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Abstract—A remarkable number of backdoor attack methods
have been proposed in the literature on deep neural networks
(DNNs). However, it hasn’t been sufficiently addressed in the
existing methods of achieving true senseless backdoor attacks
that are visually invisible and label-consistent. In this paper,
we propose a new backdoor attack method where the labels of
the backdoor images are perfectly aligned with their content,
ensuring label consistency. Additionally, the backdoor trigger
is meticulously designed, allowing the attack to evade DNN
model checks and human inspection. Our approach employs
an auto-encoder (AE) to conduct representation learning of
benign images and interferes with salient classification features
to increase the dependence of backdoor image classification on
backdoor triggers. To ensure visual invisibility, we implement
a method inspired by image steganography that embeds trigger
patterns into the image using the DNN and enable sample-specific
backdoor triggers. We conduct comprehensive experiments on
multiple benchmark datasets and network architectures to verify
the effectiveness of our proposed method under the metric of
attack success rate and invisibility. The results also demonstrate
satisfactory performance against a variety of defense methods.

Index Terms—Backdoor Attack, Label Consistency, Re-
parameterized Noise, Image Steganography.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) and one of the mainstream
methods, Deep Learning, has gained broad interests in

various research fields such as natural language processing
[1], image recognition [2], signal processing [3], and industrial
control [4], etc. Meanwhile, researchers have conducted exten-
sive studies on the security issues of deep learning models,
including adversarial attacks [5]–[7], backdoor attacks [8]–
[11], defense mechanisms [12]–[14], and so on.

With the advent of large models, the computational cost of
training large DNN models grows rapidly such that model fine-
tuning using publicly available pre-trained models and datasets
has become a common approach. Nonetheless, public pre-
trained models and datasets are often released by third parties,
such that the users may suffer potential adversaries such as
malicious backdoor embedding. Regarding this concern, there
are research works conducted on two perspectives, the attacker
and the defender. In this work, we focus on the former, i.e. an
“invisible” label-consistent backdoor attack strategy.

After the BadNets [8] backdoor attack method demonstrated
the feasibility and harmfulness of neural network backdoor
attacks, the methods for backdoor attacks ushered in the rapid
development [15]. Such attacks may cause models to exhibit
unexpected behaviors under specific trigger conditions, posing
potential threats to the reliability and security of systems.

Therefore, understanding and mitigating backdoor attacks is
crucial for ensuring the integrity and reliability of machine
learning applications. It is important to clarify that the method
proposed in this paper is not intended for malicious purposes,
but rather aims to strengthen the resilience of machine learning
systems against potential adversarial behaviors and to drive
progress and advancement in related fields. Currently, the
majority of backdoor attack methods focus on improving the
concealment of the backdoor trigger and the success rate of
the attack. These methods rely on activating the backdoor
trigger during inference, thereby gaining complete control over
the model’s behavior. It is a highly effective attack method.
However, it crucially depends on the obvious incorrect labels
present in the injected backdoor samples [16]. In this paper,
we introduce a concept of backdoor attacks, termed “true
senseless backdoor attacks”, aimed at embedding backdoor
triggers into images without requiring significant modification
or disruption of image labels, thereby preserving the visual
appearance and semantic content of the images. This makes the
attacked images difficult to detect and filter, thus enhancing the
effectiveness of the backdoor attacks. Furthermore, in Section
3 of CL [17], Alexander Turner et al. demonstrated that classic
backdoor images are easily detected and filtered out due to
mislabeled tags, impacting the effectiveness of the attack.

In summary, in most previous backdoor attack scenarios,
training sets could be contaminated with backdoor images of
any category. Although these images had highly concealed
backdoor triggers, their labels were modified to the target
label, making it easy for humans to detect them by comparing
image labels with content. Inspired by this insight, we recog-
nize the importance of aligning the labels of backdoor images
with their content to ensure the success rate of backdoor
attacks. This realization forms the cornerstone of our research
motivation. Therefore, the objective of our research is to ensure
both the concealment of backdoor triggers and the consistency
between backdoor image labels and content.

Based on the aforementioned considerations, we propose
a new label-consistent backdoor attack method without label
contamination, which meets the requirements of both visual
invisibility and clean label settings. Under this label-consistent
setting, the model is likely to ignore the embedded backdoor
trigger if the backdoor image is only classified based on
the salient features of its original image. To achieve such a
label-consistent backdoor attack, we employ a classification
feature reduction approach that makes the classification of
backdoor images more dependent on the added backdoor
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triggers. Specifically, we utilize the autoencoder [18] to carry
out representation learning on benign images. Then, we apply
re-parameterized noise sampling to perturb the salient classi-
fication features. Additionally, inspired by information hiding,
specifically DNN-based image steganography [19], [20], we
embed hidden characters into the image as backdoor triggers
and enable the creation of invisible, sample-specific, and label-
consistent poisoned images.

Our contributions are summarized as follows:
• We propose a label-consistent backdoor attack method

based on re-parameterized noise triggers, which can ef-
fectively generate poisoned images with trigger patterns
that possess specificity and invisibility.

• We explore the method of re-parameterized noise sam-
pling supplemented by the restriction of the loss function
to reduce the salient features of image classification, and
utilize information hiding techniques to embed backdoor
triggers, thereby achieving strong dependence of back-
door image classification on backdoor triggers under the
label-consistent setting.

