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Abstract—Peg-in-hole insertion is a critical process in indus-
trial production. Traditional peg-in-hole insertion methods are
based on planning the robot’s motion trajectory through the
analysis of contact models. However, due to the complexity of
contact states, it’s challenging to establish precise and reliable
contact models, leading to poor generalization of these methods.
Reinforcement learning is a technique that learns insertion
strategies from environmental interactions, avoiding the tedious
process of analytical modeling. Thus, it has become a trending
direction in the robotics field in recent years. This article aims to
survey the mainstream peg-in-hole insertion technologies based
on reinforcement learning methods and discuss future research
directions. First, we introduce the task requirements for peg-
in-hole insertion. Subsequently, a preliminary framework of
reinforcement learning algorithms for peg-in-hole insertion is
presented. Discussions are then divided into two main categories:
traditional reinforcement learning methods (including model-
based and model-free methods) and reinforcement learning
methods accelerated by prior knowledge (including residual
reinforcement learning, reinforcement learning from demon-
stration, meta-reinforcement learning, and other acceleration
techniques). Finally, this article explores several potential future
research directions for peg-in-hole insertion technologies based
on reinforcement learning.

Index Terms—Robot Peg-in-hole Insertion; Reinforcement
Learning; Meta-Reinforcement Learning

I. INTRODUCTION

A. Background Introduction

Peg-in-hole insertion is an extremely vital step in industrial

production. It constitutes the foundational operation in sig-

nificant equipment fabrication processes such as large-scale

aerospace component assembly [1] and micro-scale microsys-

tem assembly [2].

High precision and high compliance are the main challenges

faced by robotic peg-in-hole insertion. In terms of precision,

the insertion accuracy ranges from 0.02mm to 0.2mm [3],
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posing substantial challenges for robot planning precision, un-

derlying control precision, and structural accuracy. Regarding

compliance, assembly requires the right amount of contact

force—too little contact force might not complete the insertion,

while excessive force might destroy the parts or even the

robot, leaving residual stress on the assembly parts. To softly

and smoothly insert the peg into the hole, researchers have

proposed passive compliance and active compliance to enable

the robot’s “gentle” operations. Passive compliance is achieved

through mechanical structures [3], but usually requires de-

signing specific compliance mechanisms for specific objects,

compromising flexibility. Active compliance uses force sensor

feedback control to achieve assembly, providing good adapt-

ability and becoming the primary method for robotic compliant

operations.

The active compliance control strategies for peg-in-hole

insertion can be categorized into two broad types [4]:

1) Contact model-based: Analyzing the mechanical model

of the peg-in-hole contact process, dividing the assembly

process into various phases based on contact states,

and adopting different strategies for assembling during

different phases [4], [5].

2) Contact model-free: Using machine learning methods,

leveraging human demonstration data for learning [6], or

learning directly from the environment [7].

Assembly strategies that rely on the contact model are split

into contact state identification and compliant control phases.

Initially, based on the sensor input data, analytical methods

[3] or statistical methods [8] are employed to identify the peg-

in-hole contact state, guiding the robot’s compliant assembly

actions. When the peg and hole transition to a new contact

state, a new state recognition is undertaken, and the process is

repeated until the robot completes the assembly. For instance,

for cylindrical peg-in-hole insertion, the entire insertion pro-

cess can be arbitrarily divided based on the number of contact

points between the peg and hole, such as no contact, one-

point contact, and two-point contact [3]. Robot arm motion is

then guided based on varying contact states. However, when

part geometric parameters change, a re-analysis of the peg-
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in-hole contact model is needed. Moreover, as the required

accuracy for assembly increases and the shapes of assembly

parts become more complex, establishing an accurate peg-in-

hole contact model becomes challenging.

