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Abstract. Currently, due to the significant negative impact of social bots, there 

has been widespread interest among researchers in automating the detection of 

social bots. And Graph Neural Network-based (GNN-based) detection methods 

have flourished, showing a very promising prospect in terms of detection perfor-

mance. However, existing GNN-based social bot detection methods generally 

rely on densely annotated nodes in the context of social bot detection, leveraging 

them as training samples to guide the model training process, i.e., the detection 

social bot detection process. This demand for a large number of annotated nodes 

severely restricts the availability of GNN-based methods. To address this issue, 

we construct a GNN-based method that operates in a self-supervised pretraining-

probing manner by stacking a graph masked autoencoder on top of a feature au-

toencoder (GMAE2). Benefiting from the pre-training of the encoder with self-

supervised learning, the requirement of labeled nodes is significantly reduced. 

Through extensive experiments, we showcased that our GMAE2 is more suitable 

for social bot detection with an extremely low proportion of labeled nodes com-

pared to existing methods. Our code is available at: https://github.com/CASI-

Ahht/GMAE2-SBD. 

Keywords: Social Bot Detection, Graph Self-supervised Learning, Graph 

Masked Autoencoder. 

1 Introduction 

Social bots refer to accounts that operate in an automated or semi-automated manner 

on social media platforms, comprising approximately 9% to 15% of the monthly active 

user numbers on mainstream social media [1, 2]. Apart from stealing personal privacy 

and causing economic losses [3, 4], social bots can also influence public opinion and 

threaten the integrity of democratic politics and social stability [5]. They have facilitated 

the spread of anti-science discourse about epidemic prevention [6], and potentially 
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swaying the fairness of political elections across various regions [7, 8]. Given the vast 

number of social media users and social bots, the automated detection of social bots has 

received extensive attention from researchers. 

There are three types of social bot detection methods according to their main infor-

mation sources: feature-based, structure-based and hybrid methods [9, 10]. And GNN-

based methods are a branch of hybrid methods, which utilize GNN encoders to integrate 

user feature information and structural information in an end-to-end manner for the 

detection of social bots. This end-to-end manner enables that GNN-based methods not 

only inherit the superior performance and robustness of hybrid methods but also repre-

sents a more promising prospect for future developments. 

Even though GNN-based methods have their advantages in performance, most ex-

isting GNN-based methods rely on the intense labeled nodes as training samples in the 

context of social bot detection. However, there has been no research on reducing the 

demand for labeled sample in GNN-based detection methods. Until recently, Zhou et. 

al. [11] conduct the first exploration into leveraging contrastive learning to pre-train 

GNN encoders for the task of social bot detection. Nevertheless, their approach is still 

constrained by the instance discrimination pretext task and the structural invariance 

assumption, leading to its poor detection performance. Therefore, we propose a social 

bot detection method that leverages pretraining and probing paradigm, employing fea-

ture autoencoders and graph masking autoencoders to construct the model. In specific, 

our approach stacks the graph masked autoencoder on top of the feature autoencoder, 

with each trained in sequence. And this strategy has been shown to significantly im-

prove training stability and detection performance. After the pretraining, a newly-ini-

tialized 2-layer multi-layer perceptron (MLP) classifier is stacked on the GNN encoder, 

which is trained by a small amount of labeled nodes, to detect social bots. The main 

contributions of this work can be summarized as follows: 

1) We propose a social bot detection method via stacking graph masked autoencoder 

on top of feature autoencoder (GMAE2), which detect social bots in a self-supervised 

pretraining-probing manner, resulting in its limited labeled nodes demand. 

2) Extensive experiments demonstrate that the proposed GMAE2 achieves SOTA 

performance on two social bot detection benchmarks under very low training set ratio 

settings. And ablation studies further validate each strategy’s efficacy in our model. 

