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Abstract: As a popular control rhythm of the multi-joint robotic fish, Center Pattern Generators (CPGs) plays an important role
for motion performance. However, its optimal parameters are tough to seek through traditional methods. In order to address
this problem, we propose an online optimization method for CPG parameters, including a novel normalized CPGs (N-CPGs)
and a learning-based optimization algorithm. Via N-CPGs, the network parameters can be fully decoupled, which provides a
great convenience for model parameter optimization. In particular, by applying the established dynamic model of the robotic
fish, we use the deep Q network (DQN) to optimize the N-CPGs, aiming at improving the speed performance. Finally, extensive
simulation results verify the effectiveness of proposed method, laying a solid foundation for real-time online control optimization
of versatile motion modes in complex application scenarios.
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1 Introduction

Inspired by the natural underwater creatures, biomimetic
robotic fish has attracted extensive attention of researcher-
s due to the low noise and high maneuverability, thereby
shows great potential in the field of future marine operations.
From the point of the driving mechanism, the robotic fish
propelled by Body and/or Caudal Fin (BCF) mode can be
divided into three categories [1]: the single joint design, the
multi-joint design, and special mechanical structure (such as
smart material-based robot fish and soft-body robot fish). On
one hand, the mechanical design of robotic fish with single
joint is relatively simple, yet its propulsion efficiency is low.
On the other hand, there are many difficulties in controlling
the special robotic fish since the efficient and mature pro-
totypes are hard to design. Unlike the previous two kinds,
multi-joint robotic fish not only can more closely resemble
the fish’s flapping compared with single joint ones, but also
can be well designed and controlled. From the structural de-
sign to advanced algorithms such as path tracking, the multi-
joint robotic fish has been extensively studied [2–4].

Biological research indicates that fish swing rhythms are
produced by central pattern generators (CPGs) in neuronal
tissues, and the corresponding oscillation network can em-
body this abstract rhythm [5]. In order to stimulate the po-
tential of the multi-joint mechanism and make the robotic
fish swim more elegantly, CPG is widely used in the control
of the bionic robotic fish [6–8]. Although the CPG greatly
simplifies the complexity of robotic fish control, its param-
eters are hard to determined due to the multiple joints. In
order to obtain satisfactory CPG parameters, extensive trial
and error may be required by experienced researchers. This
means that not only a lot of time will be consumed, but al-
so there is no guarantee that manually adjusted parameters
can work in the changing environment. In view of this prob-
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lem, we focus on the CPG parameter optimization problem,
and propose a reinforcement learning algorithm that trains
robotic fish to “intelligently” learn to online optimize CPG
parameters in changing environment.

In previous researches for the CPG parameter optimiza-
tion of multi-joint robotic fish, Particle Swarm Optimiza-
tion (PSO) was adopted [9], the notion of which lies in the
collaboration and information sharing between individuals
of a group to find the optimal solution. By integrating the
PSO algorithm into the simulated dynamics model of the
robotic fish, the results can be iteratively obtained. Further,
there are four steps for PSO algorithm to optimize CPG pa-
rameters [10]. First, a kinetic model should be established.
Second, through identifying the kinetics model parameters
with experimental data. The model can be sufficient to sim-
ulate the actual swimming of the robotic fish. Next, the PSO
algorithm will be executed to obtain the optimal CPG param-
eters with the goal of optimizing a certain performance. Fi-
nally, the optimized parameters are verified on the biomimet-
ic robotic fish platform.

Although the PSO algorithm has the advantages of easy
implementation and good global optimization capabilities,
there are some serious shortcomings when the PSO algorith-
m is used for the biomimetic robot parameters optimizing
problem. First, the optimization process is performed of-
fline, which greatly hinders the practical applications of the
robotic fish. Second, due to the reliance on the simulation
environment, PSO cannot be implemented in the robot enti-
ty. Finally, after obtaining the optimal parameters, the robot
cannot adaptively adjust the CPG parameters in the changing
ocean currents through the PSO algorithm.