• We conduct comprehensive experiments on various
datasets and network architectures to verify the effec-
tiveness and concealment of our method. Furthermore,
our approach also shows strong resistance against several
defense mechanisms.

II. RELATED WORK

A. Backdoor Attack

Deep neural network backdoor attacks can be implemented
either by injecting poisoned samples into the training set or
by directly modifying neural network models. By implanting
a “backdoor” into a model, it becomes sensitive to inputs
containing specific triggers. This means that when the input
is a sample that contains trigger characteristics, the backdoor
model will behave incorrectly as expected by the attacker.
Backdoor attacks can be classified into label-inconsistent back-
door attacks and label-consistent backdoor attacks, based on
whether the label of the backdoor image is modified.

1) Label-inconsistent Backdoor Attack: Gu et al. [8] first
proposed the concept of deep learning model backdoor attack
in BadNets, which is a pioneering work in the field of DNN
backdoor attack. In this paper, they described the basic steps of
backdoor attacks, which involve adding a trigger to a benign
image to generate a poisoned image, labeling the poisoned
image with a target label specified by the attacker, and finally
training these poisoned images together with the benign ones.
BadNets successfully carried out attacks on datasets such as
MNIST. Blend [9] demonstrated that backdoor triggers can be
set arbitrarily, and put forward the concept of backdoor trigger
stealthiness for the first time. Since then, the stealth attacks
have become a hot topic.

Liao et al. [10] proposed using invisible adversarial per-
turbations as triggers for backdoor attack, and adopted two
methods to generate perturbation backdoor patterns. Nguyen
et al. [11] argued that humans can identify inconsistencies in
images, so they proposed to use tiny distortions as triggers to
make the poisoned image more realistic and natural. Sarkar

et al. [21] successfully implemented an invisible backdoor
attack against face recognition systems using facial attributes
or specific expressions. Recently, Zhang et al. [22] proposed an
attack method called poison ink, which uses image structure
as the target poisoned region and fills it with poison ink to
generate triggers. This attack method allows for the creation
of backdoors that do not require pixel-level modifications and
can be applied to various datasets, including CIFAR-10 and
ImageNet.

In addition to the data-level backdoor attacks mentioned
above, backdoor attacks can also be performed at the model-
level. Liu et al. [23] proposed the Trojan attack, which
assumed that triggers can trigger abnormal behavior in a deep
neural network. They generated a general backdoor trigger
through a reverse neural network and modified the model to
achieve backdoor implantation. PoTrojan attack [24] involves
inserting PoTrojan neurons into each layer of AlexNet [25]
to implement backdoor attacks. Rakin et al. [26] proposed a
backdoor attack to modify weight bits, which flips key weight
bits stored in memory. Chen et al. [27] further reduced the flip
bits required to embed hidden backdoors.

2) Label-consistent Backdoor Attack: As mentioned above,
some invisible backdoor attacks create poisoned images that
are very similar to benign ones but have different labels. There-
fore, by examining the relationship between training samples
and labels, the above backdoor attacks can be detected, and
label-consistent backdoor attacks are derived.

Turner et al. [17] proposed a label-consistent attack, which
uses adversarial perturbation or GAN [28] to modify some
benign images from the target class to mitigate the impact of
“robust features” contained in the poisoned samples, and then
adds triggers to the image to attack. Barni et al. [16] conducted
a simple exploration of clean label attacks and demonstrated
that compared to the backdoor attacks with inconsistent labels,
clean label attacks need to increase the proportion of poisoned
samples to more than 20% to achieve the attack. For a certain
poisoned sample, Saha et al. [29] considered making it as close
as possible to the sample of the target class in pixel space and
as close as possible to the sample with triggers in the feature
space, so that the model could learn trigger features while
avoiding human detection.

B. Backdoor Defense

The backdoor attacks of neural network are gradually diver-
sified, which may pose a threat to society and human life in
related fields. Therefore, the importance of defending against
backdoor attacks is self-evident. Corresponding to the attack
methods, defense methods also can be divided into data-level
defense methods and model-level defense methods.

1) Data-level Defense Methods: Chen et al. [30] proposed
to conduct cluster analysis on the activation values of training
data in the hidden layer of the model, so as to distinguish
clean samples from backdoor samples.

Gao et al. [31] introduced STRIP detection method by
adding perturbations to input data, observing the randomness
of the prediction results, and introducing classification entropy
to quantify the likelihood of a given input with a trigger.
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The SentiNet defense approach proposed by Chou et al.
[32] in 2020 leverages the sensitivity of the DNN models
to adversarial attacks and employs model interpretability and
target detection techniques as detection mechanisms.

