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Abstract— The traditional dynamical models show lower
accuracy when predicting joint movement, and should be
compensated. This paper proposed a model combined with
the convolutional network(CNN) and temporal convolutional
network(TCN) to compensate for the joint torque prediction
values that are calculated from the sensing information. The
experiments on the Cooperative Universal Robotic Assistant
6 DoF(CURA6) open dataset, including multi-load and multi-
velocity, showed the prediction error can be reduced by 20%
compared to other network models. Since there are many kinds
of joint movement information, the input data form of the
deep learning model should be improved. Thus, the kinetic
linearization model is proposed to modify the input of sensing
data. According to the different motion types of the CURA6
dataset, comparative experiments were taken, and the mean
absolute error was less than 6.8%.

I. INTRODUCTION

With the development of social intelligence, collaborative

robots are widely used in industrial production due to their

lightweight structure[1], and it enhances work efficiency.

The main working scenario of collaborative robots is to

assist workers to complete related tasks[2], so they have

strong human-robot interaction. Traditional model-free con-

trol methods, such as PID control, have disadvantages such

as the inability to accurately track the set trajectory and poor

anti-interference ability[3]. Traditional methods cannot meet

the requirements of collaborative tasks, such as dragging and

teaching[4], [5], collision detection[6], and soft control[7],

[8] scenarios. The introduction of robot dynamics systems

into control methods to achieve accurate control schemes is

becoming more and more widely used. Traditional multi-axis

tandem robots for dynamics modelling generally consider

the main factors such as gravity, Coriolis force, inertia force

and friction[9], but still influence many nonlinear factors,

such as gearbox flexibility, motor rotor inertia force[10],

etc. This leads to a large error in its calculation of pre-

dicted moments, Thus, a robot dynamics system with good

performance is a precondition and foundation to ensure its

accurate control. Xiao J et al. used a cubic polynomial
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function fit to the frictional moment term based on traditional

dynamics modelling, which resulted in a 25% reduction in

the joint torque prediction error[11]. In recent years, deep

neural networks have been used in robotics due to their

excellent feature learning capability, and Elmar Rueckert et

al.[12] used an LSTM network approach to compare with the

classical Gaussian process GPs approach to demonstrate the

superiority of deep learning methods in feature extraction.

wang et al. used a long short-term memory network with

an attention mechanism (LSTM) to do compensation for

moment errors[13]. However, the long training time of the

LSTM network affects the performance. Czubenko M et

al. used CURA6 standard robotic arm[14] to collect data

sets with multiple loads, multiple speeds and open source

and proposed a network model combining convolutional

neural network and long short-term memory network, which

improves the feature collection capability and has better

results for moment prediction but still has the complexity

of high shortcomings.

To tackle the above problems, the main target of this

paper is to develop combined Convolutional neural net-

works (CNN) and Temporal convolutional networks (TCN)

approach that first exploits the excellent feature extrac-

tion capability of CNN networks to obtain more mo-

tion information[15]. Secondly, the properties of TCN net-

works are utilized to capture the temporal dependence[16],

since TCNs use causal one-dimensional convolution, di-

lated convolution and residual layers to increase the size

of the perceptual field and solve the problem of compu-

tational complexity[17]. The method brings the predicted

moments closer to the true values, which are validated

using the CURA6 public dataset (http://gitlab.com/intema-

gdansk/cura6-dataset), and the cumulative error values in the

six axes are reduced by nearly 20% compared to the deep

network model proposed by Czubenko M. Moreover, the

universality of the proposed CNN-TCN network is demon-

strated using motion data of other speeds and loads for

validation. Specifically, the main contributions of this work

are as follows: (1) the CNN-TCN model is used inside the

robotic arm for the first time, (2) Changing the model input is

based on dynamics characteristics and performing a rigorous

theoretical derivation, (3) Provide a generalized validation

scheme for moment prediction of multi-load collaborative

robots.

The remainder of this paper is organized as follows:

Section II presents the framework of dynamic modelling and

moment prediction techniques for robotic platforms. Section

III processes the dataset, and Section IV presents the struc-
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ture and construction method of the deep learning model.

