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Abstract. Signature verification is a biometric and document forensics
technology useful for personal identification in various security applica-
tions. Signature verification in the writer-independent scenario remains a
challenge, particularly in distinguishing between genuine signatures and
skilled forgeries. In this paper, we propose a writer-independent signature
verification method based on deep metric learning with cross-writer at-
tention. Our cross-writer attention module includes two parts: SimAM (a
Simple, Parameter-Free Attention Module), as well as the cross-attention
mechanism. SimAM is combined with each DenseBlock to interact infor-
mation of two inputs, which makes the learned weights better account
for the difference between two input signatures. Cross-attention aligns
global and local information in learned feature representations of two
input signatures. Further, we introduce a focal contrast loss function for
deep metric learning to overcome the sample imbalance. Extensive ex-
periments demonstrate the effectiveness of the proposed method, which
achieves superior performance on several public datasets and also indi-
cates the effectiveness of each module.

Keywords: Signature Verification · SimAM · Cross-Attention · Deep
Metric Learning.

1 Introduction

Signature verification is an essential component of biometric authentication sys-
tems. It plays a crucial role in securing sensitive transactions and critical infor-
mation access. Signatures, which have long served as a unique and personalized
means of identity verification in legal, financial, and administrative domains, are
now facing increased demand for accurate and reliable verification methods due
to the advent of digital technologies. The main objective of signature verification
is to verify the authenticity of a given signature by comparing it with a reference
signature. The technology is dichotomized into online versus offline verification
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depending on whether the stroke trajectory is recorded or not. Offline signa-
ture verification is more challenging because dynamic writing features are not
available on signature images.

The performance of offline signature verification is critically dependent on
the power of feature extraction algorithms. Manual features such as Histogram
of Oriented Gradient (HOG) [1], Scale-Invariant Feature Transform (SIFT) [2],
and Speeded Up Robust Features (SURF) [3] were typically employed in conven-
tional machine-learning-based systems. Based on feature extraction, a similarity
measure or discriminant function is learned to make the decision of verification.
However, these methods have strict restrictions on the format and content of
input signatures, and do not guarantee the desired verification performance due
to their reliance on manual feature engineering [4]. As a result, despite consider-
able efforts by researchers to develop traditional approaches, little improvement
in performance has been achieved [5].

In recent years, more studies have utilized convolutional neural networks
(CNNs) to extract signature features, dramatically improving the performance
of signature verification systems compared to previous hand-crafted features. In
the framework of deep learning, the prevailing approach for signature verification
is the Siamese network, which adjusts weights of the feature extraction network
via learning a distance metric for judging whether two input signatures are writ-
ten by the same person or not. However, despite its effectiveness, its improvement
is limited because it fails to consider the interaction information between refer-
ence and query signatures during feature extraction. Many improved methods
based on the Siamese network have been proposed to enhance the performance.
Xiong and Cheng [6] proposed a multiple Siamese network with an attention
module. Some works tried to combine global and local features by manual re-
gion feature extraction, segmenting the signature image into regions [7,8]. Based
on the vision transformer framework, TransOSV [9] presented a new holistic-part
unified model, which significantly improved performance and produced compet-
itive outcomes by capturing the relationships among signature strokes from the
holistic signature image.

Despite successful feature extraction, mismatches between the feature vec-
tors of query and reference signatures might still arise. Consequently, directly
calculating the distance between these vectors can lead to errors due to mis-
alignment issues. Therefore, aligning the extracted features is equally crucial
but often overlooked in the past. In this paper, we propose a model for offline
signature verification to enhance the feature extraction and address the mis-
alignment problem using cross-writer attention. The model is built on a Deep
Convolutional Siamese Network for end-to-end feature representation learning
on sample data of signature pairs. To bolster the model’s capacity to discern
differences between inputs, we integrate a modified SimAM module. This mech-
anism promotes interaction between the two branches and underscores distinc-
tions between the two signatures during feature extraction. Furthermore, we use
an interactive metric learning module with cross-attention to compute the dis-
tance between the learned representations. This module addresses the issue of
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misalignment between features, providing a straightforward and effective solu-
tion that significantly enhances the overall performance. Together, the SimAM
and cross-attention form our cross-writer attention module. Extensive experi-
ments demonstrate that both the SimAM and the cross-attention mechanism
are effective to improve the signature performance and the proposed method
performs competitively to state-of-the-art methods.