2) Model-level Defense Methods: Neural Attention Distil-
lation (NAD) [12] is a technique that combines knowledge
distillation [33] and neural attention transfer. Specifically, the
teacher network is used to guide and fine-tune the backdoor
student network on a small subset of clean data, making
the middle layer attention of the student network completely
consistent with the teacher network, thereby removing the
backdoor from the backdoor student model. Wang et al.
[13] proposed Neural Cleanse method, which uses gradient
descent method to calculate potential triggers for all outputs
of the model, and selects triggers from which the contrast is
significantly smaller than other triggers to determine whether
there are backdoors. The Purifier method [14] proposed a
backdoor defense method based on abnormal activation inhibi-
tion, which gives the visual difference between the pre-training
model in backdoor samples and benign samples from the
feature representation of the model’s middle layer, intuitively
revealing the essential problem of abnormal patterns in the
middle layer representation of backdoor samples. Furthermore,
the weight corresponding to fine-grained units can be updated
by dynamic optimization to inhibit the abnormal activation of
neurons, so as to resist various unknown types of backdoor
attacks.

III. PRELIMINARIES

Before introducing the methodology of our work, we first
introduce some preliminaries of backdoor attacks.

A. Attack Models

1) Label-inconsistent Backdoor Attack: Suppose there have
a training dataset consisting of N benign images with k
classes,

Dtrain = {(xi, yi) : i = 1, . . . , N} , (1)

where xi represents a single image and yi indicates its
corresponding label. The attacker randomly selects a portion
of samples from Dtrain to form

Dpart
train = {(xi, yi) : i = 1, . . . , n} , (2)

where yi ∈ {0, ..., k − 1}.
Next, the attacker constructs poisoned images and get

Dp =
{
(G(xi, p), t) : xi ∈ Dpart

train

}
, (3)

where p is the backdoor trigger associated with xi. G (xi, p)
is a backdoor injection mechanism that is proposed to add the
backdoor trigger to xi, and t is the corresponding target label.
Then, the attacker constructs the poisoned dataset D̃train mixed
with these poisoned samples.

2) Label-consistent Backdoor Attack: Backdoor attacks
with consistent labels differ from the above attacks only in
one respect. In the label-inconsistent backdoor attack scenario,
backdoor images of any category can be mixed into the
training set, and their labels are modified to the target label. As
a result, during the inference stage, any image embedded with
backdoor trigger is likely to be classified as the target label.
However, in the label-consistent backdoor attack scenario, only
backdoor images with one category are mixed into the training
set. The true class of these images is treated as the target label,
so there is no need to modify their labels, which aligns with
the label-consistent setting. Nevertheless, during the inference
stage, any image embedded with backdoor trigger can still be
classified as the target label selected during training.

Therefore, we extract a part of samples from the target class
t to form Dpart

train, and the remaining samples in Dtrain also form
Dbenign. The definitions are as follows:

Dpart
train = {(xi, t) : i = 1, . . . , n} , (4)

Dbenign = Dtrain −Dpart
train. (5)

Then, a poisoned image set Dp is constructed, which can
be represented as

Dp =
{
(Gstega(xi), t) : xi ∈ Dpart

train

}
, (6)

where Gstega is a pre-trained model using the idea of infor-
mation hiding , so that different triggering styles can be added
to different xi. Finally, we obtain the poisoned training set

D̃train = Dbenign ∪ Dp. (7)

The pre-trained classification model parameter is θ and the
ultimate goal is to enable the retrained model to be affected
by our method. Therefore, the optimization objective of this
paper is as follows:

θ∗ = argmin
θ

L(fθ(x), y), where (x, y) ∈ D̃train (8)

where L is a loss function (e.g. cross entropy). Besides, the
poisoned ratio is defined as:

p =
|Dp|∣∣∣D̃train

∣∣∣ = n

N
. (9)

B. Threat model

1) Attacker’s capabilities: We assume that attackers can
modify a small amount of training data, but do not have any
other information about the target model, such as the loss
function or model structure. The user conducts fine-tuning
training using a pre-trained model and a poisoned dataset.
During the inference stage, an attacker can query the target
model with any input but cannot manipulate the inference
process. These assumptions are the minimum requirements for
backdoor attacks.
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Fig. 1: The overall pipeline of our method.

2) Attacker’s goal: The primary goal of the backdoor
attacks is to achieve a high success rate by implanting a
backdoor without affecting the normal training task. Another
important indicator of backdoor attacks is stealthiness, which
is not only the visual concealment of the backdoor trigger,
but also the consistency between the backdoor image content
and label. If a user detects backdoor images during the
training stage using various defense mechanisms, the backdoor
image will be discarded, resulting in the failure of the attack.
Therefore, our objective is to develop a resilient backdoor
attack method that is invisible to detection.

IV. METHODOLOGY

Fig. 1 illustrates the pipeline of our method. The backdoor
attack implementation consists of three stages. First, we gen-
erate poisoned images and create a poisoned training dataset.
Next, we retrain the pre-trained classification model using the
poisoned dataset to complete the mapping of the backdoor
trigger and the target label. The final step takes place during
the inference stage, where the compromised model is classified
correctly on the clean image, while its prediction changes to
the target label on the backdoor sample with the backdoor
trigger added. Our attack is executed in the first stage, where
the poisoned images are generated.