Section V evaluates the proposed model for experiments and

validates the generalizability, and Section VI summarizes the

conclusions.

II. II. CONSTRUCTION OF ROBOT MODEL

A. Dynamic Model of a Robot

The data set used in this study was collected through the

general-purpose robotic arm CURA6, which has excellent

performance, wide working range and high load capacity,

and can achieve acceleration and deceleration motion of 5kg

load within 1.2m. The robot platform is shown in Fig. 1, and

the modified Denavit-Hartenberg parameter table is shown

in Table I. The accurate dynamics model is the basis for

(a) Robot Photo (b) Robot Model

Fig. 1. CURA6 robot model

TABLE I

MDH PARAMETERS

i αi ai di θi
1 0 0 0.105 θ1
2 90 0 0 θ2 + 90
3 0 0.4 0 θ3
4 0 0.4 0.22 θ4 − 90
5 -90 0 0.2 θ5
6 -90 0 0.14 θ6

realizing functions such as error-free tracking and flexible

control. The main methods of robot dynamics representation

are Newton Euler method and Lagrange method. According

to the consideration of operational efficiency, the Lagrange

method is chosen, and its expression is:

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + τf (1)

M(q) represents the inertia matrix of the robot; C(q, q̇) is

the matrix of Koch and centrifugal force terms; G(q) is the

gravity vector; q, q̇, q̈ are 1×n vectors of robot joint angle,

angular velocity, and angular acceleration, respectively; τf
is the friction force in the robot drive structure, and τ is the

robot joint drive torque.

B. Torque prediction method

Among the kinetic parameters, the connecting rod mass,

centre-of-mass position, and joint friction are affected by

mounting errors and part machining errors. Therefore, di-

rect measurements will have an impact on the final torque

prediction results. Compared with the traditional method

of constructing the minimum parameter set[18], using deep

learning models to accomplish the nonlinear mapping of

the dynamics model is one of the key methods to study

the dynamics model in recent years. The technical frame-

work of traditional parameter identification methods and

deep neural network modelling methods is shown in Fig.

2. Regardless of the method used, the generation of robot

Fig. 2. Torque prediction method process

motion trajectories is an essential part of the process. A good

excitation trajectory can have a wider working space, more

velocity variations, and, can make the moment prediction

more robust and less variation from the true value. The

finite-term Fourier series excitation trajectory proposed by

Swevers[19] is widely used. Atkeson[20] and Daemi[21]

both proposed to use polynomials as the excitation trajectory

using the condition number as the optimization conditions.

In this paper, the finite term Fourier series method is used

to generate the excitation trajectory to collect the motion

information.

III. DATA PROCESSING

A. Data classification and serialization processing

CURA6 is an original robot created by Intema in Gdańsk.

The dataset used in this paper is collected from the robot

motion and contains 91 random motion slices as the training

set, each learning slice has about 10,000 samples (acquisition

frequency is 24Hz). There are also 91 shorter random motion

clips as the test set. 91 motion clips contain different speeds

and different loads of the robot, which can basically cover all

the motion situations in the robot usage scenario, and this

dataset can be used to evaluate and validate the algorithm

with strong persuasion.
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In this paper, this dataset is divided into three categories,

which are low-speed and multi-load motion set, multi-speed

and high-load motion set and multi-speed and low-load

motion set, and each set contains 15 motion segments. For

the low-speed and multi-load data, the motion speed is 20%

of the maximum speed of the joint and below, and the load

is from 0kg to 4kg. For the multi-speed and low-load data,

the motion speed is 0% to 70% of the maximum speed, and

the load is 0.8kg and below. for the multi-speed high-load

data, the motion speed is 0% to 70% of the maximum speed,

and the load is 3.6kg to 4.1kg. Firstly, the proposed network

model is validated by using the low-speed and multi-load

motion set, and compared with other network models using

this motion set to verify the superiority of the network model

in this paper. Secondly, two other motion ensemble datasets

are used to verify the generalizability of this network model

and demonstrate the robustness of the method on a general-

purpose robot.