Peg-in-hole insertion methods that do not rely on contact

models are divided into those based on imitation learning

and those based on reinforcement learning. Imitation learning-

based peg-in-hole insertion methods [6] do not function

through pre-programming but directly imitate human assembly

action demonstrations, allowing the robot to mimic human

flexible assembly behaviors. It is worth noting that robots

can imitate not just the demonstration trajectory, but also

the compliant adjustments of force. Imitation learning can

significantly enhance the learning efficiency of robot assembly

strategies. However, there’s limited research on uncertain

dynamic scenarios (like non-fixed pegs or holes) and new

operational scenarios for peg-in-hole insertion.

Reinforcement learning, with its capability to learn skills

from interactions, is considered one of the significant method-

ologies for robot skill learning [9]. Moreover, reinforcement

learning enhances the modeling capability for intricate prob-

lems when combined with deep neural networks. Peg-in-hole

insertion methods based on reinforcement learning are catego-

rized into model-based and model-free. Model-based methods

converge quickly, but they have issues related to algorithmic

stability and learning safety [10]. Model-free methods can

better adapt to changing environments, but their data utilization

efficiency is not high [11]. To overcome the shortcomings

of the aforementioned methods, researchers have proposed

combining model-free reinforcement learning with domain

prior knowledge to improve the robot’s learning efficiency.

This article will also introduce several mainstream methods

combining model-free reinforcement learning with domain

prior knowledge in the third section.

B. Purpose of this Paper

Numerous articles on peg-in-hole insertion have been pub-

lished to date, but there are fewer reviews on peg-in-hole

insertion strategies based on reinforcement learning. This

paper investigates and summarizes articles in the domain of

robotic peg-in-hole insertion that utilize reinforcement learning

algorithms to train insertion strategies, categorizing them into

traditional reinforcement learning and reinforcement learn-

ing accelerated by prior knowledge. Furthermore, it aims to

analyze the current conditions for the application of prior

knowledge, understand the distinct characteristics of various

prior knowledge, and explore feasible solutions applied to

robotic peg-in-hole insertion by leveraging their respective

advantages. The primary objectives of this paper are:

1) To trace and summarize the progress of peg-in-hole

robotic insertion technologies based on reinforcement

learning and analyze the current developmental trends in

this research domain.

2) To initially categorize the peg-in-hole robotic insertion

techniques based on reinforcement learning and provide

a brief analysis of the primary methods within each

category.

3) To present our insights on some of the existing challenges

in current methodologies and discuss open problems that

may be researched in the future.

The remaining sections of this paper are organized as

follows: The second section analyzes the mathematical ex-

pression of peg-in-hole insertion and introduces some classical

reinforcement learning methods used for peg-in-hole insertion.

The third section presents several improved reinforcement

learning methods integrated with domain prior knowledge,

elaborating on their characteristics. The fourth section sum-

marizes the potential future research directions.

II. PEG-IN-HOLE INSERTION STRATEGIES BASED ON

TRADITIONAL REINFORCEMENT LEARNING

A. Mathematical Definition

The robotic peg-in-hole insertion process exhibits certain

Markovian characteristics, and thus it’s typically described

using Markov processes [12]. A Markov process is represented

by < S,A, P,R, γ >, where these symbols respectively

denote state space, action space, transition probability, reward

function, and discount factor.

1) State Space: In the peg-in-hole insertion process, the

state space input information for robots includes visual in-

formation, force/torque information, and joint/position infor-

mation. In practical applications, multi-modal hybrid inputs

are often employed [12]. Different types of sensors have their

respective advantages and disadvantages. For example, while

visual information is cost-effective, it’s primarily used for

scenarios with simple contact states and less stringent insertion

precision requirements. Force/torque information can detect

contact forces well, effectively simulating human insertion

processes; however, high-precision force sensors are pricey

and easily affected by noise. Joint/position information can

also be input directly to the robot’s controller, but it requires

complex data preprocessing. Thus, effectively integrating di-

verse input information to realize faster, more compliant, and

precise insertion remains an open issue in robotics.