The main contributions of the paper are as follows:

– We propose a cross-writer attention mechanism to improve feature represen-
tation and metric learning in the signature verification model, which is built
on the Deep Convolutional Siamese Network framework.

– We propose a focal contrast loss function for deep metric learning to further
improve the performance of the signature verification model.

– Experiments on public benchmarks show the superior performance of our
method and also demonstrate the effectiveness of each module.

2 Related Work

2.1 Signature Verification

Early signature verification methods relied mainly on template matching and
model learning based on manual features. In the template matching approach,
the test signature is compared with templates already stored in the database
using the dynamic time warping (DTW) algorithm [10]. In contrast to template
matching, statistical models were widely used in signature verification with man-
ually extracted features. Using multiple types of manual features, Baltzakis et
al. [11] adopted multi-layer perceptron neural networks and radial base func-
tion neural networks in a two-stage manner. Yilmaz et al. [12] combined two
types of features, namely, histogram of oriented gradients and histogram of local
binary patterns, and fused global and user-dependent classifiers for classifica-
tion. In the absence of forged signatures as counterexamples, Guerbai et al. [13]
modified the decision function of the One-Class Support Vector Machine (OC-
SVM) by adjusting the optimal threshold through combining different distances
in the OC-SVM kernel to reduce misclassification. To improve the discriminative
power, Okawa et al. [14] proposed a new feature extraction approach based on a
Fisher vector with fused KAZE features using a multilevel fusion strategy. Other
classification models such as adaboost [15] have also played a significant role in
signature verification.

Recent work has taken advantage of deep learning, in particular, CNNs
[16, 17]. Siamese neural network, first proposed for online signature verifica-
tion [18], has been widely used in offline signature verification [19,20]. Following
the Siamese neural network, many superior methods with improved feature rep-
resentation and metric learning have been proposed. Wei et al. [21] designed a
four-stream network and a multi-path attention mechanism to explore the lo-
cal signature stroke information. Liu et al. [22] designed a region-based deep
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convolutional Siamese network by segmenting each image into a series of over-
lapping regions for feature representation and metric learning. For capturing the
global contextual relationships among signature strokes, Li et al. [9] proposed a
novel holistic part unified model based on the vision transformer (ViT) frame-
work [23]. Hafemann et al. [24] investigated the impact of adversarial examples
on signature verification. By actively varying existing data and generating new
data, adversarial variation network [25] could help signature verification tasks
mine more effective features for signature verification.

2.2 Attention Mechanism

Inspired by human visual processing systems, attention mechanisms [26] have
been widely used in deep neural networks to refine feature maps. One repre-
sentative work adopted in signature verification [22] is Squeeze-and-Excitation
(SE) [27], which captures some context cues from a global view and then uses
two fully connected layers to model interactions between channels. Global con-
text attention [28] incorporates long-range dependencies and effectively mod-
els global contexts in a lightweight manner. Attentive Normalization (AN) [29]
learns a mixture of affine transformations and utilizes their weightedsum as the
final affine transformation applied to re-calibrate features. However, these one-
channel attention mechanisms cannot effectively refine image features. Convolu-
tional Block Attention Module (CBAM) [30] infers attention maps along both
channel and spatial dimensions, and then the attention maps are multiplied
with the input feature map for adaptive feature refinement. This two-step man-
ner in CBAM involves very high computation. In contrast to existing attention
modules, SimAM [31] is a simple and parameter-free attention module, which
inspires us to design a more efficient signature verification model. Compared to
ViT-based model [9, 32, 33], our SimAM-based module can achieve comparable
performance but consume less computing resources.

3 The Proposed Method

As shown in Fig. 1, our proposed signature verification model consists of modules
of preprocessing, feature extraction and metric learning enhanced with cross-
writer attention. The pair of input signature images are first preprocessed to
normalize size and gray scale, then fed into the convolutional feature extractor
network for feature representations. The similarity score between extracted fea-
ture vectors is calculated by the metric model to decide whether the original
signatures are written by the same writer or not. For effective feature repre-
sentation and metric learning, we propose the cross-writer attention module
that includes two parts: one is the modified SimAM [31] and the other is the
cross-attention [34]. The SimAM is combined with DenseBlock for better fea-
ture representation. The cross-attention can capture the highly correlated and
salient points in feature space for similarity metric. In training procedure, a focal
contrast loss is used to learn the parameters of the whole model.
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Fig. 1. Network of the proposed Siamese Network.