Inspired by machine learning, this paper designs a Rein-
forcement Learning (RL) algorithm to make the robotic fish
obtain the intelligence of improving CPG parameters online.
The reward in the algorithm is set according to the expect-
ed swimming performance, and some prior knowledge about
CPG parameters is used to constrain the action space, which
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speeds up the training of RL algorithm. In this work, the
swimming performances we expect are high forward swim-
ming speed and small head swing amplitude of robotic fish.
More importantly, we particularly design a novel normalized
CPGs (N-CPGs), which makes parameter modification more
robust and greatly contributes to model parameter optimiza-
tion. The learning results include a set of optimized CPG
parameters and a RL-based intelligent Agent (RL-Agent) ca-
pable of optimizing CPG parameters through feedback sen-
sor data. This set of optimized parameters is used as the
startup parameters of the robot platform, and the agent is
loaded as the initial intelligent algorithm of the robot. Based
on this, the RL-Agent can continue to learn in the aquatic
experiments of the robot, while the CPG parameters can be
adaptively optimized online.

The remainder of this paper is structured as follows. The
prototype and hydrodynamic model of robotic pike is de-
tailed in Section II. The proposed normalized CPGs (N-
CPGs) is presented in Section III. Optimization algorithm
based on RL is illustrated in Section IV. Simulation results
and analysis are provided in Section V. Finally, concluding
remarks are offered in Section VI.

2 Robotic Prototype and Hydrodynamic Model

2.1 Overview of Robotic Prototype

The biomimetic robotic pike was developed in our previ-
ous work [11]. The robotic pike consists of a four-joint tail,
a hard-shelled head and two pectoral fins with 2 degrees of
rotational freedom. Its mechanical structure and prototype
are illustrated in Fig. 1. The tail joints are driven by four ser-
vomotors. The control signal of the servomotors comes from
the STM32 microcontroller located at its head. The micro-
controller obtains the motion information of the robotic pike
from the IMU module and the depth sensor, and communi-
cates with the experimental console through the radio fre-
quency module. This robotic fish can not only obtain com-
prehensive sensor information, but also can swim flexibly
with the cooperation of the tail joints. Its streamlined body
shape and flexible tail fin give it great swimming potential.
The real-time communication and control capabilities pro-
vide conditions for online CPG parameter optimization. In
the following parts, taking this kind of multi-joint robotic
fish as the research object, we will illustrate the design pro-
cess of online CPG parameter optimization algorithm.

2.2 Hydrodynamic Model

In this part, we will establish a dynamic model for the
robotic pike. The simulation environment based on the dy-
namic model is set to train the RL-Agent. It is worth noting
that proposed algorithms are not limited to the simulation
environment and can be exported to the robotic pike envi-
ronment, which will be further verified later.

With the focus on the tail’s motion and force, we can con-
sider the multi-joint robotic fish as a multi-link mechanism.
From the point of kinematic analysis, the head speed can be
calculated by the Newton–Euler equation in the simulation
environment. Then the kinematic data of each tail joint are
calculated by the converting matrix of the coordinate system
of the multi-link. The recursive relationship of the velocity

IMU
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Fig. 1: Overview of the robotic prototype. (a) Schematic
design. (b) Robotic prototype.

vector is as formula (1) shown.
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where Hi
i−1, Ri−1

i and P i−1
i are the converting matrix, rota-

tion matrix and position vector, respectively; V i is the i-th
joint’s velocity vector; θi is the i-th joint angle; ki is the
vertical upward unit vector at each joint.

With regard to dynamic analysis, the thrust of the robotic
fish is mainly generated at the last joint of the tail. The force
can be converted forward in turn through the coordinate sys-
tem converting matrix of the multi-link, and finally the force
of the head can be obtained. Thus, the kinematic data such
as speed and attitude can be computed by Newton–Euler law.
The recurring relationship of the interaction forces between
adjacent joints is as follows:

Gi
i+1,i = Hi

i+1G
i+1

i+1,i = Hi
i+1G

i+1

i,i+1 (2)

where the Gk
i,j is the representation of the force of the i-th

joint on the j-th joint in the k-th joint coordinate system.
The force analysis of each joint is obtained by hydrody-

namic theory analysis [12]. Each joint is mainly subject
to lift Li and resistance Di of the tail fin, additional mass
forces fad,i, resistance fdr,i from water, Corioli forces and
conceding forces γi. According to Newton–Euler equation,
the relationship between the force and acceleration of the
joints is as follows:

Gi
i−1,i−Gi

i+1,i+Li+Di+fad,i+fdr,i=M iV i+γi (3)
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Fig. 2: Schematic diagram of data flow in robotic pike envi-
ronment. (a) Hydrodynamic model, i.e., simulation environ-
ment. (b) Robotic pike environment.

where fad,i = −Mad,iV i−γad,i; fad,i is the additional
mass of each joint; γad,i is the Corioli forces and conceding
forces caused by additional mass.

