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Abstract—Tracking visual objects from a single initial exemplar in the testing phase has been broadly cast as a one-/few-shot problem,

i.e., one-shot learning for initial adaptation and few-shot learning for online adaptation. The recent few-shot online adaptation methods

incorporate the prior knowledge from large amounts of annotated training data via complex meta-learning optimization in the offline

phase. This helps the online deep trackers to achieve fast adaptation and reduce overfitting risk in tracking. In this paper, we propose a

simple yet effective recursive least-squares estimator-aided online learning approach for few-shot online adaptation without requiring

offline training. It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen

before, and thus the seen data can be safely removed from training. This also bears certain similarities to the emerging continual

learning field in preventing catastrophic forgetting. This mechanism enables us to unveil the power of modern online deep trackers

without incurring too much extra computational cost. We evaluate our approach based on two networks in the online learning families

for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP. The consistent improvements on

several challenging tracking benchmarks demonstrate its effectiveness and efficiency.

Index Terms—Online learning, few-shot online adaptation, visual tracking, continual learning, recursive least-squares estimation

Ç

1 INTRODUCTION

GIVEN an arbitrary detected or annotated object of interest
in the initial video frame, visual object tracking aims at

recognizing and localizing other instances of the same object
in subsequent frames to facilitate understanding how it
moves through this video sequence. Recently this paradigm
of tracking visual objects from a single initial exemplar in
the testing phase has been broadly cast as a one-/few-shot
meta-learning problem [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],

which pushes forward the development of deep trackers
and achieves unprecedented performance improvements.

It is well known that Deep Neural Networks (DNNs) with
large capacity are typically data-hungry.However, a single ini-
tial exemplar in the initial frame can only provide limited
training set for sequence-specific adaptation of a deep tracker.
In contrast to some non-meta-learning-based pioneering arts
which only fine-tune several light-weight classification net-
work layers [23], [24] or train them from scratch [25] to do the
initial adaptation at the first frame for recognizing, many meta-
learning-based deep trackers [2], [3], [5], [6], [7], [9], [10], [11],
[15], [16], [17], [18], [20] are proposed to speed up this initial
adaptation process and reduce the risk of overfitting. The
major insight is to inject additional prior knowledge into the
meta-learning-based one-shot adaptation process to achieve
explicit model initialization uu0init through solving massive
amounts of small meta-learning tasks based on the single ini-
tial exemplar in the offline learning process.

It is also noteworthy that, in the visual tracking testing
phase, it is possible to augment the initial limited training set
to update the trackers online by exploiting the position pre-
dictions of the object in subsequent frames as additional sam-
ples. Despite the fact that introducing imperfect predictions
into the learning processmay have the effect of accumulating
errors and leading to tracking drift, the conditions under
which a visual tracking system setup is performed are some-
how less extreme [26] in comparison with one-/few-shot
classification. As the number of arriving samples increases,
one may find an ideal and straightforward way to adapt the
trackingmodels to new environments online and avoid over-
fitting, which is fine-tuning the model parameters over the
whole increasingly larger sample set at each update step.
However, in the circumstances of online deep trackers, it
may encounter a significant computational overhead due

� Jin Gao, Yutong Kou, Bing Li, Shan Yu, and Weiming Hu are with the
National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China, and also with the School of Artifi-
cial Intelligence, University of Chinese Academy of Sciences, Beijing 101408,
China. E-mail: {jin.gao, yutong.kou, bli, shan.yu, wmhu}@nlpr.ia.ac.cn.

� Yan Lu is with Microsoft Research Asia, Beijing 100080, China.
E-mail: yanlu@microsoft.com.

� Xiaojuan Qi is with the Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Hong Kong, China.
E-mail: xjqi@eee.hku.hk.

� Liang Li is with the Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China. E-mail: liang.li.brain@aliyun.com.

Manuscript received 13 Apr. 2021; revised 27 Dec. 2021; accepted 1 Mar. 2022.
Date of publication 7 Mar. 2022; date of current version 5 Feb. 2024.
This work was supported in part by the National Key R&D Program of China
under Grants 2018AAA0102802 and 2018AAA0102800, in part by the
Natural Science Foundation of China under Grants 61972394, 62036011,
61721004, and 61806181, in part by the Key Research Program of Frontier
Sciences, CAS under Grant QYZDJ-SSW-JSC040. The work of Jin Gao and
Bing Li was also supported in part by Youth Innovation Promotion Association,
CAS. Thework of ShanYuwas supported in part by the BeijingAcademy of Artifi-
cial Intelligence.
(Corresponding author: Weiming Hu.)
Recommended for acceptance by L. Liu, T. Hospedales, Y. LeCun, M. Long,
J. Luo, W. Ouyang, M. Pietikinen, and T. Tuytelaars.
Digital Object Identifier no. 10.1109/TPAMI.2022.3156977

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 3, MARCH 2024 1881

0162-8828 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 07,2024 at 01:32:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8925-5215
https://orcid.org/0000-0002-8925-5215
https://orcid.org/0000-0002-8925-5215
https://orcid.org/0000-0002-8925-5215
https://orcid.org/0000-0002-8925-5215
https://orcid.org/0000-0001-5383-6424
https://orcid.org/0000-0001-5383-6424
https://orcid.org/0000-0001-5383-6424
https://orcid.org/0000-0001-5383-6424
https://orcid.org/0000-0001-5383-6424
https://orcid.org/0000-0002-4285-1626
https://orcid.org/0000-0002-4285-1626
https://orcid.org/0000-0002-4285-1626
https://orcid.org/0000-0002-4285-1626
https://orcid.org/0000-0002-4285-1626
https://orcid.org/0000-0002-5888-6735
https://orcid.org/0000-0002-5888-6735
https://orcid.org/0000-0002-5888-6735
https://orcid.org/0000-0002-5888-6735
https://orcid.org/0000-0002-5888-6735
https://orcid.org/0000-0003-0800-1094
https://orcid.org/0000-0003-0800-1094
https://orcid.org/0000-0003-0800-1094
https://orcid.org/0000-0003-0800-1094
https://orcid.org/0000-0003-0800-1094
https://orcid.org/0000-0002-9008-6658
https://orcid.org/0000-0002-9008-6658
https://orcid.org/0000-0002-9008-6658
https://orcid.org/0000-0002-9008-6658
https://orcid.org/0000-0002-9008-6658
https://orcid.org/0000-0001-9237-8825
https://orcid.org/0000-0001-9237-8825
https://orcid.org/0000-0001-9237-8825
https://orcid.org/0000-0001-9237-8825
https://orcid.org/0000-0001-9237-8825
mailto:jin.gao@nlpr.ia.ac.cn
mailto:yutong.kou@nlpr.ia.ac.cn
mailto:bli@nlpr.ia.ac.cn
mailto:shan.yu@nlpr.ia.ac.cn
mailto:wmhu@nlpr.ia.ac.cn
mailto:yanlu@microsoft.com
mailto:xjqi@eee.hku.hk
mailto:liang.li.brain@aliyun.com


to the requirement of more gradient descent iterations to
achieve good convergence, which prohibits high tracking
speed. In practice, a handful of samples are maintained dur-
ing the whole testing phase in a way similar to the sliding-
window strategy with fixed-window size. Again, to speed up
this online adaptation and reduce the risk of overfitting,
some of the aforementioned meta-learning-based one-shot
initial adaptation methods are extended [11], [17], [18], and
some novel meta-learners are also carefully designed to off-
line-train updaters [4], [8], [12], [13], [14], [21], [22] for effec-
tive online adaptation, namely few-shot online adaptation.

Despite the success of both the meta-learning-based one-
shot initial adaptation and few-shot online adaptation strate-
gies in visual tracking to avoid overfitting and reduce mem-
ory or computation requirements based on fast domain
adaptation, complex optimization is required in the offline
training phase – especially for the latter adaptation strategy.
Specifically, both of them incorporate the prior knowledge
from large amounts of annotated training data for fast
domain adaptation, e.g., the training splits of ImageNet DET
and VID [27], MS-COCO [28], GOT10k [29], TrackingNet [30]
and LaSOT [31]. In this paper, we take a different perspective
than the above methods for addressing the few-shot online
adaptation problem, and propose a simple yet effective
online adaptation method based on recursive least-squares
(RLS) estimation [32]. The motivation behind this is that we
find it is feasible to sidestep the computational overhead of
fine-tuning over the whole gradually enlarged sample set by
exploring the RLS’s ability to “not forget” the old knowledge
about the object after discarding the old data. Our approach
can be treated as a widely applicable and integrable module
for existing deep trackers without incurring too much extra
computational cost in the sense that it improves the plain
gradient descent optimization over the sliding-window data
for tracking whereas neither the time to perform optimiza-
tions nor the storage consumption significantly increase.

In other words, we propose to use RLS estimation to aid
the online adaptation. Our aim is to retain past memory
while updating tracking models sequentially based on a
handful of samples maintained at each update step. This
resembles the emerging continual learning literature [33],
[34], [35], [36], which has recently proved valuable in
numerous typical supervised learning and reinforcement
learning-based tasks where some static models are offline
trained based on continual learning with fixed volumes of
data. The few-shot online adaptation is also closely related
to generic online learning, which basically aims at updating
the predictor for future data at each time index while a con-
tinuous stream of data become available in a sequential
order. It sometimes need dynamically adapting to new pat-
terns in a stream when the data itself change from time to
time, which is just right for visual tracking as shown in
Fig. 1. So our approach departs from the prior arts in that
we are the first to improve on the online learning procedure
by incorporating memory retention in the spirit of continual
learning in humans without catastrophic forgetting.

The concrete implementation to demonstrate the effec-
tiveness of our approach is based on the fact that the calcu-
lations in deep networks, no matter multi-layer perceptrons
(MLPs) or convolutional neural networks (ConvNets), can
be quickly performed using fast linear algebra routines by

organizing the network parameters in matrices. We study
two networks in the online learning families for tracking:
the MLPs-based as in RT-MDNet [24], and the ConvNets-
based as in DiMP [10]. The reason for choosing these base-
lines is that they both use the sliding-window strategy for
online learning classification models and recognizing objects
in tracking, and the exploited optimization methods only
enable the learning to converge to a local point with respect
to the fixed-sized sample set at each update step. Instead,
our improved optimization method in a recursive fashion
can enable the learning to approximately converge to a
global point with respect to all the historical training samples
ever seen including the discarded old data. What’s more,
we do not rely on offline training to improve the tracking
performance, and all the validations are based on the off-
the-shelf models of the baselines in their papers.

In summary, through network online learning we investi-
gate a continual-learning-inspired online learning approach
with RLS estimator-aided online adaptation in tracking,
which is orthogonal to the investigation of meta-learning
approaches. We believe the observations in this paper will
improve the understandings of network online learning for
visual tracking, and we expect our simple-to-implement
approach will further advance the few-shot online adapta-
tion research. Our improved code and raw results are
released at https://github.com/Amgao/RLS-OnlineTrack.

2 RELATED WORK

2.1 Online Learning in Visual Tracking

Online learning has been an important part of visual tracking
for about ten years since the classic IVT tracker [37] was first
proposed in 2008. The subsequent research has been concen-
trating on online robust classifier construction, including
MIL [38], Struck [39], MEEM [40], TGPR [41], DCF-based
approaches [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], deep classifiers [23], [24], [25], and some recent long-term
trackers [19], [53], just to name a few. This is very different
from the typical supervised learning tasks training with fixed
volumes of data, e.g., image classification [54] and object
detection [55].