2) Action Space: The robot’s action space can be divided

into two categories. The first type of action space consists

of the robot’s end-effector pose set. Based on the desired

end-effector pose and combined with inverse kinematics, the

angles of each robot joint are calculated to complete action

control. In practical applications, this type of action can be

equivalently described as translational motion in different

directions and rotational motion around different axes by

fixed steps. For example, defining translation component δ
and rotation component α, the robot’s action space can be

represented as at = [δx, δy, δz, αx, αy, αz] [13]. Additionally,

the robot’s end-effector speed can be controlled, indirectly

achieving the purpose of controlling its pose [14]. The second

type of action space consists of the robot’s joint angles set,

often used for complex multi-degree-of-freedom robots, such

as dexterous hands [15]. The first type of action space doesn’t
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require learning the robot’s dynamic model and has better

transferability, thus being more widely used.

3) Transition Probability: The state transition probability

represents the likelihood of the robot transitioning from its

current state to another state after taking a certain action. It

can be described as Psa = P (st+1 = s′|st = s, at = a). It’s

worth noting that, in peg-in-hole insertion, the state transition

probability is generally unknown.

4) Reward Function: Reward functions are primarily cate-

gorized into sparse rewards and dense rewards. Sparse rewards

refer to giving a positive reward when the robot successfully

inserts, with all other scenarios resulting in a reward of 0 [16].

Sparse rewards are simple to deploy, but it’s challenging for the

robot to learn insertion strategies directly from rewards. Hence,

some scholars proposed dense reward methods, where each

robot action is assigned a reward signal. Dense rewards often

accompany many human-designed phases and hyperparameter

settings, and selecting hyperparameters is very tedious and

time-consuming. Current research focuses on how robots can

learn quickly with sparse rewards.

5) Discount Factor: The discount factor represents the

emphasis a robot places on future rewards. In peg-in-hole

insertion, since the objective is to successfully insert the peg

into the hole, the discount factor is generally set to 1 or 0.99,

signifying greater emphasis on future rewards.

Actions State 
Transition

States and Rewards

States and Rewards

Model-based Methods

Model-free Methods
Robot

Learned 
dynamics model

Environment

Fig. 1. Schematic diagram of traditional reinforcement learning

B. Model-free Methods

Researchers as early as 1992 discussed the integration of

reinforcement learning and neural networks for peg-in-hole

insertion problems [17]. However, at that time, due to the

immature training methods of reinforcement learning and

neural networks, the training time was long and the input

vector dimension was low. Deep reinforcement learning, which

is characterized by learning skills from interactions and has

excellent modeling capabilities, has promoted its application

in contact-rich problems such as peg-in-hole insertion.

Model-free methods can be divided into value-based meth-

ods and policy-based methods. Q-learning [11] is a representa-

tive algorithm for value-based methods. Gullapalli et al. [17]

combined it with ε-greedy to accomplish the round peg-in-

hole insertion task. DQN (Deep Q-network), using experi-

ence replay and a target network, has achieved outstanding

performance in domains like gaming [17]. Experience replay

ensures that training data in reinforcement learning meets the

assumption of independent and identically distributed samples,

which is crucial for neural network training. Using a target

network can prevent the continuous movement of the target

during neural network updates, making updates challenging.

Therefore, many researchers have tried to introduce DQN

into peg-in-hole insertion strategy learning. Inoue et al. [7]

proposed replacing the regular MLP (Multilayer Perceptron)

network with an LSTM (Long Short-Term Memory) network

[18] to better estimate and compute Q-values. Experiments

have shown that this method can complete assembly tasks that

exceed the precision of the robot itself.

Value-based learning methods can only output discrete

actions, making it challenging to achieve more refined con-

tinuous action learning. Policy-based learning methods can

output continuous actions directly through the network, but the

downside is that they have low learning efficiency, and policies

easily get stuck in local optima (such as REINFORCE [19]).

Therefore, researchers combined the two to propose reinforce-

ment learning algorithms in the Actor-Critic framework, such

as the DDPG (Deep Deterministic Policy Gradient) algorithm

[20], which has a more stable training effect and has been

successfully applied in peg-in-hole insertion.