2 Related Work 

2.1 GNN-based Social Bot Detection 

GNN-based social bot detection algorithms exploit GNN to jointly extract users’ fea-

tures and structure information, to generate users’ representations. Alhosseini et al. [12] 

were the first to apply GNN for social bot detection. Subsequently, Feng et al. utilized 

relational graph convolutional network (RGCN) [13] and relational Graph Transformer 

(RGT) [14] to detect social bots, markedly improving detection performance. Based on 

RGCN, they also integrated a cross-modal attention mechanism and a mixture of expert 

models into the detection method [15]. Additionally, Peng et al. [16] proposed to a cross-

platform detection method based on federated learning. Meanwhile, other researchers 
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have sought to employ graphical models to rectify the classification errors generated 

by GNNs. For example, Sun et al. [17] incorporated node credibility estimation through 

short random walks to weigh the message passing process of graph convolutional net-

work (GCN). Deng et al. [18, 19] utilized the Markov Random Field (MRF) to rectify the 

errors generated by GCN, whose parameters are trained via mean field approximation 

and expectation-maximization (EM) algorithm. Furthermore, recently, some research-

ers recognized the necessity of modeling both homophily and heterophily in the context 

of social robot detection, and have conducted some relevant researches [20-22]. 

Although GNN-based social bot detection methods have flourished, these methods 

generally rely on large numbers of annotated samples in the detection environment to 

improve their performance, resulting in a lack of research in this field on methods to 

reduce the requirement for annotated samples. Until recently, Zhou et al. [11] conducted 

related research through pretraining and finetuning a GNN-based model to detect social 

bots. However, their method is constrained by contrastive learning and graph structure 

augmentation, which fails to prioritize the extraction of user feature information, result-

ing in its unsatisfactory performance. 

2.2 Graph Self-supervised Learning 

Before the popularity of contrastive learning, graph self-supervised learning methods 

were typically designed heuristically, such as VGAE [23], GraphRNN[24], GPT-GNN [25]. 

These methods typically entail performing a pretext task of reconstructing the neighbor 

structure, which leads to the learnt node representations being effectively tailored only 

for link prediction. Subsequently, with the development of contrastive learning, it has 

also become a mainstream approach in graph self-supervised learning. A series of 

works such as DGI [26], GraphCL [27], GCA [28], have emerged. These works commonly 

employ negative samples to prevent collapse and use data augmentation to construct 

positive samples to ensure that the model learns specific invariances. Afterwards, in 

order to address the requirement of massive negative samples in contrastive learning 

methods, contrastive learning approaches without negative samples have been pro-

posed, such as CCA-SSG [29] and BGRL [30]. However, they still can’t overcome the 

issue of reliance on specific invariances assumption. It wasn’t until the introduction of 

GraphMAE [31] that a new method was provided for graph self-supervised learning and 

for resolution of reliance on invariances assumptions. 

Due to the training processes of GraphMAE, it excels in extracting feature infor-

mation and relationships between node features, what is precisely needed for social bot 

detection. Moreover, it is not bound by specific invariances assumptions, which allows 

us to overlook the invariance associations in the contexts of social bot detection. There-

fore, we employ GraphMAE to train our GNN encoder in this paper. 
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3 Methods 

3.1 Overview of our GMAE2 

Our GMAE2 comprises a feature autoencoder, a graph masked autoencoder and a 2-

layer MLP classifier. In the pretraining phase, the feature autoencoder, whose function 

is to merge features of different categories, is trained separately at first. Subsequently, 

the graph masked autoencoder, whose function is depicting associations between adja-

cent nodes, is trained separately in the representation space of feature encoder, with the 

feature decoder being discarded. Finally, the classifier is trained through limited labeled 

nodes in the probing phase, with parameters of both two encoders are frozen. The over-

all model architecture of GMAE2 is shown in Fig. 1. 

 
Fig. 1. The model architecture of GMAE2. 

3.2 Feature Autoencoder 

The feature autoencoder is utilized to extract and integrate information specific to each 

user. Built on the foundation of feature design, it comprises an encoder and a symmet-

rically structured decoder. In this autoencoder, the encoder is leveraged to blend and 

condense different types of information from social media users into compact represen-

tation vectors, while the decoder is used to restore the original features during pre-

training phase. 

