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Abstract The paper deals with a biologically inspired model of self-
propelled particles introduced by Vicsek. To solve the problem of low
convergence efficiency in this model, an improved model based on dis-
tance weight is proposed in this paper. Particularly, distance weight func-
tion is designed in the form of polynomial function which is a monotone
increasing function of distance. Moreover, a new index to evaluate the
convergence efficiency called Vicsek algebraic connectivity is promoted.
Finally, comprehensive comparative studies of the convergence properties
among the improved model, original Vicsek model, and Degree model are
investigated in the simulation part. The simulation results show that our
modified model is better than other two models in convergence probabil-
ity and consensus time. Our results may enlighten other researchers in
revealing the mechanism of collective motion.
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1 Introduction

In recent years, based on inspiration from the behaviors of biological clusters,
researchers have proposed many swarm models. It is believed that schools of fish,
flocks of birds, and group of bees are based on simple behavioral interactions be-
tween group members to develop coherent, intelligent behaviors at the collective
level [1]. Besides the realm of biology, related achievements have been gradually
applied to the field of computer algorithms [2] and robotic self-assembly [3]. Re-
search of swarm system may also be used to explain the generation of swarm
intelligence which has critical value in engineering [4, 5].

In 1986, by observing the assembly behavior of the natural flock of fish,
Reynolds promoted Boid model based on three rules: separation, alignment and
cohesion [6]. Vicsek et al. [7], put forward another related but simplified model
called Vicsek model (OVM) which was based on alignment rules of Boid model.
Barbies et al. [8], provided a minimal cognitive flocking model which lacked
velocity-velocity alignment. Shirazi [9] introduced passive sensing and active
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sensing to improve collective behaviors of the group. Yang et al. [10] proposed a
model with multiple constraint factors to improve the collaborative and contin-
uous of the swarm in the moving and steering process.

Among all these models, OVM is preferred, because it is the simplest and the
most efficient one. Due to the nonlinear updating equation and random noise,
rigorous theoretical analysis towards OVM is challenging. One of the most cru-
cial theoretical progress was given by Jadbabaie, Lin and Morse in [11], where
they linearized the heading updating equation and omitted the noise disturbance.
In [12], Savkin analyzed the model with discrete direction angle and showed that
consensus can be obtained when the limit of the neighbor graphs is connected.
In [13], it was pointed out that with the heterogeneity of the individual influ-
ence area, the heterogeneous network is more beneficial to the system to reach
consensus.

As a typical theoretical problem, many attempts have been made to solve the
problem of inefficient convergence efficiency in OVM [14–16]. In [14], considering
the problem of panoramic vision of real individuals, Bao found that there was
an optimum view angle which could accelerate the convergence of the OVM.
Gao [15] proposed a new weight index model of degree (DM) which could improve
the convergence speed. George et al. [16] proposed two improved versions of the
model by introducing additional terms in the heading renewal equations.

In this paper, a modified version of the OVM called DWM, which exhibits
significant improvement in enhancing the efficiency of consensus, is proposed.
We present a weight function based on the distance between agents with the
form of polynomial function which involves two additional terms in the heading
update equation correlating with sense radius. It is shown that in various sense
radius, there exist optimal values of the additional parameters which reduce
convergence time effectively. The DWM has significantly greater reductions in
synchronization time than DM proposed in [15]. Furthermore, due to the lack
of evaluation parameters in convergence analysis, a new index called Vicsek
algebraic connectivity (VAC) is proposed to evaluate the convergence efficiency
of different rules.

The rest of the paper is organized as follows: Problem preliminaries and
conception are given in Section 2. The improved model and the definition of
VAC is proposed in Section 3. In Section 4, numerical simulation and analysis is
presented, and conclusions are drawn in Section 5.

2 Problem Description
2.1 Orginal Vicsek Model
In OVM, n self-propelled agents move in a square-shaped region of length L
with different motion direction but the same speed v0. The velocity heading of
agents are calculated by averaging headings of agents within perception radius
R per unit of time step. The position xi(t) and velocity heading θi(t)(∈ (−π, π])
of agents update with the form of:

xi(t+ 1) = xi(t) + v0e
iθi(t) , (1)
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θi(t+ 1) = arctan(

∑
j∈Ni(t)

sin θj(t)∑
j∈Ni(t)

cos θj(t)
) + δi(t) , (2)

where δi(t) denotes the random noise chosen with a uniform probability from
the interval [−δ0, δ0] and Ni(t) = {j| ∥xi(t)− xj(t)∥ ≤ R}.