A. Generate Poisoned Images

1) Feature Reduction through Re-parameterization: To im-
plement a backdoor attack with label-consistent settings, we

drew inspiration from [17]. Our approach involves image
reconstruction and probability-based sampling to make the
classification of reconstructed backdoor images more reliant
on the added backdoor trigger by interfering with the image’s
salient features. We aim for the feature vectors inputted into
the decoder to not only reflect the original image’s charac-
teristics but also conform to the probability distribution. By
transforming some salient features from the form of “one-
hot” into a smoother distribution, we can achieve feature
reduction. As shown in “Generate Poisoned Images” in Fig. 1,
for the autoencoder network, let the input image be denoted
as X , the encoder function as E(), the corresponding feature
representation as Z, the decoder function as D(), and the
reconstructed image as X ′. Furthermore, we have Z = E(X),
where E() comprises n downsampling layers and m residual
blocks. Similarly, X ′ = D(Z), where D() consists of n
upsampling layers and m residual blocks. It is worth noting
that in our experiments, the encoder and decoder structures, as
well as parameter configurations, vary for different datasets.
In the process of re-parameterized sampling, we adopt the
Gumbel-Softmax sampling, which uses Gumbel distribution
to achieve polynomial distribution sampling. The probability
density function (PDF) of the Gumbel distribution is:

f(x;µ, β) = e−z−e−z

, where z =
x− µ

β
(10)

Where µ is the positional coefficient (the mode of the Gumbel
distribution is µ) and β is the scale coefficient (the variance
of the Gumbel distribution is π2

6 · β2).
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To implement re-parameterization trick using the Gumbel
distribution, we follow these steps. For the classification con-
fidence vector P outputted by the classification network, we
first generate a random vector U of the same dimensionality
as P , where each element ui is uniformly distributed in the
interval [0, 1). Next, we calculate the Gumbel distribution
random number, also known as Gumbel noise, by applying
the formula Gi = −log(−log(ui + eps)). Then, we add the
Gumbel noise to the corresponding dimensions of P , resulting
in a new vector P ′ = [p1+G1, p2+G2, ..., pn+Gn]. Finally,
we further approximate P ′ by applying the Softmax function,
and we adjust the temperature parameter τ to control the
smoothness level, yielding the final result. The formula is as
follows:

fτ (P
′) =

 e
p′i
τ∑

k e
p′
k
τ


i

(11)

Where pi is the value of the i-th position of the P vector and τ
is the parameter greater than 0. The larger the τ , the smoother
the resulting distribution.

In this process, we introduce a variety of loss functions to
constrain the reconstructed image, including Lrect, Lssim, and
Lact.

For Lrect, we calculate the mean square error loss by taking
the square of the pixel difference between the reconstructed
image and the input image at the element level, and then
averaging it over the entire image. The formula is as follows:

Lrect =
1

mn

m−1∑
i=0

n−1∑
j=0

∥I(i, j)−K(i, j)∥2 (12)

Where I(i, j) and K(i, j) represent the true and reconstructed
values of the (i, j)-th pixel point, respectively.

In addition, according to neuroscience research, humans
tend to place more emphasis on the structural similarity when
evaluating the difference between two images. Therefore, we
introduce Lssim as a loss function, and the formula is as
follows:

Lssim =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

where µx and µy represent the mean value of the original
image and the reconstructed image respectively, σx and σy

represent the standard deviations of the two images respec-
tively, σxy is the covariance of the two images, and C1 and
C2 are constants used for stable calculations.

To achieve our goal of reducing salient features and main-
taining normal image classification, we implement an ac-
tivation loss function, denoted as Lact. Firstly, we utilize
log(1+pj) to decrease the confidence corresponding to class j
in the reconstructed image, aiming to guide the autoencoder to
ignore salient features of the image during training. Secondly,
by employing the term −λ·min (0, pj −max(pi))i ̸=j , we con-
strain the confidence of class j to remain the highest, ensuring
that the reconstructed image can be correctly classified into the
corresponding class. Through this design of activation loss,
we further ensure the consistency of labels in the backdoor
images.

Lact = log(1 + pj)− λ ·min (0, pj −max(pi))i ̸=j , (14)

where pj is the classification confidence based on the real class
of the image, and pi is the classification confidence of other
classes.

In summary, the total loss function is defined as Lall =
αLrect + βLssim + γLact. Additionally, we acknowledge the
importance of hyperparameter selection and thus conduct a
comprehensive search experiment. Specifically, we explore the
effects of different parameter choices on model performance
through grid search. We identify an optimal set of hyperpa-
rameters, with values α = 1.0, β = 0.5 and γ = 0.5.

2) Add backdoor trigger through DNN image steganog-
raphy: After performing the re-parameterization operation
on clean images, the next step is to incorporate backdoor
triggers. Previously, many backdoor attacks involved directly
overlaying the trigger pattern onto the image, creating a
backdoor image with high detectability but poor conceal-
ment. To enhance the concealment of the backdoor image,
researchers have introduced adversarial perturbations or used
image structures as the poisoning area and filled them with
other information [22] to generate the backdoor trigger.

Our paper attempts to draw inspiration for adding triggers
from research on information hiding. Specifically, steganogra-
phy is an important technique in the field of information hiding
for covert transmission or protection of information, with LSB
steganography [34] being the most common method. This
technique places secret information by modifying the least
significant bit of an image, as shown in Fig. 2. However, LSB
steganography suffers from poor security and robustness, as
it is easily affected by common image processing operations,
resulting in inaccurate extraction of embedded information and
susceptibility to detection or tampering.