Following the feature design in BotRGCN [13], we categorize the user features into 

four categories to incorporate users’ personal information and tweet semantics: numer-

ical, categorical, personal profile, and tweet features. Among them, numerical and cat-

egorical features are derived from users’ metadata, portraying users’ fundamental sta-

tus. As for the personal profile features and tweet features, they represent the user’s 

characteristics and social activities information. These features consist of the encoded 

user profiles and tweet semantic vectors generated by the RoBERTa model [32]. 

Afterwards, these features are fed into the autoencoder. At first, there are four non-

linear projection heads which are used to individually project the features of each cate-

gory into fixed dimensions: 
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the four distinct feature categories. Moreover, after each linear transformation, a batch nor-

malization layer is incorporated to maintain a stable output distribution. Then, the dimen-

sion-reduced features are concatenated and merged by a three-layer MLP: 

ℎ𝑖
(0)

= 𝑊3𝜑(𝑊2𝜑(𝑊1𝐶𝑎𝑡〈�̂�𝑖
1|�̂�𝑖

2|�̂�𝑖
3|�̂�𝑖

4〉 + 𝑏1) + 𝑏2) + 𝑏3 (2) 

where 𝐶𝑎𝑡〈∙ | ∙ | ∙ | ∙〉 means concatenation operation, the six 𝑊 and 𝑏 are learnable pa-

rameters, and ℎ𝑖
(0)

 is the output of the feature encoder, which also serves as the input node 

features for the subsequent GNN encoder. As for the decoder, its structure is symmetrical 

to that of the encoder. It consists of a fusion projector followed by four category-spe-

cific feature prediction heads, with the fusion projector being solely comprised of a 

single linear layer. 

3.3 Graph Masked Autoencoder 

The graph masked autoencoder is utilized to merge users’ feature and structural infor-

mation into their representations. Similar to the feature autoencoder, it’s also comprised 

of an encoder and a decoder. Furthermore, the encoder is tasked with learning clean 

node representations which is beneficial for the social bot detection task, while the de-

coder facilitates the restoration of nodes’ input features from these representations. The 

network structure of the decoder is identical to that of the encoder, which is composed 

of two GNN layers proposed in our previous work. Next, a brief introduction will be 

provided for the GNN layer we utilize, which consists of an attention integration mech-

anism and two sub-GNN modules. 

To capture the asymmetrical influence among users in social media context more 

accurately, the social network is constructed as a directed graph, where the edge direc-

tions indicate the following directions between users. And then, the directed edges in 

the follower direction are copied and reversed from these edges in following directions. 

Built on this directed graph, two sub-GNN modules are leveraged to operate in two 

directions simultaneously, which allows for the concurrent message propagation and 

information aggregation in both directions. 

The role of these two sub-GNN modules, which operate on the following and fol-

lower social relationships respectively, is to recognize edge categories and perform 

message propagations to aggregate information which is beneficial to improve the qual-

ity of node representations. To recognize edge categories, these sub-GNN modules first 

generate edge representations via three linear layers, which takes nodes’ representations 

as input: 

ℎ̂𝑖
(𝑙),𝑟 = 𝜑(𝑊𝑡𝑔𝑡

(𝑙),𝑟ℎ𝑖
(𝑙−1)

+ 𝑏𝑡𝑔𝑡
(𝑙),𝑟) (3) 

ℎ̂𝑗
(𝑙),𝑟 = 𝜑(𝑊𝑠𝑟𝑐

(𝑙),𝑟ℎ𝑗
(𝑙−1)

+ 𝑏𝑠𝑟𝑐
(𝑙),𝑟) (4) 

𝑒𝑖𝑗
(𝑙),𝑟 = 𝑊(𝑙),𝑟𝐶𝑎𝑡〈ℎ̂𝑖

(𝑙),𝑟|ℎ̂𝑗
(𝑙),𝑟〉 + 𝑏(𝑙),𝑟 (5) 

where ℎ̂𝑖
(𝑙),𝑟

 means the dimension-reduced representations of node 𝑖 in layer 𝑙 under re-

lation 𝑟, ℎ𝑖
(𝑙−1)

 means the original representations of node 𝑖 in layer 𝑙 − 1, 𝑒𝑖𝑗
(𝑙),𝑟

 means 

the low-dimensional representation of edge from node 𝑗 to node 𝑖, and all of the 𝑊 and 

