc.

Compared Methods. Several representative methods are used
for empirical comparison: (i) FM [9] , (ii) Wide&Deep [2] , (iii)
DeepFM [3] , (iv) NFM [4] and (v) AFM [13].

To make a fair comparison, the number of parameters of the
proposed TFNet model is set to be approximately equal to that of
1https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
2https://www.kaggle.com/c/avazu-ctr-prediction/data

most compared models. For the proposed TFNet model, the network
structure of two hidden layers 𝐻𝑙1 ,𝐻𝑙2 are 512-512, 𝑑 = 45,𝑚 = 4, 6
for Criteo dataset and Avazu dataset respectively.

Evaluation Metrics. To evaluate the performance, we adopt
AUC (Area Under ROC), and to estimate the Relative Improvement
(RI) of online performance based on offline performance, RI-AUC
is proposed to make good comparison between the proposed model
and compared models [1].

RI-AUC =
AUC(𝑚𝑜𝑑𝑒𝑙) − 0.5
AUC(𝑏𝑎𝑠𝑒) − 0.5 − 1 . (7)

For an online recommender business, there are two key evalua-
tion metrics, ARPU (Average Revenue Per User) and CTR, which
are defined as ARPU = 𝑅𝑡/𝑁𝑢 , CTR = 𝑁𝑠/𝑁𝑖 . ARPU is calculated
in a standard time period, such as a day or a month. 𝑅𝑡 is the total
revenue generated by all users during a time period. 𝑁𝑢 is the total
number of users during that time period. In a recommender system,
an impression means a view of a user to a recommended item. 𝑁𝑖 is
the total number of impressions. 𝑁𝑠 is the number of impressions
that are successfully recommended, which means users either click
advertisements or download applications. Similar to [8], we can
define relative improvement of ARPU and CTR, i.e., RI-ARPU and
RI-CTR as follows (𝑋 can be either ARPU or CTR),

RI-X =
X(𝑚𝑜𝑑𝑒𝑙) − X(𝑏𝑎𝑠𝑒)

X(𝑏𝑎𝑠𝑒) ∗ 100% . (8)

3.2 Offline Evaluations
We conduct offline experiments to obtain thorough comparisons
between our model and state-of-the-art models on two typical and
large real-world datasets.

Results and Analysis
We first make ablation analysis of the higher-order feature interac-
tion part of TFNet, which consists of the higher-order interactions
of the embedding vectors and tensor-based interactive features.
The analysis verifies that whether the higher-order part can be a
complement of tensor-based ones in TFNet. Comparing TFNet– and
TFNet in the bottom part of Table 1, higher-order interactions ob-
tain extra 0.4% relative AUC improvement, which demonstrates the
mutual complementation of tensor-based and higher-order feature
interaction. Table 1 also illustrates experimental results of other
compared models on both Criteo and Avazu datasets. As is shown,
the proposed TFNet model can gain prominent relative AUC im-
provement of around 2% against compared models on both datasets.
This verifies the effectiveness of the proposed method.

Compared with the baselines, the TFNet utilizes tensor-based
interaction method to capture interactive features in different se-
mantic spaces. As is shown in Table 1, even without the higher-
order feature interactions part of the TFNet model, the TFNet– also
outperforms the above models in both datasets, which verifies the
effectiveness of the tensor-based approach.
Hyper-Parameter Study
Number of Slice𝑚. As can be depicted in Table 2, when𝑚 gradu-
ally increases, the performances of the proposed TFNet model on
both datasets reach the peak and then decrease. It is worth men-
tioned that on the Criteo dataset, the TFNet achieves best AUC
when 𝑚 = 4, while on the Avazu dataset the 𝑚 = 6. It may be
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Table 1: Offline experimental results of compared methods
on the Criteo and Avazu datasets. RI-AUC is the relative
AUC improvement of the proposed TFNet model against all
other models. TFNet– means TFNet without higher-order
feature interactions.

Algorithm Avazu Criteo
AUC RI-AUC AUC RI-AUC

FM 77.67% 3.22% 78.93% 3.39%
AFM 77.96% 2.15% 79.00% 3.14%

DeepFM 77.99% 2.04% 79.34% 1.94%
NFM 78.00% 2.00% 79.24% 2.29%

Wide&Deep 78.05% 1.82% 79.37% 1.84%
TFNet– 78.43% 0.46% 79.79% 0.40%

TFNet (Ours) 78.56% – 79.91% –

Table 2: The impact of 𝑑 (dimension of embeddings) and 𝑚

(the number of slice of operating tensor) of the TFNetmodel
on the Criteo and Avazu datasets.

m Criteo Avazu d Criteo Avazu
1 0.79796 0.78461 20 0.79840 0.78382
2 0.79835 0.78522 25 0.79865 0.78444
3 0.79866 0.78529 30 0.79866 0.78499
4 0.79910 0.78533 35 0.79873 0.78505
5 0.79840 0.78537 40 0.79897 0.78536
6 0.79844 0.78560 45 0.79910 0.78561
7 0.79859 0.78544 50 0.79877 0.78545
8 0.79886 0.78521

likely that there are more feature fields in the Avazu dataset, which
accordingly needs more slices of semantic spaces.

Dimension 𝑑 of Embeddings. Table 2 illustrates the AUC val-
ues of the proposed TFNet model on both datasets with different
dimensions 𝑑 of latent embedding vectors. On both the Criteo and
Avazu datasets, the TFNet model achieves the best AUC when
dimension 𝑑 = 45. As the dimension 𝑑 continues to grow, the per-
formance decreases due to overfitting.

3.3 Online Evaluations
We perform online A/B tests in Tencent MyApp3, the largest Chi-
nese App recommender system. The online baseline model is the
Wide&Deep method [2]. The TFNet model is initialized by the latest
7-day CTR log data. During the following process of online evalua-
tion, these two models are updated every two hours by using the
same datasets: the training set includes CTR logs collected from
the last hour to last 25 hours, and the validation set includes logs
in the last hour.

For the online advertising system, there are usually around 10%
new records of ads in the database each day. Therefore, it is nec-
essary to consider new-comers of ads and users each day, which
is the main difference of online and offline evaluations [1]. More-
over, the unstable online data distribution will lead to fluctuation
of prediction performance, which can be illustrated in Figure 3.
During the period of A/B tests, we calculate RI-ARPU and RI-CTR
of the TFNet model each day. Great improvements of the TFNet

3http://sj.qq.com/myapp/
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Figure 3: Online evaluation of the proposed TFNet model
against the base model (Wide&Deep).

model are observed: an average of 6.22% relative ARPU improve-
ment (max 9.34%, min 1.88%) and an average of 3.81% relative CTR
improvement (max 9.77%, min 0.50%). As is illustrated by the Ten-
cent MyAPP, the budget of the latency in online system is 50𝑚𝑠 at
most, thus our proposed TFNet model’s 8∼17𝑚𝑠 quite satisfies the
common budget.

4 CONCLUSION AND FUTUREWORK
In this work, we propose a tensor-based feature interaction model
TFNet, which can learn the feature interactions in different semantic
spaces. Extensive offline experiments demonstrate that the TFNet
model significantly outperforms existing models and achieves the
state-of-the-art results. Moreover, online A/B tests show great rev-
enue and CTR improvements of the TFNet model in the largest
Chinese App recommender system.

In addition, we are trying to utilize this model for ranking on
the Chinese mainstream short video platform WeSee4, where the
scene is a sliding play style instead of a click one, making it more
complicated and challenging for samples modeling. It is in the
offline verification stage at present, and online evaluation will be
accessed later.
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