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Abstract— Motor synergy is considered as a motor control
strategy deployed by the central nervous system (CNS), and
it can be altered due to ageing, disease and injury. A timely
assessment and analysis of altered motor synergy patterns
will be helpful for the motor rehabilitation process. However,
current research has mainly focused on the implementation
of automated assessment scales. While the mechanism of the
motor synergy structure alteration is not well understood
yet. In this study, we proposed an approach to the analysis
of altered human motor synergistic structures. By collecting
and preprocessing the 3-dimensional motion data from 30
participants (including 15 stroke patients and 15 healthy in-
dividuals), synergistic structure features were extracted. We
obtain the spatio-temporal vectors of motion by the non-
negative matrix factorization. These vectors were clustered
using K-means and matched with the scalar product. The
similarity and specificity clustering pairs were obtained through
Kuhn-Munkres Algorithm. The above results revealed that the
structure of human motor synergy was greatly altered after
stroke, and some new synergistic patterns with commonalities
emerged during patients’ movements. This study presents a new
method to identify specific patterns of motor synergy arising
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from disease-altered biomechanics and central nervous system,
providing new targeted protocols for rehabilitation assessment.

Index Terms— Motor synergy structure, Motor variabil-
ity, Neurorehabilitation, Nonnegative matrix factorization, K-
means, Kuhn-Munkres algorithm.

I. INTRODUCTION

Human locomotion can be considered as the combination
of a complex series of motor synergistic structural units.
It can coordinate multiple causal variables (e.g., individual
motor unit activation) into task-specific functional groups
toward the goal of stabilizing the effects on dominant per-
formance variables (e.g., completion of a specific motor
task) [1]. Because of ageing [2], [3], cardiovascular dis-
eases [4], [5], neurological diseases [6], and sports injuries
[7], the human motor synergistic structure can be altered.
Neuroplasticity is an important theoretical basis for motor
rehabilitation, which means that the damaged parts of the
nerve center will be reinvented by functional compensa-
tion. Clinical studies have shown that early rehabilitation
can largely improve the motor function exploiting neural
plasticity in the critical periods [8], [9], and quantitative
assessments of motor disabilities play an important role in
this process [10], [11].

The traditional approach to rehabilitation evaluation is to
measure the patient’s performance on assessment scales, such
as the Fugl-Meyer Assessment [12] and the Berg Balance
Scale, BBS [13]. Current research has focused on how to
automate this process, with some studies using wearable
devices to make the measurement process more convenient
[14], [15]. The validity and reliability of these methods
have been verified. However, these approaches often focus
on scoring, and the mechanism of alteration of the motor
synergy structure remains unclear.

Therefore, we hope to analyze the altered motor syn-
ergistic structure between patients with motor dysfunction
and healthy participants from a kinematic perspective, which
could provide more suggestions for the rehabilitation process.
Thirty participants (including 15 stroke patients and 15
healthy subjects) from the Chinese Rehabilitation Research
Center, Macau University of Science and Technology and the
Institute of Automation, were recruited into the experiment.
The upper and lower limb movement paradigms were com-
pleted under the guidance of rehabilitation physicians. After
capturing and analyzing their 3D spatiotemporal movement
data, we used the motor synergistic score to extract the syn-
ergistic structure features of the participants. By clustering
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and analyzing the spatio-temporal features of movements, we
found that human motor synergistic structures were greatly
altered after stroke, and some synergistic structures with
common features emerged in the patients’ upper and lower
extremities.

The rest of the paper is organized as follows. Section II de-
scribes the related work, Section III describes our approach,
Section IV describes the experiments and results, and Section
V gives the conclusions of the paper and discusses future
directions for improvement.

II. RELATED WORK

Recently, related studies on movement patterns have
focused on inter-muscular synergy through physiological
signals, such as electromyography (EMG) signals. Many
previous works have demonstrated that muscle synergies and
clinical observation convey the same information on motor
impairment [16], [17]. Such as Vincent C. K. Cheung. et al.
[18] revealed how locomotor synergies change in training by
studying the EMG and plantar pressure data during running
in different populations. In our past studies, we assessed
the patient’s motion using a multimodal fusion algorithm by
acquiring the participant’s surface electromyography (sEMG)
data [19], and used sEMG signals from participants to
assess motor function by comparing the cosine similarity of
synergistic modules [20].