𝑏 are learnable parameters. Subsequently, edges belonging to the same type of social 

relations are classified into four categories, and their message passing weights are 



6 

determined based on the inner-products between their representations and the four pro-

totypes corresponding to the four categories: 

𝑦𝑒𝑖𝑗

(𝑙),𝑟 = argmax
(𝑚,𝑛)

((�̅�𝑚𝑛
(𝑙),𝑟)𝑇𝑒𝑖𝑗

(𝑙),𝑟) (6) 
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(𝑙),𝑟 = {

𝜎((�̅�
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−1 ∙ 𝜎((�̅�
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(𝑙),𝑟
(𝑙),𝑟

)𝑇𝑒𝑖𝑗
(𝑙),𝑟)  𝑖𝑓 𝑦𝑒𝑖𝑗

(𝑙),𝑟 ∈ {(0,1), (1,0)}
(7) 

where 𝑦𝑒𝑖𝑗

(𝑙),𝑟 ∈ (𝑚, 𝑛) and 𝛼𝑖𝑗
(𝑙),𝑟

 denote the classified category and the message passing 

weight of edge from node 𝑗 to node 𝑖, and �̅�𝑚𝑛
(𝑙),𝑟

 denotes the learnable edge embedding 

prototypes in layer 𝑙 under relation 𝑟,where 𝑚, 𝑛 ∈ {0,1} and 𝜎 denotes sigmoid func-

tion. 

After getting the message passing weights, an attention aggregation mechanism is 

used to integrate messages from two types of social relationships with the node repre-

sentations from the previous layer to update node representations. At first, we utilize 

graph filters to generate messages from social relations according to their types. Here, 

we employ the normalized adjacency matrix �̂� as the graph filter, which is normalized 

in both rows and columns. Through mapping the graph filter onto the spatial domain, 

extracting neighbor information could be expressed in the following form: 

𝑚𝑖
(𝑙),𝑟 = 𝛾ℎ𝑖

(𝑙−1)
+ ∑

𝛼𝑖𝑗
(𝑙),𝑟

√𝑑𝑖
𝑖𝑛𝑑𝑗

𝑜𝑢𝑡

ℎ𝑗
(𝑙−1)

𝑗∈𝒩𝑖
𝑟

(8)
 

where 𝑚𝑖
(𝑙),𝑟

 means the messages received by node 𝑖 in layer 𝑙 under social relation 𝑟, 

𝛾 is a hyper-parameter, 𝒩𝑖
𝑟 means the neighborhood of node 𝑖, and 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 are 

the in-degree and out-degree of nodes respectively. 

Subsequently, messages from different types of social relations are aggregated by 

the attention integration mechanism. Specifically, two linear layers are leveraged to 

merge information from three sources and calculate attention weights respectively. And 

then, node representations are updated through linear mixing based on the attention 

weights: 

�̂�𝑖
(𝑙)

= tanh (𝑊𝑖𝑛𝑡1

(𝑙)
𝐶𝑎𝑡 〈𝑚𝑖

(𝑙),𝑓𝑜
|𝑚𝑖

(𝑙),𝑓𝑟
|ℎ𝑖

(𝑙−1)〉) (9) 
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𝑇
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(𝑙)

= 𝛽𝑖
(𝑙),𝑓𝑜

𝑚𝑖
(𝑙),𝑓𝑜
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(11) 

where 𝛽𝑖
(𝑙),𝑓𝑜

, 𝛽𝑖
(𝑙),𝑓𝑟

 and 𝛽𝑖
(𝑙),𝑖𝑑

 represents integration weights for messages from fol-

lower-type relations and friend-type relations, and node’s representation from the pre-

vious layer, 𝑊𝑖𝑛𝑡1

(𝑙)
 and 𝑊𝑖𝑛𝑡2

(𝑙)
 represent learnable parameters, and 𝑇 is a hyper-parameter, 

with a default value of 3. Besides, specific type of social relations may be absent in the 

neighborhood of some nodes. To address errors caused by neighbor absence, we utilize 

an attention mask to exclude message inputs from corresponding type of relations dur-

ing calculating integration weights. 
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3.4 Training in an Autoencoder Fashion 