The TCN model is a prediction model for time series

samples, and the data input needs to be serialized, i.e., the

moment information of the next moment is predicted by the

first n data, and the window sliding process is shown in

Fig. 3. This sliding window sample data was collected for

the first joint movement of 4 seconds. After the serializa-

tion process, the input of the model can be described as

batch×windows×feature(number of learning samples×length

of windows×number of features).

Fig. 3. Sliding window diagram

B. Calculation of joint torque

The input to the network model uses four signals: posi-

tion of the joint motor, feedback velocity, acceleration and

feedback torque, and the output is the predicted torque. The

position, velocity and joint torque signals are used without

any filtering to preserve the data integrity and real-time.

The acceleration signal is low-pass filtered by the feedback

velocity at 2Hz and then obtained using a central difference

algorithm. The relationship between joint motor torque and

current can be approximately equal to the linear expression

form, as shown in (2). K1 is the motor torque constant, 0.19

for the first three joints and 0.11 for the other joints, K2 is

the motor gear ratio, 1:100 for this robot, so the final table

of joint torque is in the form shown above

τ = K1K2 · I (2)

IV. DEEP LEARNING BASED PREDICTION

METHODS

A. Convolutional neural networks

Convolutional neural networks(CNN) are mostly used in

image processing, video prediction, etc. Sequential signals

are considered one-dimensional image information in tempo-

ral networks, and CNN networks can also be used to extract

more informative features in motion signals according to

their network advantages. In the preprocessed data derived in

the previous section, the input dimension of batch×16×24 is

regarded as a 1×16 one-dimensional image with 24 channels,

and feature extraction is performed using a convolutional

kernel with a number of 64 and a convolutional kernel size

of 1×3. The equation for a one-dimensional convolutional

layer is shown[22].

Zi =

N∑
n=1

b∗nfi + bi (3)

where Zi is the ith output value, bn is the input feature

vector; fi is the size of the convolution kernel; bi is the

bias on each channel; N is the number of input features; ∗
denotes the convolution operation. The design of multiple

convolutional layers and small convolutional kernels can

reduce the computational overhead and extract as many shape

features at different scales as possible, therefore, increasing

the depth of feature information of the data to 64 layers, this

behaviour greatly increases the features of motion informa-

tion and it provides more features for the capture of temporal

information by the TCN network later.

B. Temporal convolutional networks

Temporal convolutional networks contain temporal infor-

mation compared to CNN networks and its prediction of

future data extracts features by historical information only.

For data with time series, TCN networks add temporal

consistency and also have the feature extraction capability

of CNN networks. It shows better performance than typi-

cal recurrent networks such as Long Short Term Memory

(LSTM) in a wide range of datasets and tasks. There are

three important modules in TCN networks, which are causal

convolution, dilation convolution, and residual linking. The

combination of the dilation convolution and residual blocks

guarantees the size of the high-feeling field and solves the

problem of computational complexity. For a one-dimensional

input sequence, it is expressed as

F (s) = (x ∗ df) (s) =

k−1∑
i=0

f(i) · xs−d·i (4)

Dilated convolution operation on the elements in the se-

quence. In (4), a convolution kernel f : 0, . . . , k − 1ßR,

where d is the dilation factor, k is the size of the convolution

kernel, s− d · i ccounts for the direction of past[23].

In the TCN model design method used in this paper,

the size of the convolutional kernel used is 3. To add

higher perceptual fields, the expansion factors are chosen
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as 1, 2, 4, and 8. After passing through the CNN network

layers, the input joint motion information is increased to 64

layers, and this information is input to the TCN module

with a convolutional kernel size of 3 × 1 × 64. Finally,

the neurons are mapped to the 6-axis moment through

fully connected layer prediction results. The overall network

model diagram is shown in Fig 4. After hyperparametric

optimization experiments, the Adam optimizer was set with

a training batch size of 512 and a loss function of Mean

Square Error(MSE) in the training. 20% was selected as the

validation set data and 80% as the training set data. The

test set uses the test motion fragment in the dataset. The

fairness of the testing effect is ensured. The absolute mean

error is chosen as the evaluation index of the model, and the

summation of the moments of the six-axis motors is used

as the cumulative error for comparison between the models.