Ren et al. [21] used DDPG to complete the peg-in-hole

insertion task under continuous robot control. Xu et al. [13]

proposed a force control model-based DDPG algorithm and

a fuzzy reward mechanism to achieve multi-peg insertion.

Hou et al. [22] proposed a Proportional-Derivative control

framework-based KDDPG algorithm to achieve dual peg-in-

hole insertion. In addition, algorithms like TD3 [23] and

SAC [24] have also been applied to model-free reinforcement

learning for peg-in-hole insertion [25]. However, compared to

directly adjusting controller parameters, model-free reinforce-

ment learning methods have a low sample utilization rate, and

the controller’s training convergence time is long. Therefore,

how to better utilize models or prior knowledge becomes the

key to improving performance.

C. Model-based Methods

The core idea of model-based methods is to first obtain a

model of the environment and then use the model for action

and policy learning. After a long period of development,

classic model-based reinforcement learning algorithms such

as Dyna [26], PILCO (Probabilistic inference for learning

control) [27], and MPC (Model predictive control) [28] have

emerged. In the field of peg-in-hole insertion, the GPS (Guided

Policy Search) algorithm [10] is currently widely used. The

GPS algorithm, for the established environmental dynamics

model, minimizes the accumulated cost and the deviation

of the policy network. It uses methods such as iLQR/iLQG

[29] to obtain a guiding distribution. Then, training samples

are extracted from the guiding distribution, and supervised

learning is used to make the trajectory of the policy network

approximate the trajectory of the guiding distribution.

Levine et al. [30] used this method to allow robots to

learn a series of complex operations through a few minutes

of interaction. Model-based methods are more efficient than

traditional model-free learning methods, with a narrower ex-
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ploration space and faster convergence. However, when the

system rigidity is large and force or torque feedback is used,

the system performance is affected due to the non-smooth

system dynamics and a small trust region. To solve this

problem, Luo et al. [31] proposed the MDGPS (Mirror Guided

Policy Search). By explicitly incorporating force data into

reinforcement learning, they achieved the assembly of tight

gears. Luo et al. [32] also used this method to successfully

insert a rigid peg into a deformable hole with a smaller

diameter.

However, model-based methods need to learn the dynamics

model of the target, and the quality of the model largely affects

the control effect of the robot. Moreover, the learning rate

for rigid systems using this method is relatively low, and

its accuracy and robustness are not as good as model-free

algorithms.

To overcome the inefficiency of model-free algorithms and

the lack of stability and accuracy of model-based methods,

Fan et al. [33] combined the two. First, they used GPS to

obtain a simple controller and put the trajectories generated

by the controller into the replay buffer. DDPG is then used

to sample and learn from the trajectory replay buffer and

the environment. In other words, in the initial search, model-

based methods guide learning, helping to search for an optimal

path. Model-free methods are used later for adjustments, thus

considering both the efficiency and accuracy of the algorithm.

III. COMBINING DOMAIN PRIOR KNOWLEDGE FOR

PEG-IN-HOLE INSERTION

Traditional reinforcement learning methods can complete

typical peg-in-hole insertion tasks. However, for complex-

shaped peg-in-hole insertion problems or application scenarios

that require rapid algorithm convergence, traditional reinforce-

ment learning methods take longer to train because they do

not consider the prior knowledge of peg-in-hole insertion.

Researchers have proposed certain domain prior knowledge

that can be leveraged. This section summarizes several repre-

sentative improved algorithms based on prior knowledge.

A. Residual Reinforcement Learning (Residual RL)

RL
controller

traditional 
controller H

Environment

Robot

+

+

States and Rewards

Fig. 2. Illustration of Residual Reinforcement Learning

Considering the characteristic of the assembly that the actual

search space is relatively small, Johannink et al. [34] proposed

that most robot actions can be controlled by traditional con-

trollers, and reinforcement learning only needs to focus on

learning complex contact actions. Therefore, the control signal

ut can be obtained from the traditional controller πH and the

reinforcement learning controller πθ.

ut = πH(st) + πθ(st) (1)

Using this method, Johannink et al. [34] achieved the task of

inserting a block between two movable blocks. This scenario

is challenging to model because the blocks can be moved,

resulting in complex contact dynamics. Residual reinforcement

learning can solve such problems, but the exact position of the

block needs to be known. Schoettler et al. [25] used a simple

p-controller combined with reinforcement learning to achieve

plug-in assembly with only visual input and sparse rewards.

