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ABSTRACT

Neural semantic parsing maps natural languages (NL) to
equivalent formal semantics which are compositional and de-
duce the sentence meanings by composing smaller parts. To
learn a well-defined semantics, semantic parsers must recog-
nize small parts, which are semantic mappings between NL
and semantic tokens. Attentions in recent neural models are
usually explained as one-on-one semantic mappings. How-
ever, attention weights with end-to-end training are shown
only weakly correlated with human-labeled mappings. De-
spite the usefulness, supervised mappings are expensive. We
propose the unsupervised Hungarian tweaks on attentions
to better model mappings. Experiments have shown our
methods is competitive with the supervised approach on per-
formance and mappings recognition, and outperform other
baselines.

Index Terms— semantic parsing, hungarian algorithm,
attention mechanism, compositional semantics

1. INTRODUCTION

Semantic parsing transduces natural language sentences into
formal semantic representations understandable or executable
for intelligence agents, such as the untyped λ-calculus, LISP
and SQL. Formal semantics are compositional and complete
meanings are composed by smaller components, up to atomic
semantic mappings, for example “less than” being translated
to < operator in SQL, which may vary across domains and
schemas. Thus semantic parsers have to learn two subtasks,
the recognition and composition of semantic mappings.

Neural parsers are agnostic about the subtasks and trained
end-to-end. Although competitive on many benchmarks, they
had been shown inferior to understand compositional seman-
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tics [1]. We hypothesize the potential defect lies in the at-
tention modules, which are designed to recognize the map-
pings from natural language words to semantic tokens and to
produce the context vectors. The attentions produce dense
weights and lack supervisions, which weaken their effects of
recognizing semantic mappings and thereby increase the bur-
den on the compositions for the model.

One straightforward solution is to make the attention
weights sparser. For example, substitute the Softmax with
SparseMAX [2] in the attention modules, or use temperature-
annealing schedule during training. They can improve the
weight sparsities significantly and are expected to reason-
ably solve the recognition subtask. However, due to the lack
of convincing feedbacks, end-to-end training of the sparse
attentions doesn’t assure meaningful mappings or better per-
formance, although their sparsities are enhanced.

Another solution is to manually label the mappings [3].
Although the consensus among human labels are not easier to
obtain, the supervision significantly improve the performance
and the model interpretability. However, manual labels are
expensive and even questionable for complex semantics like
the deeply nested SQL queries in the ATIS dataset.

To circumvent the issues, we propose the Hungarian
tweak for classic attentions. We simplify the semantic map-
pings as an one-on-one assignment problem, i.e., forcing
each word being aligned to one single token, but leaving the
tokens unaligned if the words are exhausted and vise versa.
In the language of the assignment problems, we shall find
the maximal matching reward on a weighted bipartite graph
(words against tokens), and the mappings are then consid-
ered optimal. In each iteration during training, we solve the
assignment problem characterized by the runtime attention
weights, and use the optimal assignments in the loss function.
Similar to the EM algorithm, the training process simulta-
neously guides the model to update the estimated attention
weights, and maximizes the attention-based reward. The sim-
ple unsupervised tweak is not only competitive to the SOTA
and supervised alternative, but also shown better agreements
and sparser weights to other sparse attention counterparts.

Furthermore, we find the effectiveness of Hungarian



tweaks is depended on the dataset. Every example of SQuALL
requires only one table and shows clean connections be-
tween the natural language words and the where clauses in
SQL queries. However, for complex representations like the
deeply nested SQL queries in the ATIS dataset, the one-on-
one simplification can not be accurate. Instead of turning the
problem to a more sophisticated version (like many-to-many
structural mappings), we find the tweak also effective if used
in reverse. Specifically, contrary to picking up the optimal
assignments for the loss function, we build the negative feed-
backs for attentions by excluding the least optimal mappings.
The modification is also simple and shown effective on sev-
eral complex SQL datasets. Note that we focus on SQL only
and dismiss the more concise representations like FunQL and
λ-calculus, because they show a closer proximity of syntax
to natural language and are not comparable to representations
like Python and SQL.

In this work we highlight the importance of semantic
mappings recognition for compositional semantics. By cast-
ing the semantic mappings into an assignment problem, we
propose the unsupervised Hungarian tweaks that is competi-
tive to the supervised SOTA. And we also propose the reverse
Hungarian tweak, which is easy to implement, for datasets
where token-level mappings are not explicit. By evalua-
tions on a variety of datasets, we show the attention modules
trained with Hungarian tweaks can generate more accurate
weights and have better interpretability.