Within this research, to minimize the reliance on labeled nodes during model training, 

we adopt the pretraining-probing approach to cultivate a social bot detection model. In 

the pretraining phase, since node labels are unavailable, an autoencoder method is em-

ployed twice to train the model, aiming to retain as much information as possible. This 

approach is found to significantly improve the classifier’s capability to accurately dis-

tinguish between the two types of users. Specifically, at first, the feature encoder is 

trained in an autoencoder manner. The encoder is employed to compress the original 

features into low-dimensional embedding vectors, which are then inputted into the de-

coder to reconstruct the original features. In this process, mean squared error between 

the reconstructed features and the initial features is utilized as the loss function to jointly 

train the encoder and decoder. Subsequently, the GNN encoder is trained in a graph 

masked autoencoder manner within the representation space of the feature encoder. In 

other words, rather than restoring the initial node features, the GNN decoder recon-

structs the node features fed into the GNN encoder by the feature encoder merely, thus 

reducing the computational demands of training while mitigating interference from a 

less effective feature decoder. When training the GNN encoder, drawing inspiration 

from GraphMAE [31], a similar methodology is employed to train our GNN encoder, 

where the GNN decoder, the masked feature reconstruction strategy, and the cosine 

error loss function are pivots to its success. To summarize, as shown in Fig. 2, we ini-

tially mask a subset of node features using a learnable mask and then feed all the fea-

tures into the GNN encoder. Subsequently, we apply another learnable mask to the node 

representations output by the GNN encoder, targeting the same subset of nodes. These 

masked representations are then fed into the GNN decoder, which is utilized to recon-

struct the raw features of the masked nodes. Finally, we calculate the cosine error be-

tween the reconstructed and original features and back-propagate the loss to update 

models’ parameters simultaneously. 

Upon the completion of pretraining, an extra freshly initialized 2-layer MLP classi-

fier is appended to the detection model, whose purpose is to identify whether a user is 

a social bot through leveraging the user representations produced by GNN encoder. It 

is trained in a supervised manner, employing a limited set of annotated nodes as labeled 

samples and employing cross-entropy as the loss function. Furthermore, the parameters 

of feature encoder and GNN encoder are frozen to prevent updates, which helps main-

tain the pretraining-probing detection paradigm and reduces the risk of overfitting as-

sociated with the limited training data. 

 
Fig. 2. The training streamline of graph masked autoencoder. 
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4 Experiments and Results 

4.1 Experiments Setup 

The performance of GMAE2 were assessed on two prominent social bot detection da-

tasets: Twibot-20 [33], and MGTAB [34], whose statistical data are presented in Table 1. 

Additionally, in this paper, to better align with real-world needs in social bot detection, 

a 5%/15%/80% split was employed for both datasets instead of the original 

70%/20%/10% split [33, 35]. Besides, due to the lack of raw data in MGTAB dataset, we 

employed the numerical features and tweet embedding vectors available within the da-

taset as the initial user features in our experiments. For detailed information on the 

model’s architecture and hyperparameter configurations, please refer to our publicly 

available code repository. 

Table 1. Statistical Data of Two Datasets. 

Dataset Users 
Labeled Us-

ers 
Edges Ratios of Bots to Humans 

Twibot-20 229580 11826 227979 1.2582 

MGTAB 410199 10199 81659211 0.3688 

 

To demonstrate the performance of our GMAE2 thoroughly, the following baselines 

are included in this paper: 

● DAMRG [16] utilizes multiple classifiers to detect social bots in different fields for 

improving detection performance on the basis of learning users’ representations 

on multi-relational graph. 