The Mean Absolute Error(MAE) expression is

MAE =
1

N

N∑
i=1

|τ̂i − τi| (5)

Where τ̂i represents the actual observed value, τi represents

the predicted value, and N represents the number of samples.

V. EXPERIMENTAL VERIFICATION

A. Validation of CNN-TCN network model

In order to justify the combination of CNN and TCN

networks, the TCN network will be used to compare with

the proposed combined network, where the sliding window

of different sizes has a decisive effect on the network effect

because the motion data of the robot is time-series data.

The best results of the Mc-LSTM and CNN-LSTM networks

proposed by Czubenko M. are used as the baseline for

comparison with this paper, and the sliding window size from

4 to 24. The effect is shown in Fig. 5. It can be seen that

the TCN model outperforms the LSTM and its improved

networks in processing multi-featured time-series data. The

addition of the CNN network before the TCN network is

used to extract more feature information. the CNN-TCN

network effect is further improved compared with the TCN

network. The comparison by sliding windows of different

lengths shows that the sum of MAE of six joint moments

is the smallest at 20.5 Nm for a window size of 16, and

the optimal effect proposed in other papers is 22.5 Nm. it

improves the effect by 8.9%.

B. Improvement of input method

In the data pre-processing stage of the network model,

the prediction of the network model can be further improved

by mining the characteristics of the data itself. The robot

dynamics model also has its data characteristics, and (6) is

the joint force and moment expression.

ifi = i+1
iRi+1fi+1 +mi

iẇi × iPCi

+mi
iwi ×

(
iwi +

iPCi

)
+mi

iv̇i
ini = i+1

iRi+1ni+1 +
iPi+1 × i+1

iRi+1fi+1

+ iPCi
×mi

iv̇i +
iwi × iIiiwi +

iIiiẇi

(6)

f is the force acting on link i − 1 and n is the moment

acting on link i − 1. R is the rotation matrix between the

joints, PC is the position of the center of mass of each link,

v̇ is the linear acceleration of the link, P is the length of the

link,w is the angular velocity of the link, ẇ is the angular

acceleration of the link, m is the mass of the link, and I is

the inertia tensor of the link.

It can be seen that the dynamics of joint i are only related

to the dynamics and kinematic information of joint i+1 and

later joints, not to the dynamics and kinematic information

of the preceding joints, so the dynamics of the ith joint will

be influenced by the dynamics of the later joints and will not

be influenced by the dynamics of the preceding joints. (7) –

(11) are the matrix expressions of the linearized model.

τi =

[
ifi
ini

]
= i+1A

[
i+1fi+1

ni+1

]
+ ki

⎡
⎣ mi

mi
iPCi

Ii

⎤
⎦ (7)

i+1A =

[
i+1R 0

iPi+1 × i
i+1R

i
i+1R

]
(8)

ki =

[
iv̇i

[
iω̇i×

]
+
[
iωi×

]2
0

0 − [
iv̇i×

] [
iω̇i

]
+
[
iωi×

] [
iωi

]
]

(9)

ρi =

⎡
⎣ mi

mi
iPCi

Ii

⎤
⎦ (10)

⎡
⎢⎣

τ1
...

τ6

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

k1
1
2Ak2 · · · 1

6Ak6

0 k2
. . .

...
...

. . .
. . . 5

6Ak6
0 · · · 0 k6

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎣

ρ1
...

ρ6

⎤
⎥⎦ (11)

Equation (7) is the form of the kinetic matrix expression for

a single joint, and after combining the single joint formulas,

the dimension of the moment matrix in (11) is 36×1, the

dimension of the observation matrix is 36×60, and the

dimension of the matrix composed of the kinetic parameters

P is 60×1.