Beltran et al. [35], [36] also used traditional controllers and

combined residual actions with variable impedance learning

to complete a soft insertion task for various peg-in-hole tasks

using position-controlled robots.

In addition to designing the traditional controller πH with

modern control theory, more and more researchers are trying

to train πH from demonstration data using imitation learning.

For example, researchers have explored combining DMP (Dy-

namic Motion Primitives) with reinforcement learning [37].

This method first uses DMP to extract the initial policy based

on the demonstration trajectory, and then the residual policy

trained by reinforcement learning corrects the trajectory gener-

alized by DMP, finally achieving the assembly of round holes,

gears, and network lines. The use of DMP effectively enhances

the generalizability of the algorithm. Wang et al. [38] first

used hierarchical imitation learning to learn nominal motion

trajectories, and then combined it with the SAC algorithm to

learn force control schemes, eventually achieving the assembly

of a tightly coupled L-shaped object.

Residual reinforcement learning narrows the exploration

space of reinforcement learning (most actions are performed

by traditional controllers), reducing the training difficulty and

sample demand of reinforcement learning. Also, since the

search range is reduced, the training safety is significantly

improved.

B. Reinforcement Learning from Demonstration (RLfD)

Robot Environment

Explore data in 
the past

Demonstration

Replay Buffer

Policy 
update

Actions

States and Rewards

Fig. 3. Illustration of Reinforcement Learning from Demonstration

In long-term industrial practice, technicians have accu-

mulated a series of script-based industrial robot assembly

strategies and a large amount of training data from human

demonstrations. One of the focuses is how to use these data

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 24,2024 at 04:18:21 UTC from IEEE Xplore.  Restrictions apply. 



6692

to assist the training of reinforcement learning and thereby

accelerate the entire training process.

Reinforcement learning methods based on demonstrations

are divided into two categories. One is the combination of

action imitation learning and reinforcement learning, which

has been described in Section III.A. The other type is directly

using neural networks to perform end-to-end learning from

demonstrations. The most direct method is to use Behavior

Cloning [39], allowing the neural network to be initialized

using demonstration data and then adjusted using reinforce-

ment learning. This approach can avoid some abnormal actions

caused by improperly set reward functions [40].

Inspired by DQfD (Deep q-learning from demonstrations) in

the gaming field, Vecerik et al. [41] proposed DDPGfD (Deep

deterministic policy gradient from demonstration), replacing

the DQN in the algorithm with DDPG to adapt to continuous

space control. They also used Prioritized Experience Replay

[42] to give human demonstration data greater weight and

added network weight regularization, N-step return accumula-

tion, etc., to improve training results. Following this approach,

Vecerik et al. [41] achieved dual peg-in-hole insertion un-

der sparse rewards. However, the convergence speed of this

method is slow. This is because when the robot explores

an incorrect position, the correct approach is to pick up the

workpiece and restore it to its original position for another

assembly attempt, but it is challenging to learn this method

with sparse rewards. To address this problem, Luo et al. [43]

drew inspiration from DAGGER [44] and added an online cor-

rection module. When the robot explores an incorrect position,

manual corrections are used. Experiments have shown that this

method can achieve tight plug-in assembly with only about

10 corrections; it achieved a success rate of 99.8% in over

10,000 tests, reaching a level comparable to humans in some

tasks. The algorithm’s robustness also surpasses traditional

force search methods.