2. METHODOLOGY

2.1. Formalization

We choose an encoder-decoder model for each dataset, fol-
low its formalization, and only add training losses for the at-
tention modules. Specifically, the model input is a natural
language sentence x = {xi}ni=1, and generates an SQL query
y = {yj}mj=1. If x is accompanied with a table, the table
header t is concatenated, forming x = [x; t]. A model may
have multiple attention modules. One typical implementation
is adopted in the decoder fd which attends to hidden states
H = {hi}ni=1 = fe(x) produced by the encoder fe, as Eq.1.

cj =
∑
i

fnorm(fscore(qj , ki))vi =
∑
i

wijvi (1)

where the keys k and values v are transformed from H , the
query qj is transformed from the decoder state at time step
j, fnorm tries to normalize the score into weights that sum
to one, and fscore is the score function. We keep the score
functions of the baseline, such as the dot-product fdp(x, y) =
xT y and the bilinear fb(x, y) = xTWy functions.

For fnorm the Softmax is commonly used, but we also
try using the SparseMAX as suggested in Section 1. We also
bring in a linear annealing schedule for comparison, which
change the temperature τ in fτ (x) = Softmax(x/τ) during

training. The τ is initialized to 1 and equivalent to the stan-
dard Softmax, and decreased to 0.1 at the last epoch. The two
hyperparameters are fixed and not investigated.

2.2. Hungarian Attention

We bias the attention weights by adding additional loss terms
Lhun to the original cross-entropy loss as L = Lxent +
λLhun. The key to our method is to cast the attentions to
assignment problems. A feasible solution to the problem is a
binary matrix A = {aij ∈ {0, 1}}. aij is 1 if xi is assigned
to yj and both must not be involved in other assignments. An
optimal A∗ maximizes the reward R(A) in Eq.2.

max
A

R(A) =
∑

aij∈A

aijwij (2)

s.t. aij ∈ {0, 1},
∑
j

aij ≤ 1, and
∑
i

aij ≤ 1

where wij is the runtime attention weight calculated as
Eq. 1. The Hungarian algorithm is one of the standard and
polynomial-time algorithms to the problem. We adopt the
variant one from the SciPy package to support rectangular
weight matrix (n ̸= m).

Since the algorithm implementations are not differen-
tiable, we build two losses based on MSE and cross-entropy
respectively as Eq.3 and Eq.4 to train attention parameters.

Lmse
hun =

∑
aij∈A∗

(wij − aij)
2

2
· 1[aij ̸= w̄ij ] (3)

Lxent
hun =

∑
aij∈A∗,aij=1

− log(wij) · 1[aij ̸= w̄ij ] (4)

where the optimal solution is represented by the binary tensor
A∗ ∈ Rn×m. The 1[·] is the indicator function and the w̄ij is
binary and equals 1 if and only if wij is the maximal weight
of the i-th row. In this way, the loss will be disabled dynam-
ically for wij that is sufficiently good, thereby eliminating
the unwanted update especially at the early stage of training
when the attention weights are not well-trained. With super-
vised oracle mappings O, A∗ in Eq. 3 can be replaced with
O, yielding the supervised loss term Lsup.

Note the attention weight matrix wij is column-normalized
by fnorm. It thus can tell the mapping strength over each xi

given some j, but it doesn’t fit the exclusive constraint as
Eq.2. The Hungarian attention can be seen as exerting con-
straints across the rows, biasing the weight matrix towards
discrete and exclusive mappings.

2.3. Reverse Hungarian Attention

For datasets that are both small and complex, the Hungarian
tweaks may not be effective because the data are clearly not
reducible to simple one-on-one mappings. For example, the
ATIS contains deeply nested SQL queries, a constraint may
correspond to a complete subquery. We hypothesize that the



Hungarian attention can at least be used in reverse. Instead
of making the mappings more sparse and explicit, we can
remove the least relevant context from x for generating cj .
Although the Hungarian algorithm can solve the minimal op-
timization of Eq.2, we build a new weight matrix C as Eq.5,

cij = (1− wij)/(n− 1) (5)

such that C is as column-normalized as W , and any pair
(cij , ckj) of the column C·j satisfies that cij < ckj if and
only if wij > wkj . In this way, if we substitute W with C
in Eq.2, the Hungarian algorithm can give the least probable
mappings without changing the code and loss function. And
the gradient to w will be in the reverse direction of c.