In this regard, our paper adopts a DNN-based image
steganography method [20] to implement backdoor trigger
embedding. As illustrated in Fig. 3, a pre-trained encoder-
decoder network is employed for image encoding and decod-
ing operations. The simultaneous training of the encoder and
decoder is achieved by minimizing the perceptual difference
between the input image and the encoded image, as well as
the cross-entropy loss between the original message and the
decoded message. Importantly, this method introduces sets of
noise layers between the encoder and decoder, composed of
various perturbations, enhancing the robustness of embedded
messages. Consequently, the backdoor images maintain sta-
bility and extractability even under common image processing
operations such as rotation and cropping.

Specifically, the encoder and decoder train simultaneously
on a clean training set using a U-Net [35] style architecture.
The encoder is responsible for hiding the character information
into the image, generating an encoded image. Ideally, there
should be no perceptible difference between the encoded
image and the original image. On the other hand, the decoder’s
role is to recover the hidden information from the encoded im-
age. The right section of “Generate Poisoned Images” in Fig. 1
illustrates how the encoder re-encodes the re-parameterized
image and the hidden message to generate a backdoor image
containing the customized text trigger. This trigger is designed
to be hidden within the image and goes unnoticed by most
detection algorithms. After this step, we have completed the
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Fig. 2: The process of LSB steganography.

Fig. 3: Schematic Representation of the DNN-based Image
Steganography Method.

construction of the backdoor image.
Exactly, by choosing a DNN-based steganography method,

we can enhance the concealment and robustness of the back-
door image, avoiding the insecurity and robustness issues
associated with LSB steganography. This method provides
a more reliable solution for embedding backdoor triggers,
allowing better protection of the trigger and achieving covert
transmission.

B. Attack Procedure

As illustrated in the “Training Stage” depicted in Fig. 1,
the attacker can generate backdoor images using the afore-
mentioned steps and send them to a third-party data owner.
The client then retrains the baseline model using the training
dataset mixed with the poisoned images to obtain the malicious
backdoor model.

In the “Inference Stage”, we construct two separate test sets
using the original test dataset. One test set is used to measure
the accuracy of clean data, which refers to the classification
accuracy of data that has not been compromised by backdoors.
Another test set measures the attack success rate of backdoor
attacks, which represents the accuracy of data injected with
backdoors when classified by the malicious model. By evalu-
ating these two test sets, we can comprehensively assess the
performance of backdoor attacks and the degree of harm to
the baseline model.

V. EXPERIMENTS

A. Experimental settings

1) Datasets: In this paper, we conduct our attack on the
MNIST [36], CIFAR10 [37] and GTSRB [38] datasets. The
MNIST dataset involves a 10-class classification task with
a total of 60,000 training images and 10,000 test images
for recognizing hand-written digits. The CIFAR-10 dataset

includes 10 categories and consists of 60,000 32x32 color
images, including 50,000 training images and 10,000 test
images for object recognition. The GTSRB dataset consists
of 43 classes of traffic signs, with 39,209 training images
and 12,360 testing images. These images exhibit variations
in lighting conditions and diverse backgrounds. Additionally,
the images in this dataset have different sizes. To ensure
consistency, we resized them to a uniform size of 32x32 pixels.

2) Models: To create re-parameterized images, we use
a classic encoder-decoder network that is commonly used
in image reconstruction tasks. For the addition of backdoor
triggers, we choose a U-Net style DNN as the encoder and
use a spatial converter network as the decoder.

In terms of image classification models, we select six
popular network structures: ResNet18 [39], ResNet34 [39],
ResNet50 [39], DenseNet 121 [40], MobileNetV2 [41], and
GoogleNet [42]. In our experimental evaluation, we use
ResNet18 as the default network and use other network
structures to demonstrate the generalization capability of our
method.

3) Evaluation Metrics: The effectiveness evaluation com-
prises two metrics: clean data accuracy (CDA) and attack
success rate (ASR). Specifically, CDA refers to the probability
that clean samples are correctly predicted as their ground-truth
class. ASR, on the other hand, refers to the probability that
poisoned samples are successfully predicted as the attacker’s
specified class. For a successful backdoor model, ASR should
be maintained at a high level, while CDA should be close to
the accuracy of a clean model.

The stealthiness evaluation includes two metrics as well:
PSNR [43] and SSIM [44], where PSNR represents local
similarity and SSIM represents global similarity. The larger
the PSNR is and the closer the SSIM is to 1, the better the
invisibility of backdoor attacks is.

4) Default Settings for Training: The default poison rate
is set to 10%. All victim classifiers use the SGD optimizer
with a momentum of 0.9. The initial learning rate is 1e−5 for
the MNIST dataset and 0.01 for the CIFAR10 and GTSRB
dataset. The learning rate is carried out by cosine annealing
with Tmax = 100. We use these default settings in comparison
to other methods.