The speed is recursively from the head to the tail, and the
force is recursively from the tail to the head. In the head, the
speed and the force are connected by formula (1–3) so that
the explicit dynamic equation is obtained as shown below.

V̇0=−

[
n∑
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(
H

0
i (Mi +Mad,i)H

i
0

)]−1
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i

−
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]
.

(4)
Note that the hydrodynamic parameters in the model have
been identified through aquatic experiments, and more de-
tails on dynamic model can be found in [7].

In order to clearly demonstrate how to use the dynamic
model to build a simulation environment and how the RL al-
gorithm adjusts the CPG parameters to train the RL-Agent,
the calculation process and data flow are summarized into a
block diagram, as shown in Fig. 2(a). To better illustrate that
the proposed algorithm is not limited to the simulation envi-
ronment, we present a data flow block diagram in the robotic
pike environment (Fig. 2(b)). For robotic pike environment,
the head speed is obtained from the IMU sensor directly.

Until now, the multi-joint robotic pike environment has
been established. Before training the RL-Agent in the creat-
ed environment, we propose a normalized CPGs (N-CPGs),
which makes it easier and more stable to modify the CPG
parameters during training.

3 Normalized CPGs (N-CPGs)

The construction of the CPG network depends on the os-
cillator. In addition to the complex biological-neurons-based
CPG model, the two common models based on nonlinear
oscillators are the Kuramoto phase oscillator and the Hopf
oscillator. The limit-cycle-based CPG model, built with the
Hopf oscillator, can quickly converge to the limit cycle un-
der the appropriate learning rate α [13]. This CPG model
greatly reduces the parameters number and the complexity
of the oscillator by building linear coupling between the n-
earest adjacent units through a simple chain topology. The
CPGs network used for robotic pike control connects adja-
cent oscillators directly, as shown in Fig. 1(a). Each oscilla-
tor corresponds to a tail joint.

The proposed N-CPGs is based on the Hopf CPGs, and
the topology of the N-CPGs controlling the robotic pike is
the same as that of the CPGs. Firstly, we give the original
mathematical model of Hopf CPGs, as shown in (5-7).[

ẋi

ẏi

]
=

[
α
(
Ai−r2i

)
−ωi

ωi α
(
Ai−r2i

)] [xi

yi

]
+

∑
j=i±1

h

[
cos (Δϕij) − sin (Δϕij)
sin (Δϕij) cos (Δϕij)

] [
xj

yj

] (5)

[
xi

yi

]
=

[
xi

yi

]
+

[
ẋi

ẏi

]
dt (6)

θi = yi (7)

where i refers to the each joint of robotic pike (i=1, . . . , 4.);
xi and yi is CPGs’ output; α is the learning rate; r2i =x2

i+y2i ;
Ai is the swing amplitude of each joint; θi is the joint angle;
Δϕij is the phase difference between joint i and joint j; ωi

is the angular frequency; dt is the control period; h is the
coupling coefficient.

In the original CPGs model, the optimal learning rate α
is different under different amplitudes. If both the chosen
learning rate and the CPG parameter-amplitude are large,
the output curve of the oscillator will oscillate strongly
(Fig. 3(a)). On the contrary, if they are small, the output
curve of the oscillator will converge slowly (Fig. 3(b)). It
can be seen that the optimal learning rate of the CPGs net-
work should not be fixed. Therefore, in the training process,
the algorithm adjusts the amplitude while correspondingly
modifying the learning rate, which is very cumbersome.

In addition, when the parameters (frequency or amplitude)
of the CPGs network are drastically changed, the oscillator
may produce a large ẋi and ẏi for quickly converging, so
that the output joint angle curve may have a spike (Fig. 3(c)).
During the long training process, CPGs may diverge due to
drastic changes of CPG parameters at a certain uncontrol-
lable moment (Fig. 3(d)). This divergence is undesirable for
the RL-Agent training process.