3. RESULTS ANALYSIS

Table 1 lists the dataset scales. Every example contains a nat-
ural language question x and a corresponding SQL query y.
But SQuALL examples have an additional table t and the la-
beled mappings among x, t, and y. Other datasets assume a
fixed schema and do not come with mapping labels.

Table 1. Statistics of datasets used in experiments.
ATIS GEO Scholar Advising SQuALL

Train 3014 409 433 3440 9030
Dev. 405 103 111 451 337

Testing 402 95 105 446 4344

We combine ATIS, GEO, Scholar, and Advising into a
single dataset AGSA due to their limited size, forcing one
model to parse for all. We follow the i.i.d. splits [4] of
AGSA, and report results with 5 random seeds. SQuALL
has 5 different splits by default and we run experiments on
each of them. We adopt one of the dominant models for every
dataset, and only compare attention modules trained with the
proposed Hungarian tweaks and the basic setup within that
model. Specifically, we choose the baseline model [3] for
SQuALL and the Seq2Seq baseline for AGSA.

3.1. Analysis on SQuALL

The basic model for SQuALL is a BERT encoder and an
LSTM decoder with bilinear attentions. The Softmax and
SparseMAX as fnorm are compared. Oracle mappings use
the manual labels as the drop-in replacement of wij(Eq. 1).
The supervised loss Lsup uses manual labels to improve each
setting. As the unsupervised alternatives, our Hungarian
tweaks use the Lmse

hun loss following the baseline model which
uses MSE for Lsup. For Softmax we also include the anneal-
ing schedule for comparison. The performance are listed in
Table 2.

Similar to [3], the Oracle mappings by human workers,
have outperformed other settings, although the labels may

Table 2. Dev accuracies of different SQuALL splits
Setup Dev0 Dev1 Dev2 Dev3 Dev4 Mean

Softmax 40.6 44.8 43.6 46.9 45.2 44.2
+ Lsup 43.4 47.6 43.7 45.7 46.4 45.4
+ annealing 38.6 41.6 39.5 40.6 44.7 41.0
+ Lhun 43.5 47.2 42.7 44.3 46.4 44.8

Sparsemax 36.6 40.1 35.8 35.0 39.2 37.3
+ Lsup 42.7 46.3 43.6 44.4 45.0 44.4
+ Lhun 42.3 44.6 40.8 43.4 45.5 43.3

Oracle 59.5 64.0 59.5 58.7 61.0 60.5
+ Lsup 61.8 65.4 61.4 60.8 62.5 62.4

Table 3. Gini Indices on Dev0 split for different setups.
S-Q S-T Q-T T-Q

Softmax 0.7685 0.8272 0.9141 0.9013
+ Lsup 0.4885 0.249 0.2351 0.3499
+ annealing 0.8949 0.9091 0.9648 0.9981
+ Lhun 0.4455 0.2368 0.1327 0.5577

Sparsemax 0.9004 0.8280 0.8295 0.901
+ Lsup 0.5434 0.2497 0.2506 0.4166
+ Lhun 0.5892 0.3023 0.2700 0.697

Oracle 0.0173 0.7409 0.7157 0.8426
+ Lsup 0.0178 0.7467 0.724 0.8235

lack consensus. In addition, we find the Oracle mappings can
be further improved significantly with supervised loss Lsup,
which means the manual labels can not only direct the align-
ment structures, but also enhance the token representations
and network parameters. Moreover, the supervised loss can
improve both Softmax and SparseMAX, indicating that they
cannot yet capture the implicit mappings. Therefore, we’re
delighted to see the unsupervised Hungarian tweaks, could
achieve similar performance against the supervised loss.

Attention sparsities are analyzed in Table 3 with the Gini
Index [5]. Higher Gini values indicate sparser weights. Sev-
eral attentions exist in the model among Question words,
Table headers, and SQL tokens. Initial letters S, Q, and T are
used to describe attentions. For example, the S-Q attention
uses SQL as q and Question words as k in Eq. 1.

Recall that the Oracle is manually labeled. The learned
sparsities are expected to be leaned towards the Oracle. In
Table 3, the dense S-Q of Oracle is the most prominent,
which means few SQL tokens would be connected to the
question. There is a strong negative correlation between the
S-Q Gini values and the Dev0 accuracies. The Hungarian
tweaks and supervised loss have both significantly reduced
the S-Q Gini, which explains their better performance. How-
ever, the SparseMax and the τ annealing boost the sparsity of
S-Q, which is not required and thus harms the model.