In general, adapting to new data continually may give
the online tracking models a tremendous advantage over
the Siamese-style trackers [2], [3], [6], [7], [9], [15], [56] with
online learning abandoned in discriminating background
distractors. This instance-level discrimination power largely
relies on the convergence rate of optimization algorithms,
especially within limited optimization iterations allowed in
the update stage for the sake of tracking speed. The

Fig. 1. Online learning in visual tracking. Here we denote the collected b
training samples at time index n as on ¼ fðxn;j;yn;jÞg

b
j¼1.
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challenges may stem from the learning rate selection, model
initialization, non-convex cost function, and so on [57].
Besides providing a good model initialization to account for
the convergence challenges in the update stage as the afore-
mentioned meta-learning-based one-shot initial adaptation
methods [5], [10], [11], [16], [17], [18] have done, some novel
LSTM model-based [4], [8], [21], [22], ConvNet model-
based [14], and gradient-based [12], [13] meta-learners are
proposed to efficiently adapt tracking models to appearance
variations. Moreover, the Conjugate Gradient [58] method-
ology-based online optimizers [25], [47], [48] or Steepest
Descent methodology-based ones [10] are also carefully
designed to improve convergence while online learning.

In addition, despite the benefits of improved instance-
level discrimination power with frequent update, the exces-
sive update with limited memory size due to the discarding
of old data may result in overfitting to recent training sam-
ples, deteriorating the robustness. Being robust is crucial for
increasing the flexibility in tackling the different distortions
of the object appearance over time (e.g., intrinsic object scale
and pose variations, and variations caused by extrinsic illu-
mination change, camera motion and occlusion). In other
words, the plain online learning in visual tracking, e.g., the
standard gradient descent (GD) or its momentum-based sto-
chastic twin (SGD) [59] in the earlier online trackers [23],
[24], [44], faces challenges in meeting both the instance-level
discrimination and robustness demands at the same time,
as they are sometimes contradictory [60]. Apart from the
aforementioned meta-learning-based few-shot online adap-
tation methods, some online trackers widely apply the mod-
erately infrequent and underfitted update [10], [16], [25],
[47], [48], passive-aggressive update [49], [50], [51], [52], or
long short-term complementary update [23], [24] settings in
the update stage to relieve suffering from overfitting to
recent training samples, or even corrupted samples.

These observations inspire the design of our proposed RLS
estimator-aided online learning approach for visual tracking,
which not only has instance-level discrimination power in
case of background distractors as other online trackers does,
but also can enhance the robustness ability thanks to themem-
ory retention despite the discarding of old data.

2.2 One-/Few-Shot Learning in Visual Tracking

It is well known that humans can effortlessly learn novel con-
cepts after only one or a few exposures by exploiting the
knowledge primitives accrued in a lifetime. Inspired by this
one-/few-shot learning ability of humans, there has been a
recent resurgence of interest in two kinds ofmachine learning
problems, i.e., (a) learning a meta-level knowledge across a
large number of distinct training tasks to rapidly generalise
to new concepts with small training data, which is termed as
meta-learning or learning-to-learn (e.g., [3], [61], [62]), and (b)
learning consecutive tasks to continually adapt to new data
without forgetting how to perform previously trained tasks,
namely continual learning (e.g., [33], [34], [35], [36]). Since the
limited-data regime that characterises the visual tracking
setup has attracted much attention recently, a promising
research direction is the one set by applying one-/few-shot
learning paradigm to visual tracking.

Siamese networks are first exploited to formulate the
one-shot object recognition task as image matching via

learning feature representations that preserve the class
neighborhood structure and then inducing the l1 compo-
nent-wise distance metric to join the two Siamese twins for
similarity computation [61]. This metric-learning-based
meta-learning approach is further extended to be capable of
predicting network parameters in [3] and two more distance
metrics are evaluated, i.e., the inner-product and the euclid-
ean distance. In [2], a Siamese architecture that is fully-con-
volutional with respect to the search image by obtaining the
convolution parameters from the template image, namely
SiamFC, is designed for dense and efficient matching-based
visual tracking in a one-shot manner. This efficiency essen-
tially benefits from encoding the inner-product similarity
between the template image and each spatial location in the
search image. Following the SiamFC paradigm, many Sia-
mese network-based one-shot learning methods for initial
adaptation [6], [7], [9], [10], [15], [16], [20] and few-shot
learning methods for online adaptation [4], [8], [12], [13],
[14], [22] in visual tracking are studied.

MAML [62], [63], a model-agnostic meta-learning
approach, aims to help the network to learn a set of good ini-
tialization parameters that are suitable for fine-tuning to pro-
duce good generalization performance on a new task
efficiently. Since it is compatible with different models
trained with gradient descent without changing their archi-
tectures, some recent works [5], [11], [17], [18] formulate
tracking in a MAML-based one-shot initial adaptation or
few-shot online adaptation framework. They either improve
the existing trackers [5], [18] or directly convert a modern
object detector into a tracker [11], [17], leading to improve-
ments in tracking speed and robustness, or resusability of the
advancement in object detection.

Continual learning, an attractive route to artificial gen-
eral intelligence, has been demonstrated to be capable of
solving the classic image classification problem [33], [34],
[35] or Atari 2600 games [33] through sequential learning.
Besides overcoming catastrophic forgetting in the offline
training phase like these earlier works, a preliminary ver-
sion of this paper published in CVPR’20 [1] is the first to
improve on the online learning procedure by incorporat-
ing memory retention and demonstrate its success in
visual tracking. It has theoretically and experimentally
demonstrated retaining past memory while updating
tracking models sequentially based on RLS estimation can
tackle catastrophic forgetting incurred by plain SGD in the
online learning of MLP layers in RT-MDNet [24]. The pres-
ent work goes further to investigate RLS’s ability of a con-
volutional layer for online learning improvement in
tracking. To this end, a recent state-of-the-art tracker
DiMP [10] is exploited as another baseline, which enables
us to demonstrate the effectiveness of our approach on the
more challenging VOT2018/2019 benchmarks [64], [65], the
large-scale short-term TrackingNet-test [30] and GOT10k-
test [29] tracking benchmarks, and the long-term LaSOT-
test [31], OxUvA-dev [66] and TLP [67] benchmarks. The
consistent improvements on several challenging bench-
marks against the plain GD prove our online adaptation
method’s efficiency without additional offline training and
too much tedious work on parameter adjusting. In the sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
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org/10.1109/TPAMI.2022.3156977, we also provide addi-
tional technical details to explain, for instance, how to
extend the derivation of normal equations for MLP in [1]
to handle non-linear activation functions and how the der-
ivation of normal equations for MLP in [1] can be easily
transplanted to the case of cross-entropy loss.

3 RLS ESTIMATOR-AIDED ONLINE LEARNING
WITH MEMORY RETENTION

Nowadays, online learning in visual tracking is increasingly
related to online learning network parameters from a care-
fully designed and time-varying sampling set [10], [24]. By
organizing the network parameters in matrices, the calcula-
tions in the networks can be quickly performed using fast lin-
ear algebra routines. In this section, a simple least-squares
estimation (LSE) problem is first investigated in matrix form
to facilitate the interpretation of our approach.

3.1 LSE in Online Learning

Consider the time-varying training set XXðnÞ; YY ðnÞf g consist-
ing of the observable input samples and desired responses
within all of the time span until the time index n, the method
of least squares can beused to estimate a set ofweighting coef-
ficients inWn at the time index n in the online learning proce-
dure, such that the following cost function isminimized

L ðWnÞ ¼ LLðnÞ YY ðnÞ �XXðnÞW>
n

� ��� ��2þdbn Wnk k2; (1)

where the left squared error term is defined based on the l2
norm of the residual vectors, and the regularizing term, con-
trolled by a positive constant d, is included to stabilize the
solution to the recursive formulation of this LSE problem [32],
[68] as shown in Section 3.2. Here we denote XXðnÞ, YY ðnÞ and
LLðnÞ in a block manner. The sampling set XXðnÞ; YY ðnÞf g has
growing dimensions in the number of data blocks in rows
(growing-window)

XXðnÞ ¼
XX1

..

.

XXn

0BB@
1CCA 2 Rnb�p ; YY ðnÞ ¼

YY 1

..

.

YY n

0BB@
1CCA 2 Rnb�q ; (2Þ

with XXi2Rb�p; YY i2Rb�q and i ¼ 1; 2; . . . ; n. Here b, p and q
are to denote the block size and the dimensions of the input
and output for each sample. The diagonal weighting matrix

LLðnÞ ¼ diag
ffiffiffi
b

p n�1
Ib; . . . ;

ffiffiffi
b

p
Ib; Ib

� �
(3)

is to diminish the importance of those previous observations
(rows) with 0 < b � 1, which can measure the memory of
the algorithm. The regularizing term is also reformulated to
make its beneficial effect forgotten with time for b less than
unity.

According to the method of LSE [32], the optimum value
of cWn at the time index n, for which Eq. (1) attains its mini-
mum value, is defined by the normal equations. Before that,
we can rewrite the cost function in Eq. (1) as

L ðWnÞ¼
Xn
i¼1

bn�i 1

b
YY i �XXiW

>
n

�� ��2� 	
þd
b
bn Wnk k2: (4)

Solving for Wn for which rWnL is zero, we may write the
normal equations as follows in matrix form:

cWn ¼ ZnFF
�1
n ; (5)

where Zn and FFn are defined respectively by Eqs. (6) and (7),
i.e., the time-average cross-correlation matrix Zn between the
desired output and the input is shown by the formula

Zn ¼
Xn
i¼1

bn�iYY >i XXi ; (6)

and the time-average cross-correlation matrix FFn of the
input including the regularizing term is defined by

FFn ¼
Xn
i¼1

bn�iXX>i XXi þ dbnI : (7)

In practice, SGD or its mini-batch version (MBSGD) is
commonly used to optimize the parameters in Wn to obtain
an approximate optimum value cWappr

n for problems similar
to Eq. (1) or (4). The initialization of this optimization at the
time index n is commonly set tocWappr

n�1 , which is the approxi-
mate optimum value at the time index n� 1. This iterative
optimization procedure for online learning can not only
avoid the computationally expensive inverse operation in
Eq. (5) for high-dimensional input data, but also facilitate
the training of networks in deep learning by allowing proc-
essing the continuously and increasingly growing large
dataset with limited GPU memory size. As the number of
arriving blocks increases, however, fine-tuning the parame-
ters over the whole increasingly larger training set
XXðnÞ; YY ðnÞf g will give rise to more gradient descent itera-
tions to achieve good convergence, which leads to a signifi-
cant computational overhead and thus prohibits high
tracking speed. Moreover, the growing training set results
in growing storage consumption.

In order to make a compromise between the optimization
and tracking speed, traditional online learning in visual
tracking commonly uses a carefully designed sliding-window
strategy with fixed-window size to incorporate the new
data segments and also remove the influence of the obsolete
data. Similar to this traditional online learning paradigm, a
strategy to solve Eq. (1) can be derived as follows. First, if
we denote s as the number of blocks of the fixed-window
size, then for n � s, the fixed-window data can be written
from the growing-window data given in Eq. (2) by discard-
ing the oldest n� s blocks of data, i.e.,

XXðnÞ ¼
XXn�sþ1

..

.

XXn

0B@
1CA ; YY ðnÞ ¼

YY n�sþ1

..

.

YY n

0B@
1CA : (8)

Second, the approximate optimum value cWappr
n can be

obtained by minimizing Eq. (1) based on some optimization
strategies, e.g., standard gradient descent or its stochastic
twin SGD as in RT-MDNet [24], and Steepest Descent (SD)
methodology as in DiMP [10]. The initialization at the time
index n is also set to cWappr

n�1 . For instance, the standard batch
gradient descent (BGD) can be used to optimize Wn based
on the following iterations
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Witerþ1
n ¼Witer

n � h Witer
n FFn � Zn

� �
; (9)

W0
n ¼cWappr

n�1 : (10)

Here h is a pre-defined learning rate, and FFn and Zn are
obtained by summing over the fixed-window data.