Observation matrix is more intuitively seen as an upper

triangular matrix, where the factors influencing the joint

dynamics characteristics are only influenced by the right-

hand joint information. Therefore, the input to the neural

network model is improved, and only the kinematic and

moment information of the joint i, joint i + 1 and later

is input to the input of the network model of the joint i.
Since the number of model outputs has been changed from

6 to 1 due to the improved input method, the structure of

the model can be appropriately simplified. First, the number

of convolutional kernel channels is changed to 1/2 of the

original number, the size of individual convolutional kernels

is changed from 3 to 2, the expansion factors are changed

to 1, 2, and 4, and the other hyperparameters are set in

the same way. By simplifying the structure, the training

parameters of the model are about 14% of the original

ones. This approach improves the training efficiency of the
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Fig. 4. CNN-TCN prediction model

Fig. 5. Model effect comparison chart

model. Table II compares the changed model structure with

the original structure. Fig. 6 shows the framework of the

improved network model. After adopting the new input, it is

shown in Fig. 7. Joint error of low-speed and multi-load is

shown in Table III.

TABLE II

COMPARISON OF THE NEW MODEL STRUCTURE AND THE

OLD MODEL STRUCTURE

Normal Input method Optimized input method
Input channel 1th, 2th. . . 6th ith, (i+1)th. . . 6th

number 64 32
Kernel size 3 2

Dilation rate [1, 2, 4, 8] [1, 2, 4]
Dropout 0.2 0.2

Activation Relu Relu

With the new input method, the sum of MAE is 18.51

Nm, which is smaller than the 20.58Nm of the normal input

method. The sum of MAE of torque for 6 joints is reduced

by 20% by changing the input method and network model. It

can be seen from the table that the error of the main stressed

joints is small, less than 5%, the inertia of the end joint is

small, and the noise is large, resulting in a large percentage

of prediction error, but less than 10%. Finally, the average

absolute error of 6 joints is 6.5% of the true torque when

Fig. 6. New network model diagram

Fig. 7. MAE Comparison Chart

using low-speed multi-load data. The error requirement for

use was met. Validation of method generalizability.

The above experiments can prove that the CNN-TCN

network proposed in this paper outperforms the Mc-LSTM

network model proposed by Czubenko M et al.[14] In order

to verify the robustness of the method, different data type

scenarios are tested in the CURA6 dataset, respectively. The

sliding window was chosen to be 16. The joint error of multi-

speed and low-load is shown in Table IV and joint error of

multi-speed and high-load is shown in Table V.

The table above shows the MAE for each joint and the

error as a percentage of the maximum operating torque.

The results for the multi-speed low load data show that
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TABLE III

LOW-SPEED, MULTI-LOAD VERIFICATION

1 2 3 4 5 6
MAE 7.58 4.43 4.86 0.53 0.55 0.55
Error 9.4% 4.5% 4.6% 4.6% 6.9% 8.8%

TABLE IV

MULTI-SPEED, LOW-LOAD VERIFICATION

1 2 3 4 5 6
MAE 8.12 5.68 6.47 0.65 0.577 0.621
Error 7.5% 4.7% 6.3% 6.2% 7.4% 8.6%

the sum of the MAE for the six joints is approximately

22.12Nm, and the average error in joint torque is 6.8%.

The results of the multi-speed high load data showed that

the sum of the MAE for the six joints was approximately

22.61Nm, and the average error in joint torque was 5.8%.

The larger average error in the multi-speed low-load data is

due to the larger prediction error caused by the noisy current

collection of the joint motor at low load, but this is within

a reasonable error range. In summary, the CNN-TCN model

shows advantages over other deep neural network models

and has good robustness.

VI. CONCLUSIONS

In order to obtain more accurate joint moment prediction

results, this paper fully analyzes the motion data features and

proposes for the first time a deep network model using CNN

combined with TCN for moment prediction. The feasibility

of the model is verified using the publicly available dataset

CURA6 robotic arm. The results are better than the models

of other methods using this dataset. The input method was

improved for the unique dynamics of the robotic arm, and a

new input method was used, resulting in an overall effect

of the model with a 20% reduction in the sum of the

moment errors of the 6-axis robotic arm compared to the

Mc-LSTM model. To verify the robustness of the model,

the motion segments not used in this dataset were divided

into a low-speed and high-load motion set and a multi-

speed and low-load motion set, and the motion at different

loads and different speeds provided a robustness verification

scheme. After verification, the results can all achieve less

than 6.8% of the maximum error of the torque. In summary,

the experimental results in this paper show the effectiveness

and robustness of the CNN-TCN model.
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