In order to solve the problems in the CPGs network, we
propose the N-CPGs. To put it simply, formula (5) is divided
by the amplitude A to remove the amplitude gain, and the
output amplitude of the oscillator is normalized to unit 1, so
as to obtain the normalized formula (8-11). Note that the
gain of the amplitude will be compensated in the calculation
of the joint angles. In addition, there are three improvements
in N-CPGs model.
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Fig. 3: Unexpected conditions of original Hopf CPGs. (a)
Too Large learning rate. (b) Too small learning rate. (c)
Spikes caused by drastic changes in CPG parameters. (d)
Divergence caused by drastic changes in CPG parameters.

1) A constraint function CF (wi) is added to constrain ẋi

and ẏi, as illustrated in (9). The function CF (wi) is
fitted by the maximum value of ẍi and ÿi at different
angular frequencies

2) The output of the oscillator should be compensated for
the amplitude gain before it outputs as the control quan-
tity of the joint angles, as shown in (11).

3) When the parameter-amplitude is modified, it should be
calculated according to (12), and other parameters can
be modified directly.
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=
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ẋi

ẏi
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ẋi,old
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θi = Ai × yi (11)

where ẋi and ẏi is N-CPGs’ output, whose amplitude is 1;
α′ is the learning rate; h′ is the coupling coefficient.[

xi

yi

]
=

[
xi

yi

]
÷Ai,old

Ai = Ai,new

(12)

The advantages of N-CPGs are reflected in the following
four points.

1) The amplitude of the oscillator is normalized to 1, and
the optimal learning rate that matches unit amplitude
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Fig. 4: Fixed amplitude error at learning rate α=20.
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Fig. 5: Comprehensive performance of N-CPGs.

can be chosen to ensure that CPGs can transition to the
next convergence state as quickly as possible when the
CPG parameters are modified.

2) Depending on the chosen learning rate, the error be-
tween the actual amplitude and the set amplitude can
be kept within a fixed range. By adjusting the learning
rate according to control requirements, the magnitude
of error can be controlled. In the case of α=20, the am-
plitude error is (1.053− 1)÷1 ≈ 5.3 %, as shown in
Fig. 4.

3) The added constraint function enables CPGs to transi-
tion smoothly even when the parameters change drasti-
cally.

4) The effective amplitude modification method is pro-
posed for the normalized model.

Fig. 5 comprehensively shows the ability of N-CPGs to
adapt to changing parameters. Within 12 s of decreasing
the frequency, increasing the amplitude, decreasing the am-
plitude, and reducing the phase difference sequentially, the
curve can all be smoothly and quickly transitioned.

4 Optimization Algorithm Based on RL

The purpose of the optimization algorithm is to build an
original RL-Agent, and obtain a set of optimized CPG pa-
rameters at the same time. The classic deep Q network
(DQN) method is used as the framework of the reinforce-
ment learning algorithm. DQN algorithm approximates the
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action value function Q(action, state) through a deep net-
work. Thanks to the deep network’s ability to fit complex
functions, the learning problem of multi-dimensional actions
space can be well solved. In this paper, a six-layer neural net-
work serves as an approximator of the action value Q func-
tion. For the multi-joint robotic fish environment, the con-
struction of the DQN algorithm has some special features.
On the one hand, the action space can be constrained by the
prior knowledge of CPG parameters. On the other hand, the
globally optimal CPG parameters can be recorded through-
out the training process and used to reset the CPG param-
eters in the next episode. Prior knowledge and global data
can improve the convergence speed of training to a certain
extent.

The learning algorithm will be introduced from five as-
pects.

• Action space: It is composed of 15 discrete actions. In
detail, 8 actions control the increase or decrease of the
amplitude of four joint angles, and 6 actions control the
increase or decrease of the phase difference between the
four joints, and the last action does not change any CPG
parameters. The execution of the action is based on the
prior knowledge of the robotic fish system on CPG pa-
rameters. The prior knowledge is reflected in that the
amplitude of each joint increases from front to back,
and that the phase differences between the joints are
positive, that is, the phase of the next joint is behind the
previous joint. Due to mechanical limit, the effective
range of amplitude is [0, 60◦], and according the expe-
rience the range of phase difference is also [0, 60◦]. A
non-zero exploration rate ε is configured to accelerate
the exploration of the action space.

• State space: It is an 8 × 1 vector, as shown in (13).
V x is the average speed in one period after the speed
stabilizes.