Despite the success of this sliding-window strategy with
fixed-window size, a limitation of historical memory loss
prevents unveiling the power of online deep tracking in [10],
[24], because this strategy will potentially be faced with the
problem of being prone to overfitting to the recent fixed-win-
dow data especially when the size of the window is limited.
This raises an interesting question that we discuss in the next
subsection: Can we have a more elegant path to retain the
memorywhile neither increasing the time to perform optimi-
zations nor the storage consumption significantly? We hope
our work and the presented online learning approach allow
researchers to focus on the still unsolved critical challenges
of online deep tracking.

3.2 Recursive Formulation With Memory Retention

This section investigates the relationship between cWn andcWn�1 at the consecutive time indices and presents an inter-
esting alternative to solving Eq. (1) in a recursive fash-
ion [32]. In contrast to the aggressive online learning in the
previous sliding-window strategy, the characteristic of this
recursive online learning can spontaneously reduce the risk
of overfitting thanks to the memory retention though the
oldest blocks of data are discarded. In other words, the cata-
strophic forgetting of old knowledge about discriminating
the discarded training samples during the independent
optimization over the newly updated fixed-window sample
set in Eqs. (9) and (10) is mitigated.

To simplify the derivation, we only consider one sample
pair in each block, which means b ¼ 1 in Eq. (1). Let XXi ¼ x>i
and YY i ¼ y>i , the cost function of Eq. (1) will degrade to

L ðWnÞ ¼
Xn
i¼1

bn�i yi �Wnxi
�� ��2þdbn Wnk k2 ; (11)

and the cross-correlation matrices in Eq. (5) are defined by

Zn ¼
Xn
i¼1

bn�iyix
>
i (12)

FFn ¼
Xn
i¼1

bn�ixix
>
i þ dbnI : (13)

The normal equations in the case of b ¼ 1 can be seen as
an expansion of the single sample case without summing
over all the historical observations:

cWn ¼ ynx
>
n xnx

>
n þ dI

� ��1
: (14)

Isolating the terms corresponding to i ¼ n from the rest
of the summations in Eqs. (12) and (13) yields the following
recursions for updating Zn and FFn respectively

Zn ¼ bZn�1 þ ynx
>
n ; (15)

FFn ¼ bFFn�1 þ xnx
>
n : (16)

WithFFn assumed to be non-singular and thus invertible, we
may obtain the following recursive equation for the inverse
of FFn by applying the Sherman-Morris formula [69]

FF�1n ¼ b�1FF�1n�1 �
b�2FF�1n�1xnx

>
nFF

�1
n�1

1þ b�1x>nFF
�1
n�1xn

: (17)

If we denote Pn ¼ FF�1n and let

kn ¼
b�1x>nPn�1

1þ b�1x>nPn�1xn
; (18)

then Eq. (17) can be rewritten as

Pn ¼ b�1Pn�1 � b�1Pn�1xnkn : (19)

It is surprising to find that multiplying x>n by each side of
Eq. (19) yields the following simple expression

x>nPn¼b�1x>nPn�1 � b�1x>nPn�1xnkn¼kn : (20)

This facilitates the derivation for obtaining a recursive for-
mula for the normal equations in the case of b ¼ 1 when we
substitute Eqs. (15) and (19) into Eq. (5)

cWn ¼ bZn�1Pn þ ynx
>
nPn

¼ Zn�1Pn�1 � Zn�1Pn�1xnkn þ ynkn

¼cWn�1 þ yn �cWn�1xn

� �
kn

¼cWn�1 � cWn�1xn � yn

� �
x>nPn ; (21)

where the expression inside the brackets on the right-hand
side of the last line represents the residual based on the old
least-squares estimate of the parameters to be learned.

Extending the above derivation to the case of b > 1 is not
straightforward, because the equations of Eqs. (15) and (16)
will be expanded to

Zn ¼ bZn�1 þ YY >nXXn ; (22)

FFn ¼ bFFn�1 þXX>nXXn ; (23)

where

XXi ¼
x>i;1

..

.

x>i;b

0B@
1CA and YY i ¼

y>i;1

..

.

y>i;b

0B@
1CA : (24)

This obviously prohibits the derivation of Eq. (17). Alterna-
tively, using the fact that the mean squared error inside the
brackets of Eq. (4), which is based on the l2 norm of the resid-
ual vectors for all of the sample pairs in the ith block, serves
as an upper bound of the error term for the virtual sample
pair xi; yi


 �
, i.e.,

yi �Wnxi
�� ��2� 1

b
YY i �XXiW

>
n

�� ��2 ; (25)

where

xi ¼
1

b

Xb

j¼1
xi;j and yi ¼

1

b

Xb

j¼1
yi;j ; (26)
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we can instead approximately obtain the recursive formula
for the normal equations in the case of b > 1 based on this
virtual sample pair

cWn ¼cWn�1 � cWn�1xn � yn

� �
x>nPn ; (27)

where Pn is updated based on xn using Eqs. (18) and (19).

In practice, the exact optimum valuecWn�1 is hardly to be
obtained and its approximate optimum value cWappr

n�1 is com-
monly obtained from some optimization algorithm. How-
ever, we cannot directly use Eq. (27) to obtain cWappr

n as the
relationship between cWappr

n and cWappr
n�1 does not rigorously

complywith Eq. (27). Inspired from the gradient descent par-
adigm, we can, for instance, model the changing betweencWappr

n�1 and
cWappr

n by the following iterations

Witerþ1
n ¼Witer

n � h Witer
n xn � yn

� �
x>nPn ; (28)

W0
n ¼cWappr

n�1 ; (29)

where h is another pre-defined learning rate. From the above
equations, we see that the approximate optimum valuecWappr

n is obtained only based on the most recently arrived
data block n, though it is dedicated to satisfying the cost func-
tion in Eq. (4) and hence retaining the historical memory.
Consequently using the fact that the matrix product
Witer

n xn � yn
� �

x>n represents the gradient with respect to
the weighting parametersWiter

n for the virtual input xn of the
nth data block when considering its squared-error loss
1
2 yn �Witer

n xn
�� ��2 without the l2 regularization term, we can

cast the iterations in Eqs. (28) and (29) as an improved gradi-
ent descent algorithm for online learning with memory
retention. Note that the initial condition of Pn is set to

P0 ¼ FF�10 ¼ dIð Þ�1¼ I=d : (30)

Discussion. The traditional gradient descent algorithms
following the sliding-window strategy for online learning
compute the gradient at each optimization iteration based on
the cost function similar to Eq. (1) for the whole batch of fixed-
window data (BGD) or its mini-batch after random shuffle
operation (MBSGD). An alternative strategy for improving
these traditional algorithms to retain memory by performing
minimal changes of their settings and implementations is to
cast the whole batch (for BGD) or one mini-batch (for
MBSGD) data as a data block at some time index in Eq. (4),
and then improve the optimization iterations based on our
proposed approach in Eqs. (28) and (29). Note that the gradi-
ent term based on the virtual sample pair in Eq. (28) can be
approximately replaced with the real gradient at each opti-
mization iteration computed fromBGD orMBSGD.

4 RECURSIVE FORMULATION FOR MULTIPLE

FULLY-CONNECTED LAYERS IN RT-MDNET

In the online deep tracker RT-MDNet [24] that is dedicated to
target classification, the multi-layer perceptron (MLP) with
several fully-connected 1-D layers is applied to the last stage
of the deep learning architecture for classification. The fea-
tures present in the final 2-D feature maps are concatenated
into one long input vector to the following MLP. In this

section, we will show how our proposed RLS estimator-
aided online learning approach for memory retention can be
realized in this single-head real-time tracker to online learn
thoseMLP layers.

Online Learning in RT-MDNet. Being identical to
MDNet [23], RT-MDNet only updates the fully-connected
MLP layers (fc4-6) Wl


 �6

l¼4 in an online manner while
keeping the convolutional feature extraction layers (conv1-
3) Wl


 �3

l¼1 fixed, namely update stage. Before that, the MLP
layers also need to be fine-tuned using the samples from the
initial frame to customize themselves to a new testing
domain, namely initialization stage. There are two types of
memory being maintained in the update stage to make com-
promises between robustness and adaptiveness: the long-
termmemory for regular updates with the samples collected
for a long period of time; the recent short-termmemory with
the occasional updates triggered whenever the score of the
estimated target is below a threshold, indicating the unreli-
able tracking.

During online tracking, the cross-entropy loss based on
the softmax output of the single fully-connected binary clas-
sification layer W6 is used to fine-tune or update all the
MLP layers and the optimization algorithm of MBSGD is
exploited, which is a compromise between BGD and the sin-
gle instance SGD. Specifically, suppose there are b samples in
one mini-batch used for one optimization iteration of the
MBSGD process, it is thus the following partial derivatives
over the mean value of the Binary Cross Entropy (BCE) loss
for all the b samples that is used for updatingWl of each layer

DWl¼rWl

1

b

Xb

j¼1
BCE xj; yj; Wl


 �6

l¼4

� �" #
þ�l

rW
l ; (31)

Wl �Wl � hlrDW
l ; (32)

where xj is the long input vector of the sample j in the cur-
rent batch, yj is the class (positive/negative) prediction vec-
tor, and �l

r and hlr are the weight decay and pre-defined
learning rate respectively in the MBSGD process of RT-
MDNet. The weight decay encourages the learned weights
to be small in magnitude to improve the generalization per-
formance of them [70].

RLS Estimator-Aided RT-MDNet. In our preliminary ver-
sion [1], we have claimed and demonstrated that each layer
of MLP in the case of squared-error loss function can be rep-
resented by the system of normal equations for RLS estima-
tion by simply ignoring non-linear activation functions. In
the present work, we add more explanations on how to
extend the derivation of normal equations for MLP in [1] to
generally handle other layers including non-linear activation
functions and leave them in the supplementary material,
available online, due to space constraints. We also provide
more explanations on why all the derivations in the demon-
stration can be easily transplanted to the case of cross-entropy
loss in this supplementary material, available online and
refer the readers to [71] for more details. This means we can
exploit our proposed RLS estimator-aided online learning
approach to improve the updating of each MLP layer in RT-
MDNet in order to retain memory. In specific, if we cast one
mini-batch of samples used for one optimization iteration of
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the MBSGD process as a data block at some time index n as in
Section 3, then this optimization iteration can be carried out
as follows

Wl
n ¼Wl

n�1 � ehlrDWl
nP

l
n ; (33)

Pl
0 ¼ I=dlr ; (34)

for memory retention, where ehlr is the new learning rate, dlr
is the positive constant for RLS estimation and the term
Wl

n�1 I� ehlr�l
rP

l
n

� �
serves as the weight decay for optimiza-

tion. Note that Eq. (33) is only implemented once for
improving the MBSGD process, in contrast to Eq. (28), as
the same mini-batch of samples may appear several times
for optimization at each update step. Pl

n for each layer is
updated using Eqs. (18) and (19) based on each layer’s vir-
tual input

xln ¼
1

b

Xb

j¼1
xlj ; (35)

where xlj is the input to layer l for the sample j.
Since we only concentrate on the online tracking part to

improve RT-MDNet, we leave all the other parts of RT-
MDNet almost unchanged including, for example, the
improved RoIAlign technique, all their hyper-parameter
counterparts and the off-the-shelf model trained with addi-
tional instance embedding loss in their paper. As the RLS esti-
mator-aided online learning can overcome catastrophic
forgetting of historical memory, we thus do not need main-
taining the long-term memory to achieve robustness any
more. That is to say, we still use the same recent short-term
memory for RLS estimator-aided regular updates, while the
setting of the occasional updates triggered by unreliable
tracking is preserved intact, in that there may be failure cases
for the model based on the regular updates and the model
with the occasional updates customized (overfitting) to the
recent short-termmemorymayworkwellwithmore discrim-
ination. Note that the regularly updated model is fixed dur-
ing the occasional updates. More details about the improved
RT-MDNet with the RLS estimator-aided online learning,
namely RLS-RTMDNet, are explained inAlgorithm 1.