All of the above studies have attempted to reveal the
link between motor synergy and the neurocentral system
through muscle, thus we hope to remove the intermediate
medium and directly analyze the altered movement patterns
between patients and healthy participants from a kinematic
perspective, so as to provide more profound suggestions for
the rehabilitation process.

III. METHODOLOGY

A. Posture Tracking Method

We used a vision-based human motion tracking method
to reveal the synergistic patterns between key points of the
human body during movement. Based on this method, the
human body is labeled with 10 key points corresponding
to the major joints required for daily activities, including the
left shoulder (LS), right shoulder (RS), left elbow (LE), right
elbow (RE), left knee (LK), right knee (RK), left ankle (LA)
and right ankle (RA), as shown in Fig.1 a). By photographing
the participants’ limb movement paradigms (as shown in
Fig.1 b)), the 3-dimensional trajectories during movement
were extracted using the Mediapipe toolkit, as shown in Fig.1
c).

B. Motor Synergistic Score

In order to extract information about the participants’
motor synergistic structures, we proposed a method for
calculating the key joints’ synergistic structure scores, as
follows.

The displacement function of the ith joint position eigen-
value between the mth frame and the nth frame is defined
as:

D(m,n, i) =√
(Jxm,i − Jxn,i)2 + (Jym,i − Jyn,i)2 + (Jzm,i − Jzn,i)2

(1)
where, Jxm,i, Jxn,i, Jym,i, Jyn,i, Jzm,i,Jzn,i are the
coordinates of the ith eigenvalue at the mth and nth frames,
respectively.

A value of energy for the ith joint motion in pth frame is
defined as:

Energy(p, i) = D(p, p− 1, i) (2)

Therefore, the energy of the expected motion joint in the
pth frame can be represented as:

Locomotor_energy(p, L) =
∑

iϵL Energy(i)

N_Locomotor
(3)

where, the set L is determined by the motion task, which
represents the index of joint features for the expected mo-
tion. For example, in the upper limb task paradigm (see
Figure 1 b)), the set L includes joints RS, RE, and RW.
N_Locomotor represents the number of expected joint fea-
tures required for that motion task.

Define the energy value of the connected motion joints in
pth frame as:

Synergistic_energy(p, S) =
∑

iϵS Energy(i)

N_Synergistic
(4)

where, the set S is determined by the motion task, which rep-
resents the index of joint features for the collateral motion.
For example, in the upper limb task paradigm (see Figure
1 b)), the set S includes joints LS, LE, LW, RK, LK, RA,
and LA. N_Synergistic represents the number of collateral
joint features in the motion task.

From Eq(3) and Eq(4), we get the synergistic score in pth
frame:

Synergistic_score(p, L, S) =
Synergistic_energy(p, S)
Locomotor_energy(p, L)

(5)
We tried to characterize the difference in motion patterns
by the variation of the synergy structure, so we extracted
the synergy score of each frame as a feature for the next
analysis.

C. Spatial-temporal Factorization Method

We deconstructed the synergetic data using the conven-
tional spatial-temporal combination that interprets the multi-
joints human motion as the product of the spatial matrix W
and the temporal matrix T as follows:

M = WT (6)

Many researches have shown that using the non-negative
matrix factorization (NMF) method [17]–[20], the spatio-
temporal pattern of motor joint synergy can be calculated,
where the contribution of the joint synergy to the movement
can be represented by the weight W and the activation time
of the joint can be represented by a curve. As can be seen
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Fig. 1. Human key joints model & trajectory illustration. a) shows the 10 major joints required for daily activities. b) is the standard paradigm for upper
limb tasks demonstrated by the rehabilitation physician. c) shows an example of the participant’s motion trajectory in the upper limb tasks.