Additionally, we utilize a grid search approach to optimize
the hyperparameters α, β, and γ in Lall = αLrect + βLssim +
γLact, setting them to 1.0, 0.5, and 0.5, respectively. For the
temperature coefficient τ in the gumbel-softmax step and the
λ parameter in the activation loss, we employ a random search
strategy, determining their values to be 2 and 0.5, respectively.
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TABLE I: Experimental results for Attack Effectiveness on MNIST dataset

Metrics Label-inconsistent Attacks Label-consistent Attacks

No attack BadNets [8] Blend [9] Poison ink [22] SIG [16] CL [17] Ours

CDA 99.81 99.49 99.51 98.98 99.51 99.60 98.03
ASR 100.0 100.0 99.75 87.97 86.53 96.40

TABLE II: Experimental results for Attack Effectiveness on CIFAR10 dataset

Metrics Label-inconsistent Attacks Label-consistent Attacks

No attack BadNets [8] Blend [9] Poison ink [22] SIG [16] CL [17] Ours

CDA 87.6 76.27 78.49 84.29 76.99 80.81 86.62
ASR 99.98 99.62 99.97 78.60 65.88 96.50

TABLE III: Experimental results for Attack Effectiveness on GTSRB dataset

Metrics Label-inconsistent Attacks Label-consistent Attacks

No attack BadNets [8] Blend [9] Poison ink [22] SIG [16] CL [17] Ours

CDA 95.32 93.89 94.83 92.64 94.98 91.88 94.62
ASR 93.20 97.10 98.92 99.30 78.74 94.40

B. Attack Effectiveness

Firstly, we select five classic backdoor attacks for compari-
son and divide them based on label consistency. We present the
experimental results in terms of attack effectiveness in Table I,
Table II and Table III. Note that in the following tables, we
have bolded and darkened the optimal values for the label-
consistent scenario, and underlined the optimal values for the
label-inconsistent attacks.

Specifically, our method significantly outperforms the SIG
and CL methods in terms of attack success rate on the
MNIST and CIFAR10 datasets, achieving the best attack
performance in label-consistent backdoor attacks. Compared
to the label-inconsistent backdoor attack, our method also
achieves comparable attack results. Barni et al. [16] proved
through experiments that compared with label inconsistent
backdoor attacks, label consistent backdoor attacks need to
destroy more samples in order to be successfully executed,
which deeply illustrates the immense difficulty of backdoor
attacks under clean label Settings. In the face of this challenge,
our research methodology has made significant breakthroughs.
In addition, clean data accuracy has been maintained at a
very high level, which fully demonstrates the stability and
reliability of the proposed method. On the GTSRB dataset,
our method is slightly inferior to the SIG method. We believe
that this may be due to the higher complexity of images and
the larger number of categories of the GTSRB dataset, on
which subtle differences in attack strategies may also cause
significant variations in performance. Therefore, although our
method performs well on MNIST and CIFAR10, the specific
characteristics of the GTSRB dataset may be more suitable
for the attack strategy of the SIG method. In summary, we
consider that despite the differences in certain scenarios, our
approach still possesses a clear competitive edge overall. Ta-
ble I, II and III provide strong evidence of the effectiveness of
our method, and further emphasizes the significant challenges
posed by backdoor attacks under clean label conditions.

In addition to the discussion on the effectiveness of the
attacks mentioned above, we further investigate the impact of
the total number of training rounds on the effectiveness of
the backdoor attacks. The experimental results, as shown in
Fig. 4, indicate that similar to other classical backdoor attack
methods, the backdoor attack proposed in this paper reaches
its peak success rate after a few rounds of training and then
remains relatively stable. Through this experiment, we gain a
more comprehensive understanding of the dynamic evolution
of backdoor attacks and further confirm the effectiveness of
our approach.

C. Attack Stealthiness

Fig. 5 provides visual representations of backdoor images
generated by different attack methods. Through intuitive anal-
ysis, we can draw several results. Firstly, the backdoor images
generated by BadNets, Blend, SIG, and CL exhibit poor
stealthiness, indicating that they are relatively easy to detect
and identify. In contrast, Poison ink method demonstrates the
best concealment, making it extremely difficult to perceive.
Our method ranks second in terms of stealthiness, although
there is a certain gap compared to Poison ink, it still exhibits
a commendable effect.

In addition to intuitive visual observation, we also provide
objective measurements of concealment. The specific results
are shown in Table IV. On the MNIST dataset, our method
achieves optimal results on both SSIM and PSNR. This
indicates that the generated backdoor images have the highest
level of structural similarity and image quality compared to the
original images. On the CIFAR10 and GTSRB dataset, our
method’s performance is slightly inferior. We speculate that
this may be due to a certain degree of deviation in the color
space caused by the re-parameterization sampling process
employed in our method. In our study, the primary purpose of
the image reconstruction network is to achieve label-consistent
backdoor attacks rather than perfect reconstruction of the
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(a) MNIST dataset (b) GTSRB dataset

Fig. 4: Impact of Total Training Epochs on Backdoor Attack Effectiveness

(a) Original (b) BadNets (c) Blend (d) Poison ink (e) SIG (f) CL (g) Ours

Fig. 5: Visual comparision of backdoor images generated by different attacks

original images. Therefore, we opt for a relatively simple
autoencoder network for rapid validation and subsequent ex-
tension. This results in a certain degree of reconstruction
deviation, particularly in color-rich and relatively complex
datasets such as CIFAR10 and GTSRB.