5 RECURSIVE FORMULATION FOR CONVOLUTIONAL

LAYERS IN DIMP

In the recent state-of-the-art online tracker DiMP [10] that is
dedicated to both target classification and location estimation,
high level knowledge is incorporated to train the target loca-
tion estimation component, following its pioneering work
ATOM [25], through extensive offline learning so as to predict
the overlap between the target object and an estimated bound-
ing box; meanwhile a more powerful classification compo-
nent is carefully designed to incorporate additional prior
knowledge for fast initial adaptation through the offline
meta-training process and finally online updated to guarantee
high discriminative power in the presence of distractors. In
specific, the target classification component has its target
model constitute the filter weights of a convolutional layer
and provides target classification scores as regression output
without non-linear output activation. It also employs the
block features from a ResNet-based backbone, which is pre-

trained on ImageNet [27] and fine-tuned on tracking datasets
along with the target classification and location estimation
components. In this section, we will show how our proposed
RLS estimator-aided online learning approach for memory
retention can be realized in this multi-head real-time tracker
to online learn the convolutional layer.

Algorithm 1. RLS Estimator-Aided RT-MDNet

Input: Off-the-shelf deep RT-MDNet tracking model with
multiple layers Wl


 �6

l¼1, initial Pl
0 ¼ I=dlr for each

fully-connected layer (4 � l � 6), and test sequence
with first frame annotated

Output: Estimated target states in the rest frames
1 Pre-process identical to RT-MDNet, e.g., draw positive
sample set Sþ1 and negative sample set S�1

2 Fine-tune Wl

 �6

l¼4 using Sþ1 [S�1 in initialization stage:

for the nth improved MBSGD iteration do

Update Pl
n based on the virtual input xln using Eqs. (18)

and (19)
UpdateWl  Wl

n using Eqs. (31) and (33)
3 Initialize the frame index set T  f1g
repeat

4 Find the optimal target state like in RT-MDNet
if target score> 0 then

5 Draw Sþt and S�t , and set T  T [ ftg
6 if jT j > t then T  T n miny2T yf g

if target score� 0 then
7 if Wl

bk


 �6

l¼4¼ ? then create backups Wl
bk


 �6

l¼4 Wl

 �6

l¼4
8 Occasionally update Wl


 �6

l¼4 using Sþy2T [ S�y2T based
on the original MBSGD

else if t mod10 ¼ 0 then
9 if Wl

bk


 �6

l¼46¼? then recover backups

Wl

 �6

l¼4 Wl
bk


 �6

l¼4, and set Wl
bk


 �6

l¼4¼ ?

10 Regularly update Wl

 �6

l¼4 using Sþy2T [ S�y2T :
for the nth improved MBSGD iteration do

Update Pl
n based on the virtual input xln using

Eqs. (18) and (19)
UpdateWl  Wl

n using Eqs. (31) and (33)
until end of sequence

Online Learning in DiMP. Besides the target model’s filter
weights, the target classification component also includes an
initializer network for initial filter prediction and several free
parameter predictors for setting the target mask, spatial
weight, regularization factor and even regression target in the
discriminative learning loss. In the first frame, the filter
weights are initialized based on the initializer network and
then fine-tuned based on the initial training samples from
data augmentation, namely initialization stage. Subsequently,
the extracted feature map annotated by a Gaussian centered
at the estimated target location in every frame is added to the
fixed-window sample set as a training sample. During online
tracking, the convolutional layer with a single output channel
is online optimized every 20th frame, namely update stage.

Given the training set of samples, we can approximately
formulate the online learning objective in DiMP as follows
based on the l2 norm of the residuals

L ðWÞ ¼
XN
j¼1

GGj � Yj �W � Xj

� ��� ��2þ�d

2
Wk k2 : (36)
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Here, Xj is the extracted feature map of the sample j, Yj is its
annotated Gaussian confidence map, W represents the
weights of the convolutional layer, � denotes standard
multi-channel convolution, �d is the weight decay parame-
ter, N is the fixed-window size, � denotes Hadamard prod-
uct, and the impact of each training sample along with its
spatial weight is controlled by the weighting factor GGj.

In modern deep learning architectures, each convolu-
tional layer is usually converted to a general matrix-matrix
multiplication (GEMM) operation for fast execution on
modern CPUs or GPUs. This is achieved by an unfolding
and duplication of the input and an unrolling and concate-
nation of the kernels to produce the input matrix and kernel
matrix. These transformations are realized based mainly on
a function

fð	Þ ¼ img2colð	Þ

in the modern deep learning libraries. Consequently, the l2
norm term in Eq. (36) can be rewritten as

GGj � Yj �W � Xj

� ��� ��2
¼ f> GGj

� �
� f> Yj

� �
� f> Wð Þf Xj

� �� ��� ��2 : (37)

If we denote the column number of f Xj

� �
as M, the kth col-

umn in f Xj

� �
as xjk, the kth element in f Yj

� �
as yjk and the

kth element in f GGj

� �
as gjk, then the learning objective of

Eq. (36) can be rewritten as

L ðWÞ¼
XN
j¼1

XM
k¼1

ffiffiffiffiffiffiffi
gjk

p
yjk�f> Wð Þxjk
� ���� ���2þ �d

2
Wk k2: (38Þ

During online tracking, the BGD optimization or the SD
methodology can be used to update W based on the above
loss function. Specifically, in the case of BGD optimization, it
is the following partial derivatives over the above squared-
error loss for all theN samples that is used for updatingW at
each optimization iteration of the BGD process:

DW ¼ rWL ðWÞ ; (39)

W �W� hdDW ; (40)

where hd is a pre-defined learning rate.
RLS Estimator-Aided DiMP. From Eq. (38) we can easily

find that our proposed RLS estimator-aided online learn-
ing approach is also able to improve the updating of the
convolutional layer W in DiMP in order to retain memory.
This is achieved by applying BGD optimization method in
the update stage of DiMP and then improving the updat-
ing process. In specific, if we cast all columns of f Xj

� �
for

all the training samples in the N-sized sample set as a data
block at some time index n as in Section 3, then the optimi-
zation of our improved BGD process can be carried out as
follows

f Witerþ1
n

� �
¼ f Witer

n

� �
� ehdf DWiterþ1

n

� �
Pn ; (41)

W0
n ¼cWappr

n�1 ; (42)

P0 ¼ I=dd ; (43)

where cWappr
n�1 is the last approximate optimum value, ehd is

the new learning rate, dd is the positive constant for RLS esti-
mation, the term f Witer

n

� �
I� ehd�dPnð Þ serves as the weight

decay for optimization, and Pn is updated using Eqs. (18)
and (19) based on the virtual input, which is the mean value
of the data block at the current time index n:

xn ¼
1ffiffiffiffiffiffiffiffiffi
NM
p

XN
j¼1

XM
k¼1

ffiffiffiffiffiffiffi
gjk

p
xjk: (44)

Since we only concentrate on the online tracking part
to improve DiMP, we also leave all the other parts of
DiMP almost unchanged including, for example, the
default off-the-shelf model trained using the train splits
of LaSOT, TrackingNet, GOT10k and MS-COCO, all their
hyper-parameter counterparts and the settings of initiali-
zation stage to achieve cWappr

0 . It is noteworthy that the
optimization strategy of the SD methodology is pre-
served intact along with all its parameter settings in the
initialization stage. The reason is that the SD methodol-
ogy exhibits superior convergence speed compared to
the BGD optimization strategy as claimed in [10]. More
details about the improved DiMP with the RLS estimator-
aided online learning, namely RLS-DiMP, are explained in
Algorithm 2.

Algorithm 2. RLS Estimator-Aided DiMP

Input: Off-the-shelf deep DiMP tracking model with one con-
volutional layer W for target classification, initial P0 ¼
I=dd for this layer W, and test sequence with first
frame annotated

Output: Estimated target states in the rest frames
1 Initialize the fixed-window sample set S with the data
augmented samples extracted from the first frame

2 Predict a reasonable initial estimate ofW and then fine-tune it
using the SD methodology identical to DiMP in initialization
stage, and setcWappr

0 ¼W in the following

repeat

3 Find the optimal target state like in DiMP
if update_flag then

4 Update the sample set S along with its sample weights
identical to DiMP

if t� 1 mod20 ¼ 0 or hard_negative then
for the nth improved BGD procedure do

SetW0
n ¼cWappr

n�1
Update Pn based on the virtual input xn using
Eqs. (18) and (19)
repeat

Compute the current gradient DWiter
n

UpdateWiter
n based on Eq. (41)

until end of iteration
UpdateW cWappr

n

until end of sequence

6 EXPERIMENTS

6.1 Implementation Details and Baseline Setup

We here only show the hyper-parameters specific to our
recursive LSE-aided online learning, and leave all the other
hyper-parameters and the off-the-shelf tracking models
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shared with the original RT-MDNet and DiMP trackers
unchanged1 unless otherwise specified.

In our previous implementation of RLS-RTMDNet in [1],
dlr in Algorithm 1 and the parameter to measure the memory
in Eq. (13) for each of the fully-connected layersW4, W5 and
W6 were simply set to 1.0; the learning rates ehlr for them in
Eq. (33) in both initialization and update stages were fixed to
0.01, 0.01 and 0.1. According to [32], [68], however, initializ-
ing FF0 with a “small” value for the most application scenar-
ios will help the recursive LSE-aided online learning to
achieve its optimal performance, which is insensitive to the
exact “small” value used. So we experimentally found some
new configurations for RLS-RTMDNet in this paper, and the
experimental results show that roughly setting dlr of each
layer to 5e�4 and directly inheriting the learning rates ehlr
from the original RT-MDNet tracker give rise to a further
performance improvement over our previous tracking
results in [1], especially with a significant improvement on
UAV123 [72] . We re-implemented the public source code of
the original RT-MDNet as a baseline and followed all of its
default settings to demonstrate the effectiveness of our pro-
posed online learning framework in the case of the MLP
layers. Although we leave many settings of RT-MDNet
unchanged in our RLS-RTMDNet tracker, there are still
some differences in the online tracking part related to the
solely maintained short-term memory and the weight back-
ups, in addition to the improved MBSGD. So we prepared
another baseline by only replacing the improved MBSGD
with original MBSGD in Algorithm 1, leading to a degraded
version, namely simpleRT-MDNet.