Fig. 2. Flow chart of spatio-temporal decomposition of synergistic features

in Fig.2. To determine the patterns of motor synergy, we
extracted 10 synergy vectors, for each NMF implementa-
tion, the update rule is terminated when the inter-iteration
variation between the reconstructed matrix and the original
data is <0.01% in 200 consecutive iterations.

D. Representative Motor Synergy Vector Extraction Method

We determine the representative motor synergy vectors of
different populations by the k-means clustering algorithm.
According to this algorithm, we randomly selected k vectors
from the sample set as cluster centers, then calculated the
Euclidean distance between all samples and these k cluster
centers. For each sample, it is assigned to the cluster with
the closest cluster center. For each new cluster, a new
cluster center is calculated. 300 iterations are performed with
different random initial values, from which the cluster with
the minimum point-to-centroid sum is selected.

Silhouette analysis can be used as a measure to indicate
how closely samples are grouped in clusters [21]. Therefore,
we used it to determine the number of synergistic clusters
(i.e., the number of k) in each subjects group.

Firstly, we calculate the cluster cohesion, which is the
average distance between a sample and all other points in

the same cluster:

Coh(i, C) =

∑
iϵC,jϵC Euclidean_distance(i, j)

n− 1
(7)

where the set C represents the set of samples in a certain
cluster, n represents the number of samples in the set C, and
i, jϵC. Euclidean_distance(i, j) represents the Euclidean
distance between samples i and j. The smaller the value of
cluster cohesion, the more compact the class.

Then, we calculate the cluster sparation from the next
closesr cluster as the average distance between the sample
and all samples in the nearest cluster:

Spa(i, C, S) =

∑
iϵC,jϵS Euclidean_distance(i, j)

ns
(8)

where, the set C and the set S represent different clusters,
ns represents the number of samples in the set S, and
jϵS, iϵC. The calculation of Spa(i, C, S) is similar to that
of Coh(i, C).

By traversing the other clusters to obtain multiple values
and selecting the smallest value as the final result, we obtain:

Spa(i) = MinC⊂M,S⊂M{Spa(i, C, Sk)} (9)

where the set M is the set of all samples of the k clusters.
The silhouette score can be defined as:

S(i) =


1− Coh(i,C)

Spa(i) , Coh(i, C) < Spa(i)

0, Coh(i, C) = Spa(i)
Spa(i)

Coh(i,C) − 1, Coh(i, C) > Spa(i)

(10)

We traverse the K values from 2-10, cluster under each K
value, and calculate the silhouette coefficients Sum_S as:

Sum_S =

∑
iϵM S(i)

nk
(11)

where nk represents the number of samples in the set
M . The most appropriate K-value for each population was
selected by combining the silhouette coefficients and the
elbow method.
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E. Motor Synergy Similarity

We normalized the clustering centroid vectors of the
extracted synergy clusters and compared the similarity of
synergy between the two groups of participants by using
its scalar product. We choose to categorize the synergistic
vectors with scalar product >0.99 as matches. And using the
Kuhn-Munkres algorithm to filter the most matched synergy
vector pairs in the two groups of participants.

F. Motor Synergy Variability

Synergistic groups that do not pass the similarity screen
will represent the altered motor synergy structures between
the two groups of participants. We screened the specificized
vectors of both participant groups and labeled the three key
joints with the highest weight in this synergistic vector. By
superimposing the heat maps, significant structural changes
in motor synergy between healthy participants and patients
can be found.

IV. EXPERIMENTS & RESULTS

A. Experimental Procedure

In this study, we recruited 15 stroke patients and 15
age-matched healthy participants in collaboration with the
Chinese Rehabilitation Research Center and the Macau Uni-
versity of Science and Technology. Table I describes the
demographic information of the 30 participants, including 15
in the Stroke Patients group (SP) and 15 in the Healthy Par-
ticipant group(HP). We deliberately selected some relatively
young participants to reduce changes in movement patterns
due to ageing. The inclusion criteria for the post-stroke
patients were: 1) the participant had been diagnosed with
an ischemic or hemorrhagic stroke; 2) the participant had
not been diagnosed with a cognitive dysfunction category;
3) the participant had no major post-stroke complications;
and 4) participants were assessed by experienced therapists
on the Fugl-Meyer scale with a score of 0 or 1 on both tasks.
The inclusion criteria for the control group had no motor or
neurological impairment.