3.1 Preprocessing

In preprocessing, grayscale normalization is employed to alleviate the effects of
illumination discrepancies and diverse pen types utilized by writers. This nor-
malization aims to ensure uniformity in pixel values within the signature regions
across different signatures. By standardizing the foreground pixels, grayscale
normalization aids in streamlining subsequent processing stages like feature ex-
traction and classification. This normalization procedure is conducted as follows:

g′f =
(gf − E(gf )) ∗ 10

δ(gf )
+ 30, (1)
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where gf and g′f represent the original and normalized grayscale, respectively.
E(gf ) and δ(gf ) indicate the mean and standard deviation of the original grayscale
in the foreground.

To standardize the sizes and positions of signatures within the diverse images,
we use the moment normalization method to partially align the locations of
signature strokes. Here, f(x, y) and f(x′, y′) represent the pixel value of the
coordinates (x, y) and (x′, y′) in the original and normalized images, respectively.
Subsequently, we map f(x, y) to f ′(x′, y′) with the following formulation:

x =
(x′ − x′

c)

α
+ xc, (2)

y =
(y′ − y′c)

α
+ yc, (3)

In this context, (x′
c, y

′
c) denotes the center of the normalized signature, while

(x′
c, y

′
c) represents the centroid of the original signature. α represents the ratio

of the normalized signature size to the original signature size. It can be com-
puted through the central moments µpq of an inverted image where signature
strokes are depicted in gray, and the background is black. For well-fitting the
signature foreground within the plane of the normalized image, the scaling ratio
is calculated by:

α = 0.6 ·min(
Hnorm

√
µ00

2
√
2µ02

,
Wnorm

√
µ00

2
√
2µ20

), (4)

where Hnorm and Wnorm represent the pre-defined height and width of the
normalized image, and µpq denotes the center moments:

µpq =
∑
x

∑
y

(x− xc)
p(y − yc)

q[255− f(x, y)], (5)

where we set Hnorm and Wnorm as 224 and 224 in experiments, which means
that we normalized the size of signature images as 224 × 224 for the following
feature extraction.

3.2 Feature Extraction

After conducting an experimental comparison of several well-known architectures
of CNN and visual transformer including AlexNet [35], VGG [36], ResNet [37],
DenseNet [38], ViT [23], and T2T-ViT [39], we chose DenseNet-36 to construct
the Deep Convolutional Siamese Network for feature extraction. The dense con-
nectivity of DenseNet is essential for promoting robust feature reuse and effec-
tively capturing intricate patterns in handwriting. This high parameter efficiency
is crucial for addressing the gradient vanishing problem, making DenseNet suit-
able for scenarios with limited data, unlike ViT network, which requires a large
volume of data. The dense connectivity mechanism is highly effective in reducing
information loss during the training process, which is crucial for preserving the
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nuanced details of handwriting. Furthermore, the design of DenseNet’s global
connections contributes to maintaining a holistic view of the input data, which
is especially important in tasks like signature verification, where the entire signa-
ture is essential for accurate assessment. The architecture of DenseNet-36 follows
the same structure as described in [22].

Based on the DenseNet backbone, Convolutional Siamese architecture, com-
prising two branches of CNNs with shared weights, is specifically designed to
learn feature representations of signature images. And we employ the geLU ac-
tivation function [40] which is used in BERT and GPT-2. As shown in Fig. 1,
the cross-writer attention and SPP (Spatial Pyramid Pooling) are combined into
two CNNs branches to interact with the information of two inputs. In this way,
the characteristics of two signature images can be fully exploited.

3.3 Cross-Writer Attention

(a) Original SimAM module. (b) Improved SimAM module.

Fig. 2. Comparison diagram of the original SimAM and improved SimAM.