To reduce the difficulty of theoretical analysis, Jadbabaie, Lin, and Morse
in [11], simplified the heading updating equation (2) as follows:

θi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)
θj(t) , (3)

Self-propelled particles continually update its states until the order parameter
Ψ(t) of the system:

Ψ(t) =
1

n

∣∣∣∑n

i=1
eiθ(t)

∣∣∣ , (4)

exceeds a given fixed value ψsync at time τ which is defined as convergence time.

2.2 Gaos Improved Vicsek Model [15]

In order to improve convergence in the Vicsek model, Gao developed a weighted
rule based on the degree of agents. The direction updating rule is as follows:

θi(t+ 1) = arctan(

∑
j∈Ni(t)

|Nj(t)| sin θj(t)∑
j∈Ni(t)

|Nj(t)| cos θj(t)
) + δi(t) , (5)

DM strengthens the heading connection with these agents which possess more
neighbors and effectively improves the convergence time. However, this model re-
quires additional communication in the updating process and leads to a relatively
high failure probability in reaching consensus. The improved model promoted
in this paper overcomes these disadvantages. This model will compare with our
model in the simulation part.

3 Improved Model and Vicsek Algebraic Connectivity

3.1 Improved Model (DWM)

Velocity alignment is the key to unite all agents eventually moving with the same
heading in OVM. Ideally, agents acquire mean directions of the whole swarm in
which way agents reach consensus immediately. Under normal circumstances,
due to the limited sense radius, reasonable utilization of neighbors information
confers a large effect on the consensus process. In the OVM, the updating agents
treat all its neighbors heading equally. However, closer agents headings are more
likely to be adopted again in the next update. Thus, neighbors which are closer
to the agent will exert greater influence in direction composition than distant
neighbors for long time scales. In this way, it is prone to generate local consensus
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rather than global consensus. Instinctively, the strategy that increases the weight
of distant neighbors is promoted to strengthen the global consensus.

Establishing stronger directional correlation with distant neighbors can effec-
tively avoid the loss of neighbors. As is shown in Fig.1, for agent 4, adopting the
original rule may lose neighbor agent 3 and agent 5 in the next step. If agent
4 pay more attention to the direction of the distant neighbors and follow them,
these two neighbors may not leave neighborhood immediately, and the nearest
agent 6 and agent 7 will remain its neighbors for a long time and be constantly
influenced by agent 4. Furthermore, this preference retains closer direction links
with agents beyond sense radius. In Fig.1 the direction correlation between agent
4 and agent 1 is strengthened through 3, which can more acutely perceive the
direction change of distant individuals.
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Figure 1. Agent distribution diagram

Based on the above analysis and proof, we propose DWM based on distance
proportional weight as following form:

θi(t+ 1) = arctan(

∑
j∈Ni(t)

f(xij) sin θj(t)∑
j∈Ni(t)

f(xij) cos θj(t)
) + δi(t) , (6)

where xij is the distance between i and j, f(x) is the strictly monotonically
increasing function.

The selection of function form will produce different effects. In this paper,
we select the following mathematical expression:

f(x) = (1 + k2
x

R
)k1 , (7)

where k1 and k2 is the weight coefficient. The optimal value of k1 is influenced
by the sense radius. For each value of k1, the faster convergence performance
can be obtained by adjusting k2 flexibly.
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3.2 Vicsek Algebraic Connectivity

Jadbabaie interpreted the OVM with graph theory as [11]:

θ(t+ 1) = Fσ(t)θ(t) , (8)

Fσ(t) = (I +Dσ(t))
−1(Aσ(t) + I) , (9)

where θ is the heading vector θ = [θ1θ2 . . . θn], σ(t) is the index of the graph
representing the agents neighbor relationships at time t , Aσ(t) is the adjacency
matrix of graph Gσ(t) induced by the information flow, I is the identity matrix,
and Dσ(t) the degree matrix of whose i-th diagonal element di is the degree of
vertex i and other elements are zero.

When the rate of change of θ is zero, agents obtain the convergence. We
consider the first derivative of θ(t) :

θ̇(t) = θ(t+ 1)− θ(t) , (10)

Using Eqs. (8) and (9), we have:

θ̇(t) = −Pσ(t)θ(t) , (11)

Pσ(t) = I − (I +Dσ(t))
−1(Aσ(t) + I) . (12)

According to inequality of arithmetic and geometric means theory, it could
prove that the matrix Pσ(t) is a positive semidefinite matrix. The eigenvalue of
matrix Pσ(t) are nonnegative denoted by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, always enumer-
ated in increasing order and repeated according to their multiplicity. Referring
to the definition of algebraic connectivity in graph Laplacian [17], we define the
second smallest nonzero eigenvalue of Pσ(t) as the OVMs VAC. Similarly, we
know that a higher value of VAC means the faster synchronization convergence
performance. The VAC for DWM and DM are defined similarly which will not
repeat here. Due to the limited space, the detailed theoretical proof is not given
in this paper.