For other attentions (S-T, Q-T, T-Q), the Oracle gives a
moderately high sparsity. The softmax and sparsemax can



Table 4. Ablation accuracies of settings by removing the
Hungarian tweak for every attention modules on SQuALL

Dev0

Hungarian Attentions 43.5
- no SQL-Question 42.3
- no SQL-Table 42.8
- no Question-Table 43.0
- no Table-Question 42.2

0.0

0.2

0.4

0.6

0.8

1.0

Softmax Supervised Loss Annealing Hungarian SparseMAX

SQL-Question SQL-Table Question-Table Table-Question

Fig. 1. Recall of the mappings on different setups. For a query
qj the key ki with the highest weights wij is considered as the
predicted mapping and compared with the Oracle.

give sparser weights than the Hungarian tweaks and even the
supervised loss. We investigate the contradiction with abla-
tions. Table 4 tells the S-Q and T-Q have greater impacts on
the improvements than S-T and Q-T.

Moreover, because sparsity can not tell whether attentions
have learned the correct mappings, we pick the mappings with
the greatest attention weights and compare with the Oracle.
Figure 1 shows the supervised loss has nonetheless learned
the most correct mappings. But the Hungarian tweaks do well
on both S-Q and T-Q, which are more important from Table 4
Therefore, we can conclude that Hungarian tweaks is more
flexible than the end-to-end training.

3.2. Analysis on AGSA

We use Seq2Seq with bilinear attentions on AGSA, and the
Lxent
hun is used for the Hungarian tweak due to its better per-

formance against Lmse
hun . Following the convention [4] we use

5 random seeds and report the mean results for the combined
AGSA dataset. Accuracies are evaluated by exact matches of
the predicted SQL against the gold targets.

Table 5 compares the effect of Hungarian tweaks. As sug-
gested in Section 2.3, the deeply nested SQL queries in AGSA
are too complex that the simplification of token-level one-
on-one mappings is not applicable. Although the Hungar-
ian tweak can improve attention sparsities, the performance
is significantly worse. With the SQL representations, it’s also

Table 5. Accuracies with 5 random seeds on AGSA dataset.
Dev Test

Seq2Seq (Baseline) 71.35±1.13 69.87±0.81
+ Hungarian Attn. 65.81±1.73 64.52±0.95
+ Reverse Hungarian Attn. 71.50±0.80 70.42±1.26

Table 6. Results on AGSA dev with one fixed seed
EM Accuracy Gini Index

Seq2Seq (Baseline) 70.01 0.8199
+ Hungarian Attn. 64.21 0.8757
+ Reverse Hungarian Attn. 71.59 0.8535

hard to specify phrase-level mappings even manually. But
with the help of reverse Hungarian tweak, where we pick
up the least possible attention and build negative feedbacks,
the attention weights get moderately sparser, and the perfor-
mance is also improved. The implementation is lightweight
to most neural models against methods utilizing span-based
mappings, but also brings improvements.

4. RELATED WORK

Neural semantic parsers follows the encoder-decoder struc-
tures [6] and are trained end-to-end instead of being com-
positional. To reduce grammatical errors, Seq2Tree [7] is
proposed to generate nested trees for untyped λ-calculus.
Grammar-based decoders [8,9] are then proposed to generate
sequences of rules instead of tokens, in the depth-first order
of target AST. Other parsers design intermediate patterns
over the targets [10–15]. The abstraction layer can be seen
as handcrafted structures for the targets, which can reduce
the learning difficulties for the model. Similarly, span-level
mappings [16] are proposed to reduce the complexity for the
source. Moreover, formalizations such as the Tree Substi-
tution Grammar [17], and constituency boundaries [18] are
also proposed to explore other grammatical decodings other
than the CFGs. However, their work presumes that semantic
mappings can be correctly captured by attentions, orthogonal
to our goal to improve the attention training.

5. CONCLUSION

In this paper, we have addressed the importance of seman-
tic mappings for compositional semantics. Vanilla attentions
have given worse results and failed to predict the mappings.
The forced sparsity by SparseMAX and annealing is not flex-
ible and may not predict the correct mappings. The proposed
Hungarian tweaks on attentions can predict better mappings
as manual labels and only encourage sparsities on demand.
For datasets not suitable for flat one-on-one mappings, we
show the reverse Hungarian tweaks can reduce noisy map-
pings and increase sparsities along with the performance.
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