SimAM Modules

Revisiting SimAM module As shown in Fig. 2(a), SimAM [31] is a highly effec-
tive attention module designed for CNNs and infers 3-D attention weights for
the feature map in a layer without adding parameters to the original networks.
The module is based on well-known neuroscience theories and conceptualized
as an energy function intended to determine the significance of each neuron.
The proposal of SimAM as the attention module with unified weights is based
on recent observations suggesting that the two types of attention in the human
brain tend to work in harmony. In contrast to conventional attention modules,
such as BAM and CBAM, which combine space attention and channel attention
in parallel or serial, respectively, SimAM introduces a novel approach by unify-
ing the weights. This addresses the growing understanding of the interconnected
nature of different attention mechanisms and seeks to capitalize on the synergy
between space and channel attention. An essential aspect of understanding at-
tention is evaluating the importance of each neuron. According to neuroscience,
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neurons that are rich in information often exhibit distinct firing patterns from
surrounding neurons and are capable of suppressing the activities of other neu-
rons, known as spatial suppression. Therefore, the simplest way to identify these
important neurons is by measuring the linear separability between one target
neuron and the others. This process leads to the definition of an energy func-
tion, which serves the purpose of identifying significant neurons and measuring
the linear separability between neurons. The energy function is given by:

et(ωt, bt,y, xi) =
1

M − 1

M−1∑
i=1

(−1− (ωtxi + bt))
2 + (1− (ωtt+ bt))

2 + λωt
2, (6)

where t and xi are the target neuron and other neurons in a single channel of the
input feature X ∈ RC×H×W . i is index over spatial dimension and M = H ×W
is the number of neurons on that channel. ωt and bt are weight and bias of linear
transforms of t and xi.

Improved SimAM module For our purpose of signature verification, we present
an enhancement to the SimAM module aimed at optimizing the utilization of
differential information between inputs. As depicted in Fig. 2(b), the feature
extraction network processes two inputs to produce feature maps of identical
size. Subsequently, we calculate the difference between these two feature maps
and further operations. This modification endows the improved SimAM module
with the capability to enhance features essential for signature verification by
harnessing the disparate information present in the feature maps.

C
ross-

A
ttention

Attention scores

1 'F

2 'F
1F
2F

1V

1K
2Q

1Q

2K

2V

Fig. 3. The details of cross-attention.
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Cross-Attention

Cross-attention [34], a mechanism integrated into the architecture of certain
contemporary natural language processing (NLP) tasks, such as the Transformer
model, enables one sequence to selectively focus on another. This proves bene-
ficial in various NLP tasks, particularly in machine translation, where aligning
portions of the input sequence with corresponding parts of the output sequence is
essential. Cross-attention mechanism closely resembles the self-attention mecha-
nism employed in the Transformer model; however, in the case of cross-attention,
the focus is on one sequence attending to another sequence rather than attending
to itself. A detailed depiction of the cross-attention module used in our network
can be found in Fig. 3.

After inputting two signature images into the Deep Convolutional Siamese
Network, two feature vectors are obtained as F ′

1 and F ′
2 ∈ Rd, with d representing

the dimensionality of the feature vector. To align F ′
1 and F ′

2, which are the feature
vectors of the two branches, the key K, value V , and query Q are initially
generated. Specifically, the key, value, and query vectors for F ′

1 are expressed
as K1 = M(F ′

1), V1 = N(F ′
1), and Q1 = L(F ′

2), respectively. Similarly, the key,
value, and query vectors for F ′

2 are denoted as K2 = M(F ′
2), V2 = N(F ′

2), and
Q2 = L(F ′

1), where M,N,L are linear mappings employed to project the input
sequences into a shared hidden space of the same dimensionality. The subsequent
step involves attention weight computations as detailed below:

Attention1 = softmax(Q1 ·KT
1 ), (7)

Attention2 = softmax(Q2 ·KT
2 ), (8)

After computing attention weights, matrix multiplication is used to adjust
the input sequences, resulting in cross-attention-adjusted outputs:

F1 = Attention2 · V2, (9)

F2 = Attention1 · V1, (10)

The signature verification task traditionally emphasized refining the network
structure, with less consideration given to the issue of misalignment in feature
vector pairs extracted by the network. Feature vectors with global and local
features may encounter misalignment problems when directly calculating their
distances. To overcome this challenge, one potential solution is cross-attention,
which involves treating the pairs of feature vectors extracted by the network as
two sequences and feeding them into a cross-attention mechanism. This process
aligns global and local information in both sequences, producing two aligned
sequences denoted as feature vectors F1 and F2. Subsequently, the absolute dis-
tance between these aligned feature vectors is computed, mitigating the mis-
alignment issues.
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3.4 Deep Metric Learning