We also selected DiMP to demonstrate the effectiveness of
our proposed online learning framework in the case of the
convolutional layer. For the updating ofW in Algorithm 2,we
simply set dd to 0.1 and the parameter tomeasure thememory
in Eq. (13) to 1.0. The feature dimensionality ofXj in Eq. (36) is
512, which makes the dimension size of Pn large enough for
memory retention. Besides re-implementing the public source
code of DiMP as one baseline, we add three more kinds of
baselines for a more in-depth analysis. First, replacing only
the improved BGD with vanilla BGD in Algorithm 2 leads to
the baseline termed as BGD-DiMP, which can be used to
directly validate the effectiveness of our approach.We experi-
mentally found the optimal learning rates for BGD-DiMP
while performing the BGD optimization with five recursions
every 20th frame, i.e., 3e�2 for short-term tracking benchmarks
(the average sequence length does not exceed 600 frames),
and 3e�3 for long-term ones. This learning rate setting is also
applied in our RLS-DiMP for fair comparison. Second,
increasing the SD optimizer recursion number from two to
five for updating W every 20th frame in the original DiMP
leads to the baseline denoted by DiMP�, which can be used to
study the overfitting issue caused by fast converging to a local
point with respect to the fixed-sized sample set at each update
step. Finally, considering that the exponential moving aver-
age (EMA) strategy is widely applied in a slow-moving

fashion for striking a compromise between adapting quickly
and maintaining robustness in visual tracking [42], [43], [44],
[45], [46], [47], [49], [51], [73], [74], [75], [76], [77], or stabilizing
the network representation with smoother changes in self-
supervised learning [78], [79], [80], we can also use this strat-
egy to combine the newly updated parameters with previous
ones to save historical information and avoid overfitting. By
setting different EMA coefficient for discounting older
parameters in slow-moving, moderate-moving and fast-mov-
ingways, we can achieve a new kind of baselines for compari-
son (see Sec. 6.3.1 for more details). Our RLS-DiMP and
all the above baselines are implemented with a ResNet50
backbone [81].

Note that all the evaluations of our methods and the re-
implemented baselines are conducted by running them sev-
eral times due to the stochastic nature of RT-MDNet and
DiMP, and performed on a single Nvidia RTX 3090 GPU
accompanied by an Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz.

6.2 Experimental Analyses of RLS-RTMDNet

We evaluate the proposed RLS estimator-aided online RLS-
RTMDNet thoroughly over OTB-2015 [82], UAV123 [72]
and VOT2016/2017 [83], [84] benchmarks by following rig-
orously the evaluation protocols. We choose these small-
scale tracking benchmarks for this evaluation due to the rea-
son that the off-the-shelf RT-MDNet tracking model is
trained without additionally relying on the MS-COCO data-
set [28] or recently proposed large-scale tracking datasets,
which makes it hard to achieve good results on the more
challenging large-scale tracking benchmarks and thus do
meaningful analyses.

6.2.1 Ablation Study

We start by summarizing the ablation study comparison of
our proposed RLS-RTMDNet with its corresponding base-
lines on the OTB-2015 and UAV123 benchmarks in Table 1.
OTB-2015 includes 100 objects to be tracked in 98 challeng-
ing sequences, and provides a no-reset One-Pass Evaluation
(OPE) criterion by running test trackers until the end of a
sequence. In its success plot for quantifying performance,
the success rate (SR) refers to the mean overlap precision
(OP ) score over all sequences and is plotted against a uni-
form range of some thresholds between 0 and 1. An area-
under-the-curve (AUC) metric can also be computed to rank
the trackers. The OP score is the fraction of frames in a

TABLE 1
Ablation Study Comparison of RLS-RTMDNet With Its

Corresponding Baselines RT-MDNet and simpleRT-MDNet
on the OTB-2015 and UAV123 Benchmarks

Trackers OTB-2015 UAV123 Running GPUMemory
Prec: Succ: Prec: Succ: Speed Consumption

RT-MDNet 0.857 0.634 0.723 0.513 
32 fps < 2400MiB
simpleRT-MDNet 0.854 0.630 0.722 0.509 
32 fps < 2400MiB
RLS-RTMDNet 0.871 0.644 0.727 0.525 
31 fps < 2400MiB

Prec: and Succ: Denote Precision Score at 20 Pixels and AUC of Success Plot
Respectively. The Average Over 50 Runs Is Reported for These MDNet-Style
Trackers.

1. We refer the reader to [24] and [10] for their parameter settings
and their default off-the-shelf tracking models can be achieved at
https://github.com/IlchaeJung/RT-MDNet and https://

github.com/visionml/pytracking/blob/master/MODEL_ZOO.

md#Models respectively.
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sequence where the inter-section-over-union overlap of the
predicted and ground-truth rectangles exceeds a given
threshold. In its precision plot, the precision encodes the
proportion of frames where the euclidean distance between
the predicted and ground-truth centroids is smaller than a
given threshold. UAV123 compiles a larger set of 123 videos
(with more than 110K frames) captured by low-altitude
UAVs, which is inherently different from OTB-2015 despite
that it also uses the same evaluation protocol to OTB-2015.

It is clearly and statistically shown in Table 1 that our
online learning approach can unveil the power of RT-
MDNet without incurring too much extra computational
and memory cost. Specifically, without bells and whistles,
our RLS-RTMDNet improves all the precision (at 20 pixels)
and AUC scores over the baseline RT-MDNet on both the
OTB-2015 and UAV123 benchmarks, giving absolute AUC
gains no less than 1:0%. Our degraded version simpleRT-
MDNet, however, exhibits a little inferior performance to
RT-MDNet due to the reason that the update is based solely
upon the recent short-term memory. It is noteworthy that
our improvement of precision score on UAV123 is much
less than onOTB-2015, which can be attributed to the reason
that the size of the ground-truth bounding boxes for most of
the objects in UAV123 is much too small so that the tracking
deviation from object area does not punish the precision
score at 20 pixels too much. This is also why the metric of
normalized precision is proposed in [30].

6.2.2 Comparison With Others

We perform the state-of-the-art comparison on UAV123 and
VOT2016/VOT2017 by comparing our proposed RLS-
RTMDNet to the state-of-the-art CPU-based trackers, i.e.,
MEEM [40], SRDCF [44], Staple [74], CSRDCF with its real-
time version CSRDCF++ [85], fDSST [43], BACF [45],
ARCF [46], AutoTrack [52], ECOhc [48], and some deep
trackers trained without additionally relying on the MS-
COCO dataset or recently proposed large-scale tracking
datasets, i.e., SiamFC [2], C-COT [47], RT-MDNet [24], Meta-
SDNet [5], DeepSTRCF [50], UDT with its improved version
UDT+ [77], TADT [86], ECO [48], LADCF-R50 [49] with a

ResNet50 backbone. Results for our degraded version sim-
pleRT-MDNet are also included.

VOT creates a platform for organizing tracking challenges
every year since 2013 by establishing datasets, evaluation
measures and toolkits. VOT2017 departs from VOT2016 in
two aspects: 10 least challenging sequences in VOT2016 is
replaced with new ones; and a new experiment for evaluat-
ing real-time performance is introduced in VOT2017. Differ-
ent from UAV123, all these VOT challenges apply a reset-
based methodology in the toolkit. Whenever a failure is
detected, the tracker is re-initialized five frames after the fail-
ure. Thus, two weakly correlated performance measures can
be used: the accuracy (A) measures the average overlap
between the predicted bounding box and the ground truth
computed over the successfully tracked frames; the robust-
ness is estimated by considering the reliability (RS) which
shows the probability that the tracker will still successfully
track the object up to S frames since the last failure and is
computed using the failure rate measure (Rfr, the average
number of failures) as follows

RS ¼ exp �S Rfr

Nframes

� 	
;

where Nframes is the average length of the sequences. A more
principled expected average overlap (EAO) measure is also
proposed to measure the expected no-reset average overlap
(AO) of a tracker run on a short-term sequence, although it
is computed from the reset-based methodology.

We first show the comparison on UAV123 in Fig. 2 and
Table 2. All the entries in this comparison can be roughly cat-
egorized into DCF-based, Siamese-style and MDNet-style
approaches. In specific, the DCF-based trackers ECO [48],
DeepSTRCF [50] and C-COT [47] all use pre-trained deep
models to extract powerful features for more robust and
accurate tracking. SiamFC [2] is the first proposed Siamese-
style tracker which can track object very efficiently with
online learning abandoned. This is achieved by exploiting
end-to-end training along with the advent of deep learning
for training tracking models. TADT [86] further improves
the Siamese-style tracking framework by introducing a tar-
get-aware feature module to guide the generation of target-
active and scale-sensitive features. UDT [77] is proposed to
explore a feasible unsupervised training approach for deep
tracking. AutoTrack [52] and ARCF [46] are both DCF-based
trackers and dedicated to the real-world low-cost UAV track-
ing scenario for more efficient tracking, which has been vali-
dated in a real-world UAV localization system. As can be
seen, the classical DCF-based tracker ECO with deep fea-
tures and the Siamese-style tracker TADT can both surpass
RT-MDNet and simpleRT-MDNet by large margins, while
our approach can unveil the power of RT-MDNet to achieve

Fig. 2. Success plots for the whole UAV123 benchmark. We report the
average over 50 runs for our tracker RLS-RTMDNet and its correspond-
ing baselines. The legends show the AUC scores. Best viewed in color.

TABLE 2
Comparison With Some Top-Performing Deep Trackers on

UAV123 in Terms of Mean OP Given Thresholds
0.50 (OP0:50) and 0.75 (OP0:75)

UAV123 RT-MDNet DeepSTRCF RLS-RTMDNet TADT ECO

SR0:5 0.627 0.612 0.648 0.634 0.640
SR0:75 0.308 0.342 0.326 0.307 0.328
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comparable performance with both of them and even the
best SR0:5 score.

The comparison on VOT2016/2017 is shown in Table 3. As
similar to the analyses in ablation study, our RLS-RTMDNet
always consistently improves upon its baselines (i.e., RT-
MDNet and simpleRT-MDNet) by achieving significant gains
on VOT2016/2017, and our degraded version simpleRT-
MDNet achieves similar or a little worse performance than
RT-MDNet due to the lack of long-term memory. What’s
more, our performance gains are larger than MetaSDNet [5],
which uses sophisticated meta-training techniques to train
theMDNet tracker usingmore datasets than RT-MDNet.

6.3 Experimental Analyses of RLS-DiMP

We evaluate the proposed RLS estimator-aided online RLS-
DiMP tracker thoroughly over the large-scale short-term
TrackingNet-test [30], GOT10k-test [29] and VOT2018/
2019 [64], [65] tracking benchmarks, and long-term LaSOT-
test [31],OxUvA-dev [66] and TLP [67] benchmarks by follow-
ing rigorously the evaluation protocols. As the off-the-shelf
DiMP tracking model is fully trained with the training splits
of the TrackingNet, LaSOT, GOT10k andMS-COCO [28] data-
sets, we believe this evaluation on more challenging and
larger benchmarks can clearly and statistically show the
effectiveness of our online learning approach by unveiling
the power of the state-of-the-art DiMP tracker.

6.3.1 Ablation Study

We start by summarizing the ablation study comparison of
our proposed RLS-DiMP with its corresponding baselines

on the long-term LaSOT-test benchmark in Table 4 and
Fig. 3. LaSOT has much longer video sequences with aver-
age duration of 84 seconds (2500 frames in average) and
each sequence of it comprises at least 1000 frames, which is
dedicated to the long-term tracking principle. It is split into
training and testing subsets, and the testing subset consists
of 280 sequences with 690K frames. It also uses the same
evaluation protocol to OTB-2015. However, due to the fact
that the precision metric is sensitive to the resolution of the
images and the size of the bounding boxes, a metric of nor-
malized precision [30] over the size of the ground-truth
bounding box can be exploited and the trackers can be then
ranked using the AUC for normalized precision between 0
and 0.5.

As claimed in Section 6.1, we add the baselines using the
EMA strategy for saving historical information in addition
to BGD-DiMP and DiMP�. Due to the reason that our mem-
ory retention is applied to improve the vanilla BGD in BGD-
DiMP and BGD-DiMP performs better than the original
DiMP on LaSOT-test, we hence apply the EMA strategy on
the baseline BGD-DiMP to construct new baselines. In spe-
cific, let a denote the EMA coefficient, and then the approxi-
mate optimum value cWappr

n after the vanilla BGD-based
optimization at each update stage of BGD-DiMP can be fur-
ther updated as follows

cWappr
n  � 1� að ÞcWappr

n�1 þ acWappr
n ;

where a 2 ½0; 1� and represents the degree of weighting
decrease. A higher a discounts older parameters faster.