● BotRGCN [13] exploits relational GCN to represent users’ information and detect 

social bots. 

● RGT [14] exploits GT to detect social bots by integrating two sets of GT designed 

for two types of friendships via semantic attention networks. 

● SIRAN [21] utilizes GT and initial residual relation network simultaneously to ad-

dress the issue of graphs with heterophily and to detect social bots. 

● BothH [20] leverages feature similarity graph to improve the homophily of graph 

and utilizes GNN with heterophily to discern homophilic edges to improve social 

bot detection performance. 

● CBD [11] detects social bots in a self-supervised pretraining-finetuning manner. It 

utilizes instance discrimination and structural data augmentation to pretrain GNN 

encoder in contrastive learning. 

4.2 Main Results 

We mainly employed two evaluation metrics, accuracy and binary F1, to assess the 

detection performance of all detection methods. And we employed recall as an addi-

tional metric on the MGTAB dataset, which boasts a high degree of labeling precision, 

thereby offering a more accurate reflection of the algorithm’s performance. The main 
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experiment results are demonstrated in Table 2. And the following observations were 

made: 

● Our GMAE2 achieves SOTA performance among various methods. Compared to 

semi-supervised baselines, GMAE2 lags slightly behind the top-performing ac-

curacy, yet it substantially surpasses all methods in the F1 score. Considering the 

typically low recall rates associated with semi-supervised methods and the 

skewed class distribution of the MGTAB dataset, it is evident that the GMAE2 

proposed by us exhibits a clear advantage in recall over these semi-supervised 

baselines. It suggests that our GMAE2 is more adept at identifying social bots 

than semi-supervised methods, leading to a more effective purification of the so-

cial media discourse environment. However, it also risks flagging more innocent 

human users as bots, which could increase the manual review costs. 

● Compared to CBD, which detect social bots in a self-supervised pretraining and 

finetuning approach, our proposed GMAE2 consistently outperforms it on both 

datasets, with only a slight shortfall in recall. However, CBD’s enhancement in 

recall is acquired at the expense of larger decrements in accuracy and F1, which 

implies that its detection outcomes exhibit a notable drop in precision when con-

trasted with our proposed GMAE2. And a marked decrease in precision would 

result in the erroneous classification of a large volume of human users as social 

bots, incurring considerable expenses in manual verification for both detection 

efforts and social media platforms, thereby substantially reducing the efficacy of 

the detection algorithms. Furthermore, it indicates that our GMAE2 exhibits a 

superior balance between recall and precision. 

● Table 2. Main experiment results. 

Methods 
Twibot-20 Dataset MGTAB Dataset 

Acc(std) F1(std) Acc(std) F1(std) Recall(std) 

DAMRG 78.97(2.10) 81.36(2.18) 84.72(0.42) 73.66(0.78) 79.75(1.32) 

BotRGCN 77.56(0.98) 80.08(0.81) 85.73(0.45) 72.77(0.68) 71.17(0.98) 

RGT 54.68(0.82) 41.46(2.34) 85.04(0.40) 74.95(0.51) 83.50(1.76) 

SIRAN 74.05(0.63) 78.93(0.69) 85.47(0.37) 74.04(0.81) 74.41(1.85) 

BothH 55.76(0.20) 71.10(1.24) 85.03(0.78) 72.19(1.48) 72.55(2.19) 

CBD 77.97(0.98) 80.31(1.25) 84.24(1.12) 73.86(1.64) 83.88(1.40) 

GMAE2 78.69(0.44) 82.45(0.35) 85.51(0.29) 75.34(0.58) 82.64(1.01) 

4.3 Further Discussion 

In order to further assess the performance of several methods in scenarios with ex-

tremely limited training samples, we progressively decreased the proportion of the 

training set by reconfiguring the training and validation sets, and chose several high-

performing baselines as well as our GMAE2 for testing. The test results are presented 

in Fig. 2. It’s evidently that our GMAE2 exhibits a relatively modest decline in perfor-

mance as the training set proportion declines. when the training set percentage falls 
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within the 2% to 5% range, GMAE2 maintains a clear advantage over other algorithms. 