We compared several distance measures, including the Cosine, Euclidean dis-
tance, and the absolute value of feature vector pairs. Our findings revealed that
the “absolute value” denoted as F = |F1−F2| yielded the most favorable results.
Following this discovery, a linear layer is incorporated to project the feature vec-
tor F into a 2-dimensional space using base vector (p̂1, p̂2)

T. Here, p̂1 signifies
the anticipated probability that both signatures belong to the same user, while
p̂2 denotes the anticipated probability of the opposite scenario (p̂1+p̂2 = 1). This
process allows for the treatment of signature verification as a binary-class classi-
fication problem, and to optimize our model, the focal contrast loss is employed
as the objective function.

Contrastive loss The contrastive loss [41] can be defined as follows:

Loss(p, p̂) = −[p · ln(p̂1) + (1− p) · ln(p̂2)] =
2∑

i=1

−pi · ln(p̂i), (11)

In the context of comparing two signatures to determine whether they are
written by the same user or not, the target class, denoted as p, indicates the
similarity between the signatures. Specifically, if the two signatures are from
the same user, then p1 = 1 and p2 = 0; otherwise, p1 = 0 and p2 = 1. There-
fore, the predicted probability, p̂, is used to approximate the similarity measure,
particularly using p̂1 to approximate the similarity between the two signatures.

Focal contrast loss Although contrastive loss has been shown effective in
signature verification tasks, significant challenges still impede further enhance-
ments in performance in end-to-end signature verification patterns, because of
the serious imbalance of positive/negative samples and easy/difficult samples.

Drawing inspiration from the focal loss [42], we introduce a new loss called
focal contrast Loss (FCLoss), formulated as follows:

FCLoss = −αpγ log(p̂1)− (1− α)(1− p)γ log(p̂2), (12)

where α is an adjusting factor to balance the weights of positive and negative
classes. γ is a tunable exponent parameter, typically taken as a positive value.
It adjusts the weights between easily classified samples (p large) and challenging
samples (p small).

The design of focal loss aims to improve the model’s handling of class im-
balance issues and difficulty sample problems. This expression incorporates the
loss calculation for both positive and negative class scenarios, reducing the loss
for easily classified samples by decreasing their weights. This adjustment directs
the model to focus more on challenging samples, thereby enhancing the model’s
ability to effectively address class imbalances and difficulty samples.
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4 Experimental Results

4.1 Datasets

We evaluate the signature verification performance on four datasets: CEDAR
[43], BHSig-B, BHSig-H [44] and HanSig [45]. HanSig is a large-scale public
Chinese handwritten signature database. Examples of these datasets are shown
in Fig. 4.

CEDAR. The CEDAR dataset comprises signatures from 55 users, each
contributing 24 genuine signatures and 24 skilled forgeries. This results in C2

24 =
276 genuine-genuine pairs and C1

24×C1
24 = 576 genuine-forged pairs per user. For

training, 50 users were selected randomly, with the remaining 5 users allocated
to the testing set. The training set contains 42,600 samples, while the testing set
contains 4,260 samples.

BHSig-B and BHSig-H. BHSig-B and BHSig-H datasets consist of signa-
tures from 100 Bengali and 160 Hindi users, respectively. Each user contributed
24 genuine signatures and 30 forgeries. This yields 276 genuine-genuine pairs
and 720 genuine-forged pairs per individual. BHSig-B was split into training
and testing sets: 80 users for training (79,680 samples) and 20 users for test-
ing (19,920 samples). BHSig-H followed a similar split: 100 users for training
(99,600 samples) and 60 users for testing (59,760 samples). This partitioning
ensures thorough model evaluation across different user signatures.

Fig. 4. Examples of signature images in CEDAR, BHSig-B, BHSig-H, and HanSig with
genuine signatures in the first row and corresponding forged signatures in the second
row.