We need to be aware that while Table IV provide some
objective measurement criteria, the intuitive visual effects are
more able to simulate real-world scenarios. Referring to the
intuitive results in Fig. 5, we can see that the backdoor images

generated by our method have high acceptability. Due to
the sample-specific characteristics of the embedded backdoor
trigger, it is difficult for humans to judge the image generated
by our method as a backdoor image without comparing it to
the original image. Additionally, in actual manual inspection
process, it is rare to have the original images for comparison
and verification. Therefore, the backdoor images generated by
our method also excel in terms of stealthiness. Taking into ac-
count both the tabular data and the intuitive visual effects, our
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TABLE IV: Objective Measurements of Concealment on MNIST, CIFAR10, and GTSRB datasets using SSIM and PSNR
metrics: A Comparison with BadNets, Poison ink, SIG, and Other Attack Methods

Dataset → MNIST CIFAR10 GTSRB

Metrics → SSIM PSNR SSIM PSNR SSIM PSNR

BadNets [8] 0.9991 22.92 0.9999 26.32 0.9999 24.85
Blend [9] 0.8983 19.01 0.9830 22.30 0.9787 20.71
Poison ink [22] 0.9957 24.73 0.9996 29.51 0.9995 28.14
SIG [16] 0.1422 11.44 0.9907 19.59 0.1849 7.579
CL [17] 0.9949 22.26 0.9996 25.73 0.9634 19.36
Ours 0.9992 25.52 0.9875 21.41 0.9748 19.53

TABLE V: Generalization for Different Models on MNIST, CIFAR10, and GTSRB datasets

Dataset ↓ Metrics ↓ Resnet18 Resnet50 Densenet121 Googlenet Resnet34 MobileNet

MNIST CDA 98.03 97.53 99.12 99.26 99.18 99.01
ASR 96.40 95.20 98.70 99.70 95.90 98.70

CIFAR10 CDA 86.62 83.36 83.65 83.87 84.38 81.75
ASR 96.50 96.50 97.40 97.60 96.30 93.80

GTSRB CDA 94.62 94.36 96.70 93.81 95.65 95.06
ASR 94.40 95.70 93.40 93.50 98.60 95.30

method demonstrates satisfactory stealthiness in most cases
and can fully meet the requirements in practical applications.
In other words, our method achieves a good balance between
stealthiness and practicality. In future research, we plan to
explore the use of deeper and more complex reconstruction
network structures, such as Variational Autoencoder (VAE)
or Generative Adversarial Networks (GANs), to improve the
quality and realism of reconstructed images.

D. Generalization on Different Models

To demonstrate the generalization of our method on differ-
ent models, we conduct experiments using five other popular
networks. The specific results are shown in Table V.

From the tabular data, it is evident that our attack method
maintains high ASR on different models. This means that
our method achieves the desired attack effect on both the
original target model and other commonly used network
structures. Such results are highly encouraging and further
demonstrate the adaptability and stability of our method in
various scenarios. Furthermore, it is worth noting that the
backdoor introduced by our method does not significantly
impact the original performance. This point is crucial for
practical applications, as we need to ensure that the target is
attacked without negatively affecting the overall performance
of the entire system.

E. Ablation Experiment

1) The effectiveness and importance of re-parameterizing
operations: In the preliminary experiments, to validate the
effectiveness of the re-parameterization operation, we compare
the classification confidences of images before and after using
re-parameterized noise sampling. The experimental results, as
shown in the Fig. 6, illustrate the classification confidences
obtained from the classification network for original image
inputs on the left side, and the classification confidences
after re-parameterized noise sampling on the right side. It

TABLE VI: Comparison of CDA/ASR with Gaussian and
Gumbel-Softmax Noise Mechanisms

MNIST CIFAR10 GTSRB

Gaussian 99.07 / 93.20 85.16 / 91.00 94.45 / 90.50
Gumbel-Softmax 99.04 / 100.0 86.62 / 96.50 94.62 / 94.40

can be observed from the figure that after performing the re-
parameterization operation, the classification confidences for
classes other than the original class of reconstructed images
increase, and the distribution of classification confidences
becomes noticeably smoother. This observation confirms the
effectiveness of the re-parameterization operation, as it suc-
cessfully interferes with the salient features of the images.
Additionally, besides the Gumbel-Softmax method, we also
attempt the mechanism of Gaussian noise. The experimental
results are shown in Table VI, where the values before and
after the slash (/) correspond to CDA and ASR. It is evident
from the table that the success rate of attacks using Gaussian
noise is inferior to that of our proposed method.

Fig. 6: The effectiveness of re-parameterized noise sampling
on CIFAR10 Dataset

Finally, aiming to demonstrate the importance of re-
parameterized noise sampling in our method, we conduct
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TABLE VII: The importance of re-parameterized noise sam-
pling on CIFAR10 dataset

with re-parameterization without re-parameterization

CDA 86.62 84.84
ASR 96.50 85.20

ablation experiments on CIFAR10 dataset, and the experimen-
tal results are presented in Table VII. As can be seen from
the table, removing the re-parameterization operation greatly
reduces the attack success rate. This indicates the crucial role
of reparameterization in maintaining a high attack success
rate. Without the reparameterization operation, the malicious
model trained by the user fails to complete the mapping of
the specific input trigger to the target label. Therefore, the
reparameterization operation is necessary and effective in our
method, providing a solid foundation for the success of the
attack.