The commonly used slow-moving average strategy as
mentioned in Sec. 6.1 always sets a to be less than 0.05 so that
the online trackingmodel’s parameters or the network repre-
sentation in self-supervised learning evolve smoothly. How-
ever, applying this kind of EMA strategy on BGD-DiMP
makes it prone to lower adaptive capacity while saving his-
torical information, leading to decrease of performance on
LaSOT-test. It is also impractical to do an exhaustive grid
search to obtain the optimum value of a. So we roughly set
three baselines as follows: BGD-DiMPsm for discounting
older parameters in a slow-moving way with a set to 0.01,
BGD-DiMPmm in a moderate-moving way with a set to 0.5,
and BGD-DiMPfm in a fast-moving way with a set to 0.99.
This practice can also be observed in LADCF [49] that the
EMA coefficient is set to 0.95 and 0.13 for hand-crafted and
deep LADCF respectively. It is noteworthy that the baseline
BGD-DiMP can be seen as a special case of applying the
EMA strategy by setting a to 1.0.

TABLE 3
Comparison of Our RLS-RTMDNet With Its Corresponding Baselines and Some Related Competing Trackers on the

VOT2016/2017 Benchmarks; the Results are Reported as EAO, A, RS (S ¼ 100) and Real-Time EAO (rtEAO)

For All TheseMetrics Except rtEAO, the Stochastic Trackers are Run 15 Times on Each Sequence to Reduce the Variance of Their Results. Best Viewed in Color.

TABLE 4
Ablation Study Comparison of RLS-DiMPWith its Corresponding

Baselines on the Long-Term LaSOT-testBenchmark

Trackers
LaSOT-test Running GPUMemory

Prec: Norm: Prec: Succ: Speed Consumption

DiMP 0.567y 0.650y 0.569y 
41 fps 
2211 MiB
DiMP� 0.556 0.636 0.557 
40.6 fps

BGD-DiMP 0.575 0.673 0.574


41 fps 
2211 MiBBGD-DiMPfm 0.574 0.673 0.574
BGD-DiMPmm 0.576 0.675 0.575
BGD-DiMPsm 0.558 0.659 0.561

RLS-DiMP 0.578 0.676 0.577 
40 fps 
2339 MiB

Prec:, Norm: Prec: and Succ: Denote Precision Score at 20 Pixels, Normal-
ized Precision Score and AUC of Success Plot Respectively. The Average Over
20 Runs is Reported for These DiMP-Style Trackers Except That We Report
the Publicly Available 5-Run Results (Indicated by y) for DiMP.
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It is clearly and statistically shown in Table 4 that our
online learning approach can also unveil the power of the
state-of-the-art DiMP tracker without incurring too much
extra computational and memory cost. As LaSOT-test is
dedicated to the long-term tracking principle, increasing the
SD optimizer recursion number from two to five in DiMP�

may aggravate the overfitting issue caused by fast converg-
ing to a local point with respect to the fixed-sized sample
set, and harm the overall performance on LaSOT-test. By
experimentally setting an appropriate small learning rate
for BGD-DiMP, we can reduce overfitting and achieve supe-
rior results compared to the original DiMP tracker. Thanks
to the retention of historical information by exploiting the
EMA strategy, the baseline BGD-DiMPmm with the coeffi-
cient a roughly set to 0.5 can further enhance this superior-
ity. We believe we can use some art to choose an optimum
value of a for this EMA strategy to make a comprise
between adapting quickly and maintaining robustness, and
thus improve BGD-DiMP by a larger margin. However, our
proposed online learning approach has been demonstrated
theoretically to be able to retain the memory in a more ele-
gant way, and thus reduce the risk of overfitting as well as
maintain adaptive capacity. That means our RLS-DiMP can
improve the performance on LaSOT-test without requiring
fine-grained searching for hyper-parameters by hand.

Since some sequences in LaSOT-test are less challenging
for the DiMP-style trackers to achieve good performance,
we selected some difficult ones for an in-depth analysis as
shown in Fig. 3, which also makes the abovementioned phe-
nomena more clearly understood. As each sequence was
evaluated with several runs by each entry in Table 4, we can
define the sequence for which the AUC scores of different
runs by our RLS-DiMP are all above 0.75 as easy sequence
and remove it from our evaluation to achieve the success
plots on the remaining hard sequences of LaSOT-test, lead-
ing to 156 hard sequences in total. From Fig. 3 we can see
that, our RLS-DiMP improves the baseline BGD-DiMP with
an absolute AUC gain of 0:5% on these hard sequences,
which is computed based on 20 runs of the test sequences
due to the stochastic nature of DiMP-style trackers. By com-
paring the performance gains between Table 4 and Fig. 3,

we can also find that introducing memory retention mainly
helps to improve the tracking performance on the more
challenging sequences, which is preferable as we aim to
handle the challenging factors in tracking. It is noteworthy
that only concentrating on saving historical information
without maintaining adaptive capacity also harm the over-
all performance on LaSOT-test.

6.3.2 Comparison With Others

We perform the state-of-the-art comparison on TrackingNet-
test,GOT10k-test, LaSOT-test,OxUvA-dev, TLP andVOT2018/
2019 by comparing our proposed RLS-DiMP to some short-
term trackers, i.e., SiamFC [2], MDNet [23], ECO [48],
DaSiamRPN [7], ATOM [25], GradNet [13], SiamMask [87],
UpdateNet-DaSiamRPN [14], SiamRPN++ [9], SiamFC+
+-GoogLeNet [15], D3S [88], FCOS-MAML [17], Siam-
BAN [56], ROAM++ [21], PrDiMP [16], and long-term track-
ers, i.e., SPLT [89], GlobalTrack [20], Siam R-CNN [90],
LTMU [19]. Most of these competitors are trained addition-
ally relying on the MS-COCO dataset or recently proposed
large-scale tracking datasets. Results for the re-implemented
baselines are also included.

As most researchers have designed tracking methods tai-
lored to the short-term scenario, which is poorly representa-
tive of practitioners’ needs, TLP and OxUvA are recently
proposed aiming to address this disparity. The former com-
piles 50 HD videos from real world scenarios, encompass-
ing a duration of over 400 minutes (676K frames), while the
latter comprises 366 sequences spanning 14 hours of video.
OxUvA is also split into dev and test sets of 200 and 166
tracks respectively, where the trackers can be evaluated
through an online server. What’s more, OxUvA contains an
average of 2.2 absent labels per track and at least one
labelled disappearance in 52% of the tracks, which enables
to evaluate trackers in terms of TPR (fraction of present
objects that are reported present and correctly located) and
TNR (fraction of absent objects that are reported absent). A
problem withOxUvA is that it does not provide dense anno-
tations in consecutive frames, i.e., each video in OxUvA is
annotated every 30 frames, ignoring rich temporal context
between consecutive frames for developing a tracker. So the
aforementioned long-term LaSOT benchmark with high-
quality dense annotations is proposed to bridge this gap,
leading to the largest high-quality dense tracking bench-
mark which also provides a training subset with 2.8 million
boxes for developing a tracker.

Before LaSOT, TrackingNet is the first large-scale tracking
benchmark by simultaneously providing the training subset
for developing a tracker and the test subset for evaluating
different trackers. An online server is also provided for this
evaluation. However, TrackingNet is manually labeled at 1
fps while its all other annotations are automatically gener-
ated using correlation filter-based tracking. The most
recently proposed GOT10k benchmark offers a much wider
coverage of object classes and first introduces the one-shot
protocol to avoid evaluation bias towards seen familiar
object classes, i.e., the training and test classes are zero-over-
lapped, which can be used to evaluate the generalization of
different trackers. This is very different from LaSOT and
TrackingNet. Besides SR, GOT10k also exploits AO to denote

Fig. 3. Success plots for the hard sequences of the LaSOT-test dataset.
We report the average over 20 runs for our RLS-DiMP and the re-imple-
mented baselines, except that the publicly available 5-run results are
used for DiMP. The legends show the AUC scores. Best viewed in color.
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the average of overlaps between all ground-truth and esti-
mated bounding boxes, which is proved to be equivalent to
the AUC metric.

We first show the comparison on these large-scale track-
ing benchmarks in Table 5. Since GOT10k requires the track-
ers to be trained on its training set with no extra training
data used and the DiMP tracking model following this pro-
tocol is not public available, we thus re-trained the DiMP
tracking model for the evaluation on GOT10k. Our imple-
mentation results of RLS-DiMP and its corresponding base-
lines are reported based on 20 runs on each sequence. It
clearly shows that our online learning approach can effec-
tively unveil the power of DiMP and surpass the baseline
BGD-DiMP by achieving better performance on all the long-
term LaSOT-test, OxUvA-dev and TLP datasets. This is desir-
able as our framework is designed for memory retention
and overfitting alleviation. What’s more, the original DiMP
tracker based on the SD optimizer performs worse on all
these long-term datasets, especially with a significant per-
formance decrease for DiMP�. This is consistent with the
analysis in Sec. 6.3.1 that DiMP� may aggravate the overfit-
ting issue and harm the overall performance in long-term
tracking.

However, short-term tracking may prefer overfitting
more than our memory retention, which makes DiMP� per-
form best on TrackingNet-test in our implementations. This
phenomenon can also be attributed to the reason that the
object classes between training and test sets in TrackingNet
are fully overlapped with close distribution, and the DiMP

tracking model trained with TrackingNet-train used may
lead to biased evaluation results towards familiar objects on
TrackingNet-test. This is further validated by the evaluation
on GOT10k-test, which shows that our online learning
approach can make the DiMP tracking model generalize to
the unseen object classes better than the other SD and
vanilla BGD optimization methods in the one-shot tracker
evaluation protocol.

Table 5 also shows that the novel ROAM++ [21] and
UpdateNet-DaSiamRPN [14] trackers with corresponding
LSTM-based and ConvNet model-based meta-learners
exhaustively offline trained achieve substantially inferior
results compared to our RLS-DiMP because of their exploited
modest baselines. Our approach, however, can effectively
unveil the power of the top-performing baseline tracker
DiMP without incurring too much extra computational cost.
In spite of the dominant performance on TrackingNet-test,
GOT10k-test and LaSOT-test, Siam R-CNN [90] still general-
izes not well on OxUvA-dev compared with LTMU [19] due
to themissing of online learning.