State =
[
A4×1,Δϕ3×1, V x

]
(13)

• Reward function: Its design starts with the expect-
ed swimming performance. The desired performance
in this paper is high swimming speed and small head
swing. The small head swing is reflected in the smal-
l fluctuation range of the lateral velocity. As a result,
the reward function is designed using variables forward
speed Vx, and the speed interval Vrange in one period.
After several attempts, a feasible reward function de-
sign is shown in the (14). The meanings of the two parts
of the reward function are “kinetic energy reward” and
“fluctuation range penalty” respectively. Among (14),
a and b are the weights of the two parts.

Reward = a× V
2

x − b× Vrange (14)

• Termination condition: It is mainly determined by two
factors. On the one hand, it is expected that the trained
agent can obtain optimized parameters within 30 exe-
cutions of the action. On the other hand, it is never
expected that the forward speed is negative. Therefore,
when the speed reaches a negative value, a large penalty
is given, and then the episode ends. When the parame-
ter modification action is executed more than 30 times,
the episode ends.
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Fig. 6: Plot of training convergence curve.

• Environment reset: When the environment is reset, the
CPG parameters are reset with the recorded global op-
timal parameters. The global optimal parameters are
used as the initial state of the next episode, which can
effectively speed up the training.

5 Training and Result

Within the algorithm framework presented in Section IV,
RL-Agent is trained. According to experience, the initial
CPG parameters are set to A = [10, 15, 20, 25],Δϕ =
[30, 15, 15]. The frequency of CPG is a fixed value 2π rad/s,
that is, the tail flaps once per second. The weight a and b are
set to 200 and 100, respectively. The exploration rate ε is set
to 0.1.

After training for 60 episodes, the training curve is con-
verged, as shown in Fig. 6. From the convergence curve, it
can be seen that after training 30 episodes, the original RL-
Agent and optimized CPG parameters are obtained.

In order highlight the effect of the optimized CPG param-
eters, we use the initial experience parameters before train-
ing and the optimized parameters after training to control the
robotic pike. The curves of forward speed under two sets of
parameters are illustrated in Fig. 7. Notice that the blue curve
is the speed under the initial experience parameters, while
the red curve is the speed under the optimized parameters.
As can be seen, at the frequency of 1 HZ, the forward speed
is increased from 0.30 m/s to 0.32 m/s and the head swing
amplitude is reduced from 0.24 m/s to 0.14 m/s, which ver-
ifies the effectiveness of the optimization algorithm.

After obtaining the RL-Agent, we can load the RL-Agent
on the robotic fish. The RL-Agent no longer needs the ex-
ploration of random actions, so the ε is set to zero. The op-
timized CPG parameters are used as startup parameters of
robotic pike. The RL-Agent can online optimize the param-
eters through the sensor data and learn online to improve
its intelligence. Through online learning during swimming,
robotic fish gradually learns to adjust tail flapping param-
eters more robust and stable. As a result, no matter what
environment the robotic fish swims in, it can be started up
with the optimized optimal parameters.

It should be remarked that, the focus in this paper is the
swimming speed performance, but the optimization algorith-
m is not limited to this indicator. By designing appropriate
reward functions according to the expected performance, the
optimization algorithm can be easily transplanted to other
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tasks, such as high acceleration, quick turning, high energy
efficiency, to name a few.

6 Conclusion and Future work

In this paper, we proposed a novel N-CPGs model for the
robotic fish, based on which an online RL-based algorithm
for optimizing the control parameters is presented. Firstly, a
complete dynamic model of the multi-joint robotic fish has
been established as the training environment. Further, by ap-
plying the N-CPGs, the parameter optimization is more con-
venient and robust than original Hopf CPGs model, which
lays the foundation for the stability of training. Finally, the
optimization algorithm based on DQN is designed for the
built training environment. With the goal of improving speed
performance, an RL-Agent and a set of optimized parameter-
s are successfully obtained. A comparative simulation veri-
fies the effectiveness and superiority of the proposed meth-
ods. This work sheds light on the intelligence of multi-joint
robotic fish to adjust control parameters autonomously with
the goal of improving motion performance.

In the future, we will improve the optimization perfor-
mance of the algorithm through extensive experiments in
real-world aquatic scenarios. Furthermore, the agent will
learn the ability to optimize more swimming performance
by perceiving more environmental information.
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