HanSig. The HanSig dataset is a collection of 885 candidate names, chosen
based on the frequency distributions of name occurrences in real-world contexts,
and signatures have been gathered from 238 writers. Each name has been signed
20 times in three styles – neat, normal, and stylish – to introduce greater signing
variability. Consequently, the dataset consists of 17,700 genuine signatures and
an equivalent number of skilled forgeries. This allows for the creation of 190
genuine-genuine pairs of signatures as positive samples and 400 genuine-forged
pairs as negative samples for each individual (computed as C2

20 = 190 and C1
20×

C1
20 = 400). The dataset has been randomly divided into a training set, which

includes 795 names, and a test set, which consists of 90 names. The training set
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contains 469,050 samples, while the test set comprises 53,100 samples, enabling
an extensive evaluation of the dataset.

4.2 Evaluation Metrics

The signature verification performance is measured in three indices: False Ac-
ceptance Rate (FAR), False Rejection Rate (FRR) and Accuracy (Acc). FAR
represents the ratio of false acceptances to all forged samples, while FRR re-
flects the ratio of false rejections to all genuine samples. Accuracy is the ratio
of correctly predicted samples to all predicted samples. The EER, a widely used
metric in biometric system evaluation, indicates the point where FRR equals
FAR. The specific calculations for these metrics are as follows:

FAR =
FP

TN + FP
, (13)

FRR =
FN

TP + FN
, (14)

Acc =
TP + TN

TN + FN + TP + FP
, (15)

where TP, TN, FN, FP are defined as follows::
True Positive (TP): Number of genuine signatures predicted as genuine.
True Negative (TN): Number of forged signatures predicted as forgeries.
False Negative (FN): Number of genuine signatures predicted as forgeries.
False Positive (FP): Number of forged signatures predicted as genuine signa-

tures.

4.3 Experimental Settings

We implement the proposed model using the PyTorch deep learning framework,
employing the widely adopted Adam optimizer [46], configured with a learning
rate set to 0.001 to facilitate effective convergence during training. The param-
eters of the FCLoss are set to α = 0.25, γ = 2. To strike a balance between
computational efficiency and model convergence, each training iteration involves
mini-batches of 64 pairs of signature images. To enhance the model’s generaliza-
tion capability and mitigate overfitting, a dropout rate of 0.1 is applied to the
linear layer as a regularization technique. This dropout mechanism randomly
drops a fraction of the connections during training, preventing the model from
relying too heavily on specific pathways and enhancing its robustness. The ex-
periments are performed on a dedicated workstation equipped with a formidable
12GB Nvidia GeForce TITAN Xp GPU, which accelerates the training process,
enabling swift computation of complex model operations. The system’s efficiency
is further underscored by its remarkable speed in signature verification, taking
an average of only 10 milliseconds to process a pair of signatures. This efficient
execution is crucial for real-time applications, where rapid decision-making is
imperative. The system takes only 10 ms to verify a pair of signatures on aver-
age.
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4.4 Results and Discussions

The signature verification results are shown in Table 1, with a comparative anal-
ysis of the proposed method with networks based on CNNs and Transformers.
Our proposed method and baseline both achieve state-of-the-art results on the
CEDAR dataset. TransOSV has achieved state-of-the-art performance on the
BHSig-B dataset with a transformer as a holistic encoder and CNNs as a part
decoder. It is worth noting that our proposed method has outperformed all ap-
proaches that only use CNNs. Besides, on the BHSig-H dataset, our method has
demonstrated superior performance compared to the similar CNNs+Attention
network, MSN+Attention. TransOSV achieved a state-of-the-art performance,
which is because they used a pre-trained ViT-based model. When evaluated on
the HanSig dataset, our method outperforms MGRNet, which utilizes a multi-
scale global and regional feature learning network with co-tuplet loss. Addition-
ally, it is worth noting that our proposed method has the added advantage of
being adaptable for any newly added writer without requiring system retrain-
ing. In a word, our proposed method outperforms all the compared methods on
CEDAR, BHSig-B, and HanSig databases.

Table 1. Comparison of signature verification performance on the four datasets (%).
“DenseNet+cross-writer attention” is the proposed method.