We also report the comparison results on VOT2018/2019
short-term challenges in Table 6. Since the VOT2017 dataset
had not saturated by the time the VOT2018’s challenges
were held, the dataset was used unchanged in the VOT2018
short-term challenge. In the VOT2019 short-term challenge,
it had been decided to refresh the public dataset by replac-
ing 12 least difficult sequences with more challenging ones.
As can be seen in Table 6, our RLS-DiMP surpasses all its
corresponding baselines on both VOT2018 and VOT2019 by

TABLE 5
Comparison of Our RLS-DiMP With its Corresponding Baselines and Some State-of-the-Art Competing Trackers

on TrackingNet-test, GOT10k-test, LaSOT-test, OxUvA-dev, TLP; the Results of Our RLS-DiMP
and its Corresponding Baselines are Reported Based on 20 Runs on Each Sequence

Trackers Year TrackingNet-test GOT10k-test LaSOT-test OxUvA-dev TLP
(511; 226K) (420; 56K) (280; 685K) (200; 547K) (50; 676K)

Succ: Prec: AO SR0:5 SR0:75 Succ: Prec: TPR TNR Succ: Prec:

Short-term Trackers
SiamFC 2016 0.571 0.663 0.348 0.353 0.098 0.336 0.339 0.391 0.0 0.237 0.280
MDNet 2016 0.606 0.565 0.299 0.303 0.099 0.397 0.373 0.472 0.0 0.372 0.381
ECO 2017 0.554 0.492 0.316 0.309 0.111 0.324 0.301 - - 0.205 0.211
ATOM 2019 0.703 0.648 0.556 0.634 0.402 0.515 0.505 - - - -
UpdateNet-DaSiamRPN 2019 0.677 0.625 - - - 0.475 - - - - -
SiamRPN++ 2019 0.733 0.694 0.517 0.616 0.325 0.496 0.491 - - - -
SiamFC++-GoogLeNet 2020 0.754 0.705 0.595 0.695 0.479 0.544 0.547 - - - -
D3S 2020 0.728 0.664 0.597 0.676 0.462 - - - - - -
FCOS-MAML 2020 0.757 0.725 - - - 0.523 0.531 - - - -
SiamBAN 2020 - - - - - 0.514 0.521 - - - -
ROAM++ 2020 0.670 0.623 0.465 0.532 0.236 0.447 0.445 - - - -
PrDiMP 2020 0.758 0.704 0.634 0.738 0.543 0.598 0.608 - - - -

Long-term Trackers
SPLT 2019 - - - - - 0.426 0.396 0.498 0.776 0.416 0.403
GlobalTrack 2020 0.704 0.656 - - - 0.521 0.527 0.574 0.633 0.520 0.556
Siam R-CNN 2020 0.812 0.800 0.649 0.728 0.597 0.648 - 0.701 0.745 - -
LTMU 2020 - - - - - 0.572 0.572 0.749 0.754 0.571 0.608

Our Implementations
DiMP 2019 0.740 0.689 0.609 0.709 0.491 0.569y 0.567y 0.727 0.0 0.502 0.513
DiMP� 2019 0.742 0.690 0.608 0.709 0.490 0.557 0.556 0.714 0.0 0.497 0.507
BGD-DiMP Ours 0.741 0.689 0.606 0.713 0.495 0.574 0.575 0.731 0.0 0.508 0.506
RLS-DiMP Ours 0.740 0.688 0.611 0.713 0.492 0.577 0.578 0.735 0.0 0.519 0.518

Prec: and Succ:Denote Precision Score at 20 Pixels and AUC of Success Plot Respectively. (	, 	) Denotes the Number of Video Sequences and Frames for Evalua-
tion in the Corresponding Dataset.
yWe report the publicly available 5-run results for DiMP.
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significantly reducing the number of tracking failures
thanks to the proposed memory retention mechanism.

6.4 Complexity Analyses

In Tables 1 and 4, we also show some detailed comparisons
regarding the efficiency of our proposed approach by
reporting the running speed and GPU memory consump-
tion for both our proposed methods and the re-imple-
mented baselines. It can be seen that our approach enables
us to unveil the power of RT-MDNet and DiMP trackers
without incurring too much extra computational cost.

From Section 3.2 we can find that there are some matrix
multiplication operations in our approach, which leads to the
runtime ofOðp2Þwith respect to the dimension p of the input
x. However, all these operations are executed by the GPU
along with the other neural network operations so that the
final tracking speed is only slightly affected. In order to
achievememory retention, our approach requires the trackers
to maintain the matrix Pn in the whole tracking phase and
also update it with above matrix multiplication operations,
which results in the Oðp2Þmemory requirement on the GPU.
This factor has little impact on theGPUmemory consumption
for our RLS-RTMDNet while affecting RLS-DiMP too much
due to the img2col operation and its subsequent high-dimen-
sional input for online learning (p ¼ 4� 4� 512). We thus
use the half-float precision for maintaining and updating Pn,
which reduces the RLS’s GPU memory usage significantly.
Finally, we can use some code optimization techniques to fur-
ther improve the efficiency, though it is outside the scope of
this work.

7 CONCLUSION

We present a recursive least-squares estimator-aided net-
work online learning approach that allows in-built memory
retention mechanism for improving few-shot online adapta-
tion in tracking. We apply it to two networks in the online
learning families for tracking: the MLPs-based as in RT-
MDNet and the ConvNets-based as in DiMP. The experi-
ments demonstrate its efficiency in reducing the risk of
overfitting through memory retention while maintaining
adaptive capacity. This can be attributed to the reason that
this recursive learning approach enables the optimization to
approximately converge to a global point with respect to all
the historical training samples ever seen including the dis-
carded old data. An interesting direction for future work is

to integrate it into the meta-learning-based offline training
framework to gain further improvements.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] J. Gao, W. Hu, and Y. Lu, “Recursive least-squares estimator-
aided online learning for visual tracking,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2020, pp. 7384–7393.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,”
in Proc. Eur. Conf. Comput. Vis. Workshop, 2016, pp. 850–865.

[3] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. Torr, and A.
Vedaldi, “Learning feed-forward one-shot learners,” in Proc. 30th
Conf. Adv. Neural Info. Process. Syst., 2016, pp. 523–531.

[4] T. Yang and A. B. Chan, “Recurrent filter learning for visual
tracking,” in Proc. IEEE Int. Conf. Comput. Vis. Workshop, 2017,
pp. 2010–2019.

[5] E. Park and A. C. Berg, “Meta-tracker: Fast and robust online
adaptation for visual object trackers,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 587–604.

[6] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual
tracking with siamese region proposal network,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8971–8980.

[7] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-
aware siamese networks for visual object tracking,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 103–119.

[8] T. Yang and A. B. Chan, “Learning dynamic memory net-
works for object tracking,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 153–169.

[9] B. Li, W.Wu, Q.Wang, F. Zhang, J. Xing, and J. Yan, “SiamRPN++:
Evolution of siamese visual tracking with very deep networks,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2019, pp. 4277–4286.

[10] G. Bhat, M. Danelljan, L. V. Gool, and R. Timofte, “Learning dis-
criminative model prediction for tracking,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 6181–6190.

[11] L. Huang, X. Zhao, and K. Huang, “Bridging the gap between
detection and tracking: A unified approach,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019, pp. 3998–4008.

[12] J. Choi, J. Kwon, and K. M. Lee, “Deep meta learning for real-time
target-aware visual tracking,” in Proc. IEEE Int. Conf. Comput. Vis.,
2019, pp. 911–920.

[13] P. Li, B. Chen, W. Ouyang, D. Wang, X. Yang, and H. Lu,
“GradNet: Gradient-guided network for visual object tracking,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 6161–6170.

[14] L. Zhang, A. Gonzalez-Garcia, J. V. D. Weijer, M. Danelljan,
and F. S. Khan, “Learning the model update for siamese trackers,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 4009–4018.

[15] Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu, “SiamFC++: Towards
robust and accurate visual tracking with target estimation guide-
lines,” in Proc. 34th AAAI Conf. Artif. Intell., 2020, pp. 12549–12556.

[16] M. Danelljan, L. V. Gool, and R. Timofte, “Probabilistic regression
for visual tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 7181–7190.

TABLE 6
Comparison of Our RLS-DiMP With its Corresponding Baselines and Some State-of-the-Art Competing Trackers

on VOT2018/2019; the Results are Reported as EAO, A, RS (S ¼ 100) and Real-Time EAO (rtEAO)

For All TheseMetrics Except rtEAO, the Stochastic Trackers are Run 15 Times on Each Sequence to Reduce the Variance of Their Results. Best Viewed in Color.

1894 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 3, MARCH 2024

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 07,2024 at 01:32:44 UTC from IEEE Xplore.  Restrictions apply. 



[17] G. Wang, C. Luo, X. Sun, Z. Xiong, and W. Zeng, “Tracking by
instance detection: A meta-learning approach,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 6287–6296.

[18] I. Jung, K. You, H. Noh, M. Cho, and B. Han, “Real-time object
tracking via meta-learning: Efficient model adaptation and one-
shot channel pruning,” in Proc. 34th AAAI Conf. Artif. Intell., 2020,
pp. 11205–11212.

[19] K. Dai, Y. Zhang, D. Wang, J. Li, H. Lu, and X. Yang, “High-per-
formance long-term tracking with meta-updater,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 6297–6306.

[20] L. Huang, X. Zhao, and K. Huang, “GlobalTrack: A simple and
strong baseline for long-term tracking,” in Proc. 34th AAAI Conf.
Artif. Intell., 2020, pp. 11037–11044.

[21] T. Yang, P. Xu, R. Hu, H. Chai, and A. B. Chan, “ROAM: Recur-
rently optimizing tracking model,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 6717–6726.

[22] T. Yang and A. B. Chan, “Visual tracking via dynamic memory
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 360–374, Jan. 2021.

[23] H. Nam and B. Han, “Learning multi-domain convolutional neu-
ral networks for visual tracking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 4293–4302.

[24] I. Jung, J. Son, M. Baek, and B. Han, “Real-time MDNet,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 89–104.

[25] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ATOM: Accu-
rate tracking by overlap maximization,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 4655–4664.

[26] L. Bertinetto, “Learning (to learn) from few examples,” Ph.D. dis-
sertation, Dept Eng. Sci., Univ. Oxford, Oxford, U.K., 2019.

[27] O. Russakovsky et al., “Image net large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[28] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[29] L. Huang, X. Zhao, and K. Huang, “GOT-10k: A large high-diver-
sity benchmark for generic object tracking in the wild,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5, pp. 1562–1577,
May 2021.

[30] M. MeAller, A. Bibi, S. Giancola, S. Alsubaihi, and B. Ghanem,
“TrackingNet: A large-scale dataset and benchmark for object track-
ing in thewild,” inProc. Eur. Conf. Comput. Vis., 2018, pp. 310–327.

[31] H. Fan et al., “LaSOT: A high-quality benchmark for large-scale
single object tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 5369–5378.

[32] S. S. Haykin, Adaptive Filter Theory, London, U.K.: Pearson, 2014.
[33] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural

networks,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526,
Mar. 2017.

[34] X. He and H. Jaeger, “Overcoming catastrophic interference using
conceptor-aided backpropagation,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.

[35] G. Zeng, Y. Chen, B. Cui, and S. Yu, “Continual learning of con-
text-dependent processing in neural networks,” Nat. Mach. Intell.,
vol. 1, pp. 364–372, Aug. 2019.

[36] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, Con-
tinual lifelong learning with neural networks: A review, CoRR,
2018. [Online]. Available: http://arxiv.org/abs/1802.07569

[37] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learn-
ing for robust visual tracking,” Int. J. Comput. Vis., vol. 77, no. 1–3,
pp. 125–141, May 2008.

[38] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking
with online multiple instance learning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 8, pp. 1619–1632, Aug. 2011.

[39] S. Hare, A. Saffari, and P. H. Torr, “Struck: Structured output
tracking with kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
38, no. 10, pp. 2096–2109, Oct. 2016.

[40] J. Zhang, S. Ma, and S. Sclaroff, “MEEM: Robust tracking via mul-
tiple experts using entropy minimization,” in Proc. Eur. Conf. Com-
put. Vis., 2014, pp. 188–203.

[41] J. Gao, Q. Wang, J. Xing, H. Ling, W. Hu, and S. Maybank,
“Tracking-by-fusion via Gaussian process regression extended to
transfer learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 4, pp. 939–955, Apr. 2020.

[42] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[43] M.Danelljan, G.H€ager, F. S. Khan, andM. Felsberg, “Discriminative
scale space tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 8, pp. 1561–1575, Aug. 2017.