Introducing expert demonstrations can prevent abnormal

actions caused by improperly set reward functions. The design

of a dense reward function requires a lot of engineering expe-

rience; otherwise, inappropriate reward signals may cause the

robot to take dangerous actions. Introducing expert experience

to design the reward function can allow robots to learn actions

better under sparse rewards, avoiding the complicated reward

function design process. Besides, expert demonstration data

is generally optimal or suboptimal, so the expert experience

can also help narrow the search range, meaning that the

robot only needs to search for policies near the demonstration

data. It is worth noting that there is a certain difference

between this method and traditional imitation learning: tra-

ditional imitation learning focuses on encoding trajectories

into various parameter models and then selecting or generating

trajectories from the models. Although imitation learning can

quickly reproduce demonstration actions, its generalization

performance has certain limitations.

Simulation

Script-based 
data

Demonstration

Real World

Similar Task

Unseen Task

Meta Training Meta Testing

Experience
Transfer

Fig. 4. Illustration of Meta Reinforcement Learning Process

C. Meta Reinforcement Learning (Meta RL)

Sim-to-real transfer is an essential means for robot skill

learning. Sim-to-real techniques mainly include domain adap-

tation [45], [46], domain randomization [47], and progressive

networks [48]. Domain randomization has been employed

successfully in robot skill learning on several occasions [15],

[49]. However, it has limitations, such as the need for precise

model recognition, and a large amount of training required to

transfer virtual skills to physical robots.

Meta-learning, also known as “learning to learn”, aims

to learn a more efficient learning algorithm, acquiring skills

from past experiences to adapt to new tasks. Therefore,

meta-learning offers a new solution for sim-to-real transfer.

By transforming the goal of traditional meta-learning into

a Markov decision process and utilizing the framework of

reinforcement learning algorithms, meta-RL can be realized,

aiming to quickly adapt to different new tasks and obtain

optimal policies.

Meta-RL assumes that training tasks (old tasks) and new

tasks come from the same distribution. This means that al-

though there are differences between different tasks, there are

commonalities that can be referenced. Let’s denote the task as

τ , then the task distribution is p(τ). In the meta-RL scenario,

the goal is to use a small dataset Dtr
τ to let the neural network

quickly adapt to the new task τ .

In the robotics domain, meta-RL is generally first conducted

in a simulated environment and then transferred to physical

robots. For instance, Schoettler et al. [16] used domain ran-

domization in a simulation environment to train a network

and then transferred it to physical robots. Ultimately, using

less than 20 real-world experience data, the robot completed

the plug-in assembly task.

Additionally, the industrial sector has a large amount of

operation data and scripts, which can also be applied to the

meta-RL process. For example, Zhao et al. [50] divided the

training process into two phases: offline meta-pretraining and

adapting to unknown tasks. In the offline meta-training phase,

they used different tasks combined with different training

data (teleoperation, online RL, script-based data) to assist in

training the meta-network. During the adaptation phase, only

a demonstration data segment is required for task inference.

The final results show that for some scenarios very similar

to the training tasks, the network can directly achieve a

100% assembly success rate. For some significantly different
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scenarios, after half an hour of training, it can also achieve a

100% assembly success rate, further illustrating the robustness

and deployability of the method. Some researchers also used

model-based meta-RL methods combined with MPC control

to complete plug-in assembly [51].

Methods based on meta-RL significantly reduce the explo-

ration cost (most tasks are conducted in a simulated environ-

ment or offline), and can also discover commonalities between

tasks, facilitating the expansion of robot operational skills.

D. Based on Other Prior Knowledge

There are also some approaches based on other prior

knowledge, such as learning from the CAD models of plug-ins

[52], using geometric motion planning to guide reinforcement

learning, making learning faster and more reliable. The robot

only needs a few minutes to learn operational skills and can

still complete high-precision insertion tasks without accurate

state estimation. Luck et al. [53] used a trajectory optimizer

to guide the DDPG algorithm, making the learning algorithm

and trajectory optimization promote each other. As a result, the

robot can still complete peg-in-hole insertion operations with

sparse rewards and pure image input. Jin et al. [54] used offline

data to train the GVF (General Value Function) [55], achieving

counterfactual predictions from visual inputs. Counterfactual

prediction provides rich information representation, making

robot learning more efficient. Combining counterfactual pre-

dictions with force feedback from online learning can achieve

efficient skill learning with sparse rewards.