Dataset Method FRR FAR Acc

CEDAR

MSN+Attention [6] 0 3.18 98.41

MGRNet [45] 3.55 3.33 96.56

MSDN [22] 6.74 6.74 93.26

DenseNet+cross-writer attention 0 0 100

BHSig-B

MSN+Attention [6] 6.44 10.42 91.56

MGRNet [45] 6.20 5.93 93.93

ViT(Pre-trained) [23] 18.48 18.48 81.52

T2T-vit(Pre-trained) [39] 10.83 5.08 93.33

TransOSV [9] 3.56 3.56 96.44

DenseNet+cross-writer attention 2.14 2.95 97.27

BHSig-H

MSN+Attention [6] 5.16 17.06 88.88

MGRNet [45] 6.56 6.76 93.34

ViT(Pre-trained) [23] 20.18 20.18 79.82

T2T-vit(Pre-trained) [39] 24.23 9.94 86.10

TransOSV [9] 3.24 3.24 96.76

DenseNet+cross-writer attention 12.14 7.11 91.42

HanSig

MGRNet [45] 7.69 11.85 90.23

T2T-vit(Pre-trained) [39] 38.56 10.69 80.34

DenseNet+cross-writer attention 16.33 6.61 90.26
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4.5 Ablation Studies

Effectiveness of SimAM module We evaluate the model with the SimAM
module removed to test its impact on signature verification performance. The
obtained results of these ablation studies are reported in Table 2. The find-
ings indicate that the removal of the SimAM module resulted in performance
degradation, with a reduction of 2.10 percentage points on the HanSig dataset.
This implies that our improved SimAMmodule effectively emphasizes differences
between feature pairs. Furthermore, we conduct experiments by incorporating
different self-attention mechanisms into our baseline to demonstrate the effec-
tiveness of the mechanism we used. The experimental results are shown in Table
3. The results show that the proposed improved SimAM module outperforms
SE and CBAM on the datasets except BHSig-H.

Effectiveness of cross-attention In our investigation of the significance of
the cross-attention module in our deep metric learning approach, we found that
its incorporation resulted in a noticeable improvement in signature verification
performance, as evidenced by the results presented in Table 2. Our analysis
indicates that the cross-attention module effectively addresses the issue of mis-
alignment in feature vectors extracted from the Siamese Network. Specifically,
it aligns the global information and local features between vector pairs, thereby
mitigating the potential negative impacts of misalignment on performance.

Effectiveness of FCLoss The effects of the FCLoss are validated through a
comparison with the original contrastive loss. The results of this comparison are
displayed in Table 4. It is evident from the results that the FCLoss outperforms
the CE (Cross-Entropy) loss on our method. These findings provide compelling
evidence that focal contrast loss effectively prioritizes hard samples, leading to
superior performance.

Table 2. Ablation study on the HanSig dataset to evaluate each module of the proposed
cross-writer attention (Acc in %).

Model SimAM cross-
attention

Acc

Baseline - - 87.48

✓ - 89.81

- ✓ 88.16

Our method ✓ ✓ 90.26
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Table 3. Performances of different self-attention module (%).

SE CBAM SimAM

FRR FAR Acc FRR FAR Acc FRR FAR Acc

CEDAR 0.00 0.00 100.0 0.00 0.00 100.0 0.00 0.00 100.0

BHSig-B 3.68 2.62 97.09 4.38 2.55 96.94 3.77 2.30 97.29

BHSig-H 17.30 6.11 90.79 17.00 6.72 90.43 24.21 5.88 89.76

HanSig 22.35 11.01 85.34 22.01 9.05 86.78 13.91 8.42 89.81

Table 4. Effectiveness of FCLoss (%).

Loss CELoss FCLoss

FRR FAR Acc FRR FAR Acc

CEDAR 0.00 0.00 100.0 0.00 0.00 100.0

BHSig-B 11.34 3.08 94.63 9.31 3.10 95.18

BHSig-H 15.18 8.31 89.78 18.83 6.00 90.45

HanSig 30.33 10.36 83.21 17.84 9.99 87.48

5 Conclusions

This paper proposes a novel offline signature verification method utilizing a Deep
Convolutional Siamese Network with cross-writer attention. To enhance the dis-
crimination ability, an improved SimAM module is proposed to be inserted be-
tween the Siamese Network, thereby rendering the networks more attentive to
the differences between the feature maps. Furthermore, the proposed deep met-
ric learning module with cross-attention addresses the problem of feature mis-
alignment between feature vectors. Experimental results on benchmark datasets
CEDAR, BHSig-B, and HanSig demonstrate the effectiveness of the proposed
method, achieving accuracy rates competitive with state-of-the-art methods. We
also plan to test the feasibility of cross-writer attention in online signature veri-
fication task.
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