[44] M. Danelljan, G. H€ager, F. S. Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4310–4318.

[45] H. K. Galoogahi, A. Fagg, and S. Lucey, “Learning background-
aware correlation filters for visual tracking,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 1144–1152.

[46] Z. Huang, C. Fu, Y. Li, F. Lin, and P. Lu, “Learning aberrance
repressed correlation filters for real-time UAV tracking,” in Proc.
IEEE Int. Conf. Comput. Vis., 2019, pp. 2891–2900.

[47] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators for
visual tracking,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 472–488.

[48] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ECO: Efficient
convolution operators for tracking,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 6631–6639.

[49] T. Xu, Z.-H. Fen, X.-J. Wu, and J. Kittler, “Learning adaptive dis-
criminative correlation filters via temporal consistency preserving
spatial feature selection for robust visual object tracking,” IEEE
Trans. Image Process., vol. 28, no. 11, pp. 5596–5609, Nov. 2019.

[50] F. Li, C. Tian, W. Zuo, L. Zhang, andM.-H. Yang, “Learning spatial-
temporal regularized correlation filters for visual tracking,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2018, pp. 4904–4913.

[51] T. Xu, Z.-H. Fen, X.-J. Wu, and J. Kittler, “Joint group feature selec-
tion and discriminative filter learning for robust visual object
tracking,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 7949–7959.

[52] Y. Li, C. Fu, F. Ding, Z. Huang, and G. Lu, “AutoTrack: Towards
high-performance visual tracking for UAV with automatic spatio-
temporal regularization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 11920–11929.

[53] T. Yang, B. Li, and M. Q.-H. Meng, “Robust object tracking with
reacquisition ability using online learned detector,” IEEE Trans.
Cybern., vol. 44, no. 11, pp. 2134–2142, Nov. 2014.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

[55] K. He, G. Gkioxari, P. Doll�ar, and R. Girshick, “Mask R-CNN,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2980–2988.

[56] Z. Chen, B. Zhong, G. Li, S. Zhang, and R. Ji, “Siamese box adap-
tive network for visual tracking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 6667–6676.

[57] S. Ruder, An overview of gradient descent optimization algo-
rithms, CoRR, 2016. [Online]. Available: https://arxiv.org/abs/
1609.04747

[58] J. R. Shewchuk, “An introduction to the Conjugate Gradient
method without the agonizing pain,” Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125, Aug. 1994.

[59] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999.

[60] G. Wang, C. Luo, Z. Xiong, and W. Zeng, “SPM-Tracker: Series-
parallel matching for real-time visual object tracking,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3643–3652.

[61] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in Proc. 32nd Int. Conf.
Mach. Learn. Deep Learn. Workshop, 2015.

[62] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. 34th Int. Conf.
Mach. Learn., 2017, pp. 1126–1135.

[63] A. Antoniou, H. Edwards, and A. Storkey, “How to train your
MAML,” inProc. 7th Int. Conf. Learn. Representations, 2019, pp. 21–49.

[64] M.Kristan et al., “The sixth visual object trackingVOT2018 challenge
results,” inProc. Eur. Conf. Comput. Vis.Workshop, 2018, pp. 3–53.

[65] M. Kristan et al., “The seventh visual object tracking VOT2019
challenge results,” in Proc. IEEE Int. Conf. Comput. Vis. Workshop,
2019, pp. 2206–2241.

[66] J. Valmadre et al., “Long-term tracking in the wild: A benchmark,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 692–707.

[67] A. Moudgil and V. Gandhi, “Long-term visual object tracking
benchmark,” in Proc. Asi. Conf. Comput. Vis., 2019, pp. 629–645.

[68] G. V.Moustakides, “Study of the transient phase of the forgetting fac-
tor RLS,” IEEE Trans. Signal Process., vol. 45, no. 10, pp. 2468–2476,
Oct. 1997.

[69] W. H. Hager, “Updating the inverse of a matrix,” SIAMRev., vol. 31,
no. 2, pp. 221–239, Jun. 1989.

GAO ETAL.: RECURSIVE LEAST-SQUARES ESTIMATOR-AIDED ONLINE LEARNING FOR VISUALTRACKING 1895

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 07,2024 at 01:32:44 UTC from IEEE Xplore.  Restrictions apply. 

http://arxiv.org/abs/1802.07569
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747


[70] G. Zhang, C. Wang, B. Xu, and R. Grosse, “Three mechanisms of
weight decay regularization,” in Proc. 7th Int. Conf. Learn. Repre-
sentations, 2019.

[71] K. Saitoh, Deep Learning From the Basics, Birmingham, U.K.: Packt,
2021.

[72] M. MeAller, N. Smith, and B. Ghanem, “A benchmark and simulator
forUAV tracking,” inProc. Eur. Conf. Comput. Vis., 2016, pp. 445–461.

[73] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2544–2550.

[74] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr,
“Staple: Complementary learners for real-time tracking,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1401–1409.

[75] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H.
Torr, “End-to-end representation learning for Correlation Filter
based tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 2805–2813.

[76] Y. Li, C. Fu, F. Ding, Z. Huang, and J. Pan, “Augmented memory
for correlation filters in real-time UAV tracking,” in Proc. IEEE/
RSJ Int. Conf. Intell. Robot Syst., 2020, pp. 1559–1566.

[77] N. Wang, Y. Song, C. Ma, W. Zhou, W. Liu, and H. Li,
“Unsupervised deep tracking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 1308–1317.

[78] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-super-
vised deep learning results,” in Proc. Int. Conf. Neural Info. Process.
Syst., 2017, pp. 1195–1204.

[79] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum con-
trast for unsupervised visual representation learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9729–9738.

[80] J.-B. Grill et al., “Bootstrap your own latent: A new approach to
self-supervised learning,” in Proc. Int. Conf. Neural Info. Process.
Syst., 2020, pp. 9729–9738.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[82] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848,
Sep. 2015.

[83] M. Kristan et al., “The visual object tracking VOT2016 challenge
results,” in Proc. Eur. Conf. Comput. Vis. Workshop, 2016, pp. 777–823.

[84] M. Kristan et al., “The visual object tracking VOT2017 challenge
results,” in Proc. IEEE Int. Conf. Comput. Vis. Workshop, 2017,
pp. 1949–1972.

[85] A. Luke�zi�c, T. Voj�ı�r, L. �C. Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter tracker with channel and spatial
reliability,” Int. J. Comput. Vis., vol. 126, no. 7, pp. 671–688, Jul. 2018.

[86] X. Li, C. Ma, B. Wu, Z. He, and M.-H. Yang, “Target-aware deep
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 1369–1378.

[87] Q.Wang, L. Zhang, L. Bertinetto,W.Hu, andP.H. Torr, “Fast online
object tracking and segmentation: A unifying approach,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2019, pp. 1328–1338.

[88] A. Luke�zi�c, J. Matas, and M. Kristan, “D3S – A discriminative sin-
gle shot segmentation tracker,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 7133–7142.

[89] B. Yan, H. Zhao, D. Wang, H. Lu, and X. Yang, “Skimming-Perusal,
Tracking: A framework for real-time and robust long-term
tracking,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 2385–2393.

[90] P. Voigtlaender, J. Luiten, P. H. Torr, and B. Leibe, “Siam R-CNN:
Visual tracking by re-detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 6578–6588.

Jin Gao received the BS degree from the Bei-
hang University, Beijing, China, in 2010, and the
PhD degree from the University of Chinese Acad-
emy of Sciences (UCAS), in 2015. Now he is an
associate professor with the National Laboratory
of Pattern Recognition (NLPR), Institute of Auto-
mation, Chinese Academy of Sciences (CASIA).
His research interests include object tracking,
autonomous vehicles, and service robots.

Yan Lu received the PhD degree in computer sci-
ence from the Harbin Institute of Technology,
China, in 2004. He joined with Microsoft Research
Asia in 2004, where he is now the partner
research manager with Media Computing Group,
leading the development of core technologies in
the fields of real-time communication, computer
vision, video analytics, audio enhancement, virtu-
alization, and mobile-cloud computing. From 2001
to 2004, he was the team lead of video coding
group with the JDL Lab, Institute of Computing

Technology, China. From 1999 to 2000, he was with the City University of
Hong Kong as a research assistant. His research interests include image
and video coding, computer vision, audio and speech, multimedia sys-
tem, networking, and remote computing. He has publishedmore than 100
+ papers and holdsmore than 30+ granted U.S. patents in the field of mul-
timedia and computer vision.

Xiaojuan Qi received the BEng degree in elec-
tronic science and technology from Shanghai
Jiao Tong University (SJTU), in 2014, and the
PhD degree in computer science and engineering
from the Chinese University of Hong Kong in
2018. She is currently an assistant professor with
the University of Hong Kong.

Yutong Kou received the BS degree from the
School of Computer Science and Technology, Huaz-
hong University of Science and Technology, Wuhan,
China, in 2021. He is currently working toward the
master’s degree with the Institute of Automation,
Chinese Academy of Sciences (CASIA), University
of Chinese Academy of Science (UCAS). His
research interests include both theory and applica-
tions of object tracking.

Bing Li received the PhD degree from the Depart-
ment of Computer Science and Engineering, Bei-
jing Jiaotong University, Beijing, China, in 2009.
From 2009 to 2011, he worked as a postdoctoral
research fellowwith the National Laboratory of Pat-
tern Recognition, Institute of Automation, Chinese
Academy of Sciences (CASIA), Beijing. He is cur-
rently a professor with CASIA. His current research
interests include computer vision, color constancy,
visual saliency detection, multi-instance learning,
and datamining.

Liang Li received the PhD degree from the Fourth
Military Medical University (FMMU), in 2017. Now
he is a visiting scholar at Institute of Automation,
Chinese Academy of Sciences, and supported by
the Brain Research Center, Beijing Institute of
Basic Medical Sciences. His research interests
include biologically inspired computing and com-
puter vision.

1896 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 3, MARCH 2024

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 07,2024 at 01:32:44 UTC from IEEE Xplore.  Restrictions apply. 



Shan Yu received the BS and PhD degrees in
biology from the University of Science and Tech-
nology of China, Hefei, China, in 2000 and 2005,
respectively. From 2005 to 2014, he conducted
postdoctoral research with the Max-Planck Insti-
tute of Brain Research, Germany (2005–2008),
and the National Institute of Mental Health, USA
(2008–2014). In 2014, he was with the Institute
of Automation, Chinese Academy of Sciences
(CASIA), as a recipient of the“One Hundred Tal-
ents” program of CAS. He is a professor with the

Brainnetome Center and National Laboratory of Pattern Recognition
(NLPR), CASIA. Since 2018, he has been the deputy director with the
NLPR. He has authored and coauthored more than 30 peer-reviewed
papers in neuroscience and other interdisciplinary fields with leading
international journals such as the Nature Machine Intelligence, the Jour-
nal of Neuroscience, eLife, etc. His current research interests include
neuronal information processing, brain-inspired computing, and artificial
intelligence.

Weiming Hu (Senior Member, IEEE) received
the PhD degree from the Department of Com-
puter Science and Engineering, Zhejiang Univer-
sity, Zhejiang, China. Since 1998, he has been
with the Institute of Automation, Chinese Acad-
emy of Sciences (CASIA), Beijing, where he is
currently a professor. He has published more
than 200 papers on peer reviewed international
conferences and journals. His current research
interests include visual motion analysis and rec-
ognition of harmful Internet multimedia.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GAO ETAL.: RECURSIVE LEAST-SQUARES ESTIMATOR-AIDED ONLINE LEARNING FOR VISUALTRACKING 1897

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 07,2024 at 01:32:44 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