2) The influence of loss function on stealthiness: In the
process of re-parameterized image reconstruction, we utilize
three loss functions: Lrect, Lssim, and Lact. Here, we conduct
experimental analysis to investigate the impact of these loss
functions on image concealment. The corresponding results
are shown in Table VIII. From the table, it can be observed
that using any individual loss function alone fails to reach
the expected quality level in the reconstructed images. Using
the Lrect loss function alone can reduce reconstruction errors,
but the image quality remains unsatisfactory. Incorporating the
Lssim loss function after Lrect slightly improves the quality of
the reconstructed images but still falls short of the optimal
outcome.

In summary, these three loss functions play different roles
in the image reconstruction process, and their combination is
crucial to obtain the best reconstruction results. The Lrect loss
function primarily focuses on reducing reconstruction errors
and minimizing the differences between the reconstructed and
original images. The Lssim loss function emphasizes the struc-
tural similarity of the images, encouraging the reconstructed
images to closely resemble the original ones in terms of
structure. On the other hand, the Lact loss function primarily
considers the activation state of the target model, helping
improve the performance of the reconstructed images on the
target model. By simultaneously using the Lrect, Lssim, and Lact
loss functions, we can obtain the highest-quality reconstructed
images that are optimized in terms of reconstruction errors,
structural similarity, and target model activation state.

3) The influence of poison ratio on results: The default poi-
son ratio in this article is 10%. However, to comprehensively
evaluate the effectiveness of backdoor attacks, we further
explores other poisoning ratios on MNIST and CIFAR10
datasets. The experimental results are shown in Fig. 7.

Previous experiments demonstrate that common backdoor
attacks only require 1-4% of poisoned samples to be effective,
while label-consistent backdoor attacks may require 10-30%
poisoning. By observing Fig. 7, we can see that the ASR
does decrease to a certain extent when the poisoning ratio
is below 10%. However, it is encouraging to note that even

with only 1% of injected backdoor samples, our method still
achieves 85% ASR. This result is significant as it highlights
the vulnerability of the target model to our backdoor attack
method, even at extremely low levels of backdoor injection.
It reminds us of the importance of prioritizing the security of
the target model even in scenarios where backdoor injection
is minimal.

F. Resistance to Defense Techniques

In order to defend against backdoor attacks, researchers
have proposed many defense methods, including data-level
defenses and model-level defenses. Here, we select a classical
method from the two types of defense for experimental testing.

1) SentiNet Detection: As a data-level defense method,
SentiNet detection is a highly regarded technique. It utilizes
model interpretability and target detection techniques as de-
tection mechanisms. By applying the Grad-Cam technique,
it visualizes the attention map of the target image to locate
the backdoor triggers. We conduct experiments on multiple
attack methods, and the experimental results are presented
in Fig. 8. Particularly, the performance in localizing trigger
regions generated by BadNets is outstanding. Furthermore,
for Blend, Poison ink, and SIG attack methods, the localized
regions differ significantly from the original image. In contrast,
the target localization of our method is basically consistent
with that of the original image, indicating that our approach
has a significantly lesser impact on classification performance
than other methods. This also confirms the ineffectiveness of
the Sentinet defense method in countering our attack.

2) Neural Cleanse: Potential triggers refer to samples in
the input that possess specific patterns or attributes, triggering
backdoor behavior when these samples are input into the
model. Neural Cleanse utilizes gradient descent approach to
search for possible triggers and returns an anomaly score
for each classifier. If the anomaly score is greater than 2,
the classifier is considered to be poisoned. The experimental
results, as shown in Fig. 9, demonstrate that our poisoned
model can bypass the detection of Neural Cleanse.

VI. CONCLUSION

In this paper, we found that most existing backdoor attacks
excessively focus on the visual concealment of backdoor trig-
gers while neglecting the issue of matching between sample
label and image content. Although many backdoor images
can deceive the human visual system completely, their labels
are inconsistent with the image content, making them prone
to detection during image-label matching checks. To address
this problem, we propose a truly invisible backdoor attack
method that satisfies the requirements of both label-consistent
settings and visual invisibility. Using the technique of re-
parameterizing noise, we perturb the salient features of benign
samples to generate re-parameterized images, making subse-
quent classification more dependent on the added backdoor
triggers. When adding backdoor triggers, we draw inspiration
from the concept of image steganography based on DNN.
We encode a specific string onto the re-parameterized im-
age to generate a sample-specific backdoor image. Extensive
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TABLE VIII: Impact of different loss functions on image concealment

Lrect Lssim Lact Lrect & Lssim Lrect & Lact Lssim & Lact All

SSIM 0.9854 0.9740 0.6651 0.9789 0.5119 0.9416 0.9981
PSNR 14.85 13.92 6.421 17.78 4.778 11.86 22.36

(a) MNIST dataset (b) CIFAR10 dataset

Fig. 7: Trade-off between CDA and ASR under different poison ratios.

(a) Original (b) BadNets (c) Blend (d) Poison ink (e) SIG (f) Ours

Fig. 8: Using SentiNet to locate critical regions on different attacks

experiments show the superiority of our approach in terms
of attack success rate, stealth and generalization. Moreover,
the method in this article is resistant to multiple defense

techniques, demonstrating strong robustness. In future work,
we plan to explore new backdoor attack methods within the
framework of distributed learning, such as federated learning.
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Fig. 9: The Defense Results using Neural Cleanse.
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