This study was approved by the Ethics Committee of the
China Rehabilitation Research Center. Before inclusion in
the study, each participant was informed of the details and
purpose of the experiment, and all signed a written informed
consent form.

TABLE I
PARTICIPANTS DEMOGRAPHICS

Post-stroke patients Healthy participants
Males Females Males Females

Numbers 8 7 9 6
Age(yrs) 41.3±17.1 39.5±13.6 37.3±9.4 40.3±11.5
S-F-UT 0(3)/1(5) 0(4)/1(3) - -
S-F-LT 0(5)/1(3) 0(4)/1(3) - -
* S-F-UT=Statistics on the number of patients scoring 0 and 1

in upper limb task, S-F-LT=Statistics on the number of patients
scoring 0 and 1 in lower limb task.

Fig. 3. Demonstration of the upper and lower limb motion paradigm

Guided by experienced rehabilitation physicians, we de-
signed the motion paradigm, including the upper limb task
and the lower limb task, as shown in Fig.3.

Upper limb task: Abduction of the shoulder 0-90° to the
front.

Lower limb task: Flexion of the knee to 90° and the hip
at 0°.

The participants completed the above two paradigms with
video guidance, the video recording format was 1080p
HD/30 fps.

B. Impact of Stroke on the Synergy Scores

Our 30×2 segments of motion 3-dimensional data for both
participants groups were unified to 100 frames by padding
and sampling. Then the synergy scores of 10 key joints
of each frame were extracted, and four sets of 100×10
synergistic data were formed according to the participants’
groups and movement paradigms. To ensure the uniformity
of the data, the samples with the affected side as the left
limb were mirrored. We summed and averaged the synergy

Fig. 4. Sequential symmetric convolution normalization flowchart

scores for each frame of the two groups to obtain the average
synergy score. As shown in Fig.4, the synergy scores of
stroke patients were higher than those of healthy participants
in all tasks. This means that in order to complete the motor
task, the patients mobilized more of the other joints to assist
the primary joint or maintain balance.

C. Impact of Stroke on the Spatio-temporal Properties of
Synergistic Structures

To further understand at which phase of the motion the
joint contributes, we analyzed the spatio-temporal character-
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Fig. 5. The spatio-temporal patterns of the upper limb task

istics of the synergy using a non-negative matrix decompo-
sition.

Fig.5 shows the three main spatio-temporal patterns of the
upper limb task. In Spatial Pattern 1 we can see that the
patients had higher activation on the contralateral upper limb
(including joints LS, LE, and LW) than healthy participants.
Spatial Pattern 2 and Temporal Pattern 2 show that the
healthy participants had more lower limb joint oscillations
than the patients during the initial and end phases of the
motion, implying that patients pay more attention to the
center of gravity and are more careful when doing upper
limb movement.

Fig.6 shows the three main spatial-temporal patterns of
the lower limb task. In Spatial Pattern 1 we can observe
that the patients had higher activation on the contralateral
upper and lower limbs (including joints LS, LE, LW, LK,
and LA) than healthy participants. Spatial Pattern 2 and
Temporal Pattern 2 show that the healthy participants had
more ipsilateral upper limb joint oscillations than the patients
during the initial and end phases of the motion. This implies
that there is a significant difference in the movement pattern
of the contralateral upper limb between patients and healthy
participants during the unilateral standing task.

D. Disease-related Changes in Synergistic Structures

After the spatial-temporal decomposition, we traversed K
values from 2 to 10. By combining the silhouette coefficients
and the elbow method, we selected the K values for the SP
and HP groups in the upper and lower limb tasks.

In the upper limb movement, we normalized the 9 cluster-
ing center vectors in SP and 8 clustering center vectors in HP
and calculated the scalar products individually as weights.
Using the Kuhn-Munkres Algorithm to solve the optimal

matching problem with weights, we selected the matched
structures in two groups of synergies. The unmatched clus-
tering centers were considered as the difference between the
two groups of synergistic patterns.