With the development of primitive learning in recent years

[56], [57], a new perspective has been provided for the learning

of complex robot actions. Primitive learning describes the

entire task action as a collection of basic actions (primitives).

An operation task might consist of hundreds of control com-

mands, but at the same time, it can also be represented using

a few primitives. The design of primitives comes from human

prior knowledge, and its interpretability and robustness are

significantly enhanced. The reduction in exploration space also

shortens task complexity and learning time. In this direction,

some researchers [14], [58] have used the method of action

primitives for peg-in-hole insertion, achieving good results.

IV. CONCLUSION

This research surveyed various seminal works in the peg-

in-hole insertion domain leveraging reinforcement learning

algorithms and classified and analyzed them, primarily com-

pared as shown in Table 1. Reinforcement learning-based

methods can learn from the environment and address intricate

peg-in-hole insertion problems that traditional contact mod-

els couldn’t handle. Although recent advancements in rein-

forcement learning incorporating prior knowledge have made

significant strides, there remains a substantial gap between

current achievements and industrial deployment. To address

the current challenges, we suggest several potential future

research directions:

A. Industrial Deployment of Reinforcement Learning

While reinforcement learning-based peg-in-hole insertion

has already demonstrated superior generalizability and ro-

bustness compared to traditional force search methods [43],

research should extend beyond the laboratory. The widespread

deployment and evaluation of reinforcement learning in in-

dustrial settings are crucial. Incremental learning and multi-

stage task assembly, as previously mentioned, are critical for

realizing industrial automation. This area may benefit from

cross-research with findings from lifelong learning [60]–[62]

and multi-task learning [63].

B. Combining Active and Passive Compliance

Considering potential issues like excessive rigidity during

the peg-in-hole insertion process facilitated by reinforcement

learning, combining active and passive compliance might be

a valuable research direction. This combination might ensure

safety while achieving superior assembly precision.

C. Sim-to-Real Transfer

In actual industrial production, given the time and safety

costs, learning directly on physical robots can be challenging.

The sim-to-real transfer offers a novel approach. As previ-

ously discussed, combining domain randomization with meta-

learning has been proven to effectively facilitate sim-to-real

transfers. However, current sim-to-real transfers often necessi-

tate fine-tuning the network on the actual robot, which could

compromise practicality and safety. The subsequent research

direction might explore achieving favorable performance with

zero-shot or few-shot sim-to-real transfers [15].

D. Offline Reinforcement Learning

A significant direction for reinforcement learning-based

peg-in-hole insertion is further reducing training time. In

addition to sim-to-real transfer, another promising approach is

offline reinforcement learning followed by fine-tuning in the

real training environment. Progress has already been made in

this field [64]–[67], and it might be beneficial to incorporate

these advancements into robotic assembly to expedite learning.
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ING FOR ASSEMBLY ROBOTS: A REVIEW,” vol. 15, p. 13, 2020.

[13] J. Xu, Z. Hou, W. Wang, B. Xu, K. Zhang, and K. Chen, “Feedback deep
deterministic policy gradient with fuzzy reward for robotic multiple peg-
in-hole assembly tasks,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 3, pp. 1658–1667, 2018. Publisher: IEEE.

[14] X. Zhang, S. Jin, C. Wang, X. Zhu, and M. Tomizuka, “Learning
insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 9881–9887, IEEE, 2022.

[15] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, and others,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020. Publisher: SAGE
Publications Sage UK: London, England.

[16] G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow, “Meta-
reinforcement learning for robotic industrial insertion tasks,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 9728–9735, IEEE, 2020.

[17] V. Gullapalli, R. A. Grupen, and A. G. Barto, “Learning reactive
admittance control.,” in ICRA, pp. 1475–1480, Citeseer, 1992.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997. Publisher: MIT Press.