Nevertheless, Nevertheless, when the training set proportion is sliced down to a mere 

1%, GMAE2’s performance takes a drastic descent due to the overfitting encountered 

by the 2-layer MLP classifier, falling even below that of several other algorithms. Cu-

riously, the RGT trained in a semi-supervised fashion exhibits no discernible drop in 

performance. The reasons behind its performance advantage are yet to be fully unrav-

eled. We defer a deeper investigation into this matter to our future endeavors, where 

we will use the insights to refine our approach and broaden the scope of its application. 

 

Fig. 3. Performance of Several Models Across Varying Training Set Proportions. (a) Accuracy 

with training set ratio changes. (b)F1 with training set ratio changes. 

4.4 Ablation Study 

In order to understand the contributions of different modules comprehensively, we con-

ducted an ablation study using the MGTAB dataset. First, we investigated the efficacy 

of the feature encoder and the GNN encoder through discarding them respectively, 

namely “w\o feature encoder” and “w\o GNN encoder”. Then, we investigated the ef-

ficacy of the strategy of training the feature encoder and GNN encoder separately by 

training them simultaneously, namely “training at the same time”. Subsequently, we 

explored the efficacy of the masked feature reconstruction pretext task by replacing it 

with instance discrimination [27] or contrastive learning without negative samples [36], 

namely, “instance discrimination” and “no negative samples”. Finally, we explored the 

efficacy of the pretraining-probing approach through replacing it with pretraining-fine-

tuning approach, namely “pretraining-finetuning”. 

Results of ablation studies were presented in Table 3. The following observations 

were made: 

● Feature encoder and GNN encoder are both instrumental in the detection model. 

Notably, the feature encoder works to minimize user information loss, which is 

vital for improving node separability. 

● It’s crucial to separate the training processes of the feature encoder and the GNN 

encoder to ensure the efficacy of the model’s training. Training them concurrently 

can lead to a breakdown of the model’s effectiveness, resulting in the drastic fluc-

tuations in its performance. 

● GNN encoder trained on reconstructing masked features is able to generate node 

representations that better preserve user feature information, which is beneficial 
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for enhancing the model’s detection performance. Meanwhile, the poorer perfor-

mance of other pretext tasks indicates that the structural invariances assumptions 

they encapsulate are not applicable to the social bot detection task. The node rep-

resentations generated by the GNN encoder trained through these pretext tasks do 

not effectively preserve the difference between two types of users. 

● Fine-tuning is not applicable to our proposed GMAE2, as it results in a marked 

decrease in model efficacy. In other words, despite achieving SOTA performance 

through pretraining and probing alone, we are now unable to improve the model’s 

detection capabilities through fine-tuning. The exact reasons for this are yet to be 

determined, and we will delve into this issue in our upcoming research to develop 

a detection model with superior performance. 

Table 3. Results of ablation studies. 

Model Acc F1 

w\o feature encoder 81.49 68.53 

w\o GNN encoder 84.42 73.98 

training at the same time 82.41 72.47 

instance discrimination 84.53 74.02 

no negative samples 84.73 73.78 

pretraining-finetuning 74.02 65.53 

GMAE2 85.51 75.34 

5 Conclusion 

In this paper, we proposed a GNN-based social bot detection method, GMAE2, via 

stacking graph masked autoencoder on the top of feature autoencoder, which detect 

social bots in a self-supervised pretraining-probing manner. And the feature encoder is 

trained on the representation space of the feature encoder, which is the main difference 

between our method and other methods. Subsequently, we conducted extensive exper-

iments which demonstrated that our GMAE2 achieves SOTA performance under ex-

tremely low training set ratio settings. However, there is still room for improvement in 

our method: 1) When the proportion of the training set decreases to 1%, the perfor-

mance of our model deteriorates significantly due to overfitting in the MLP classifier. 

2) Currently, our GMAE2 is unable to use fine-tuning techniques to further improve 

performance. These issues remain to be explored further in the future. 
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