In the upper limb task, the expected motor joints are the
joints RS, RE, and RW. As shown in Fig.7, there are 4
matched synergic structures between the healthy participants
and the patients. Significant involvement of the contralateral
ankle (LA) and ipsilateral knee (RK) joints can be observed
during the task, so we hypothesized that both lower limbs
need to maintain balance by swaying their center of gravity
during upper limb movements.

As shown in the specific vector pairs P5-H5 and P7-H7,
the left and right side activations were closer in patients at a
certain phase of the movement, while in healthy individuals
there was a greater difference.

In the lower limb task, the expected motor joints are
the joints RK and RA. As shown in Fig.8, there are six
matching synergistic structures between healthy individuals
and patients. During the task, it can be observed that both
healthy participants and patients need to maintain stability
and balance by activating the upper limb joints.

The specificity vector pairs show that at a certain phase of
the movement, the upper limb is less involved in the patients
than in the healthy participants.

E. Analysis of the Involvement of Specific Synergistic Joints

To quantify the degree of involvement of the joints in the
synergistic structure during the movement, we analyzed the
specific cluster centroid vectors obtained above. We selected
the three joints with the highest weight in each specificity
vector, generated heat maps and overlaid them to obtain
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Fig. 6. The spatio-temporal patterns of the lower limb task

Fig. 7. Matching results of motion synergy vectors for the upper limb task

Fig. 8. Matching results of motion synergy vectors for the lower limb task
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specific synergistic joint heat maps for healthy participants
and patients. As shown in Fig.9.

Fig. 9. Heat map of synergic joint involvement in the upper limb tasks

From Fig.9 a) and b), it can be obtained that in the upper
limb movement synergistic structure, the contralateral upper
limb joint LE was more involved in the SP group than in the
HP group, as well as the contralateral lower limb joint LK.
The synergy between the ipsilateral upper limb joints (RW,
RE, and RK) was stronger in the HP group than in the SP
group. From the above results, it is clear that patients ( the SP
group) recruited more of the contralateral joints to participate
in the movement of the upper limb, while the ipsilateral
joint synergy was stronger in the healthy participants( the
HP group).

From Fig.10 a) and b) we can find that in the lower
limb motor synergistic structure, the contralateral upper limb
joint LE was more involved in the SP group than in the

Fig. 10. Heat map of synergic joint involvement in the lower limb tasks

HP group. The synergy between the ipsilateral joints RE
and RK was stronger in the HP group than in the SP
group. We hypothesized that the patients’ contralateral elbow
joint synergy patterns were typically altered during single-
leg stance movements. We were excited by this finding and
returned to the video for verification. Through the video, we
found a particular pattern, every patient had an involuntary
bending of the contralateral arm to the body side when the
leg was raised, a finding that could provide a new basis for
the rehabilitation process.

V. DISCUSSION AND CONCLUSION

From the above results, we observed that during the upper
limb movements, the lower limb joints of healthy participants
were more involved in synergistic structures. This may be
because healthy participants identify the upper limb task
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as an easy task that can be completed faster and more
relaxed during motion, at which point the lower limb is relied
upon to adjust the center of gravity and maintain balance
quickly. On the other hand, the task is of greater difficulty
for the patients and requires slow and effortful completion
to minimize changes in the gravity center.

In all tasks, the patients exhibited altered synkinetic struc-
tures in the contralateral elbow joint. In particular, we found
a strong coupling between the patients’ support leg and the
contralateral arm during single-leg stance, which was verified
in the patients’ video, as detailed in Section IV.

In this study, we present a novel approach to identifying
specific patterns of motor synergy induced by disease-altered
biomechanics and the central nervous system. It may pro-
vide a new method for the assessment of rehabilitation of
patients due to ageing, disease and injury, as well as new
ideas for further quantitative assessment on the degree of
motor rehabilitation. In the future, it may be specifically
applied in the analysis of patients’ movements to give
precise recommendations and scores based on their specific
movement patterns. However, there are still some limitations
to this study. For instance, there may be different patterns
of motor synergy between various types of motor function
impairments. Therefore, future work needs to be explored for
different types of patients and to increase the sample size.
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