[19] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992. Publisher: Springer.

[20] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning, pp. 387–395, PMLR, 2014.

[21] T. Ren, Y. Dong, D. Wu, and K. Chen, “Learning-based variable
compliance control for robotic assembly,” Journal of Mechanisms and
Robotics, vol. 10, no. 6, p. 061008, 2018. Publisher: American Society
of Mechanical Engineers.

[22] Z. Hou, H. Dong, K. Zhang, Q. Gao, K. Chen, and J. Xu, “Knowledge-
driven deep deterministic policy gradient for robotic multiple peg-in-hole
assembly tasks,” in 2018 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pp. 256–261, IEEE, 2018.

[23] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning, pp. 1587–1596, PMLR, 2018.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–1870,
PMLR, 2018.

[25] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow, and
S. Levine, “Deep reinforcement learning for industrial insertion tasks
with visual inputs and natural rewards,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5548–5555,
IEEE, 2020.

[26] B. Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, and S.-Y. Su, “Deep dyna-
q: Integrating planning for task-completion dialogue policy learning,”
arXiv preprint arXiv:1801.06176, 2018.

[27] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–472,
Citeseer, 2011.

[28] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC
control systems–A review of model predictive control (MPC),” Building
and Environment, vol. 72, pp. 343–355, 2014. Publisher: Elsevier.

[29] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4906–4913, IEEE, 2012.

[30] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 156–163, 2015.

[31] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and
P. Abbeel, “Reinforcement learning on variable impedance controller for
high-precision robotic assembly,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 3080–3087, IEEE, 2019.

[32] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep
reinforcement learning for robotic assembly of mixed deformable and
rigid objects,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2062–2069, IEEE, 2018.

[33] Y. Fan, J. Luo, and M. Tomizuka, “A learning framework for high
precision industrial assembly,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 811–817, IEEE, 2019.

[34] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,
E. Solowjow, and S. Levine, “Residual reinforcement learning for robot
control,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 6023–6029, IEEE, 2019.

[35] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi,
S. Kikuchi, T. Matsubara, and K. Harada, “Learning force control for

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 24,2024 at 04:18:21 UTC from IEEE Xplore.  Restrictions apply. 



6695

contact-rich manipulation tasks with rigid position-controlled robots,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5709–5716,
2020. Publisher: IEEE.

[36] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada,
“Variable compliance control for robotic peg-in-hole assembly: A deep-
reinforcement-learning approach,” Applied Sciences, vol. 10, no. 19,
p. 6923, 2020. Publisher: MDPI.

[37] A. Wan, J. Xu, H. Chen, S. Zhang, and K. Chen, “Optimal path planning
and control of assembly robots for hard-measuring easy-deformation
assemblies,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4,
pp. 1600–1609, 2017. Publisher: IEEE.

[38] Y. Wang, C. C. Beltran-Hernandez, W. Wan, and K. Harada, “Robotic
imitation of human assembly skills using hybrid trajectory and force
learning,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 11278–11284, IEEE, 2021.

[39] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

[40] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[41] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse
rewards,” arXiv preprint arXiv:1707.08817, 2017.

[42] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” in ICLR (Poster), 2016.

[43] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye,
S. Schaal, and J. Scholz, “Robust multi-modal policies for industrial
assembly via reinforcement learning and demonstrations: A large-scale
study,” arXiv preprint arXiv:2103.11512, 2021.

[44] A. Attia and S. Dayan, “Global overview of imitation learning,” arXiv
preprint arXiv:1801.06503, 2018.

[45] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng, S. Levine, K. Saenko,
and T. Darrell, “Towards adapting deep visuomotor representations
from simulated to real environments,” arXiv preprint arXiv:1511.07111,
vol. 2, no. 3, 2015.

[46] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” arXiv
preprint arXiv:1703.02949, 2017.

[47] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp. 23–30, IEEE, 2017.
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