The VAC could be used for evaluating convergence performance at fixed time
point. Its application will be reflected in the simulation part.

4 Simulation

In order to verify that DWM has an improved convergence performance, this
article simulates the model under different conditions with OVM and DM. In
this paper, simulation parameters are selected as n = 100, L = 10, R = 3.0, v0 =
0.03, δ0 = 0.1, ψsync = 0.99, k1 = 5, k2 = 11 unless otherwise stated. Agents
move in the open box conditions rather than periodic box. Generally, agents can
reach the steady state within 120 steps, so 200 steps are the max simulation time.
Under this condition, the convergence steps are set as 200 when agents divided
into several groups. Furthermore, each data in figures and table is the average
of exceeding 100 replications.
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4.1 Comparison of Convergence Properties

We investigate convergence steps of OVM, DM and DWM. As illustrated in Figs.
2(a), convergence steps decrease with the increasing of sense radius. Particularly,
when sense radius is close to L, agents can achieve consensus in few steps. And
comparing these three models, DWM has obvious advantages in convergence
speed. In Figs. 2(b), as the increasing of velocity, the convergence superiority
over DM and OVM is growing.

2 2.5 3 3.5 4

R(Perception radius)

0

20

40

60

80

100

120

140

/s
te

p
s

Original Vicsek model

Degree Vicsek model

Distance Vicsek model

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0

50

100

150

200

/s
te
p
s

Original Vicsek model

Degree Vicsek model

Distance Vicsek model

(b)

Figure 2. (a)The transient time step τ as a function of the neighborhood radius R.
(b)The transient time step τ as a function of the velocity v0. Here R = 2.6

In the course of heading renewal, different rules not only affect the conver-
gence time, but also decide whether the whole group can reach consensus at
the same initial conditions. According to different sense radius, 400 initial dis-
tributions are selected respectively to investigate convergence performance. As
is presented in Table.1, this paper tallies the count of failures of group reach-
ing agreement. It is shown that the DM offer a relatively higher probability of
dividing into several groups although it shortens the convergence time, and our
model realizes optimum performance of both convergence time and probability.

Table 1. Consensus simulation

Vicsek Model
Perception radius

R = 2 R = 2.4 R = 2.8 R = 3.2

OM 170 47 12 6
DM 182 59 13 3

DWM 56 11 1 0
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The next we consider this three models VAC. According to different sense
radius, 1000 initial distributions are selected respectively to observe the value of
VAC. As is shown in Figs. 3, the VAC increases as the sensor radius increases. It
is obvious that DWM is an efficient model in enhancing the VAC of self-propelled
particles which results in faster convergence speed.
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Figure 3. The VAC as a function of neighborhood radiusR.

4.2 Influence of Weight Coffeicient

We then investigate the influence of the weight coefficient on the consensus pro-
cess. The average convergence steps for the DWM significantly decreases with
increasing values of k1 till k1 = 5.8 As can be observed in Figs. 4(a), k1 = 5.8
is the optimal weight coefficient where the fastest consensus speed is obtained.
The VAC as a function of k1 is shown in Fig. 4(b). It is shown that there is an
optimal value of k1 where results in the maximum VAC. Moreover, there is an
optimal value range which is [5.4, 7.4] in figure where VACs difference is within
0.001. These results in Figs. 4(b) correspond to the results in Figs. 4(a) which
indicates VACs effectiveness in convergence analysis.

Figure 5(a) shows the VAC as the function of k2, which shows that increases
the value of k2 can enhance the convergence efficiency. It also shows that there is
a threshold of k2 over which the value of VAC will converge to a max value which
is determined by the value of k1. The variation of the value of k1, where maximum
VAC is obtained, is plotted against varying perception radius in Figs. 5(b). This
optimal value of k1 is denoted by k1opt. It is obvious that the optimal weight
coefficient increases as the perception radius increases till R = 3.7. The DWM
will gradually degenerate into an OVM with continuously increasing sensing
radius. In the simulation process, we noticed that there is not directly relevance
between optimal weight coefficient and velocity.

5 Conclusion and Future Work

Increasing the proportion of agents headings which are far away from the updat-
ing particle can accelerate consensus. Comparing with DM, it does not require
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Figure 4. (a)The transient time step τ as a function of weight coefficient k1. (b)The
VAC as a function of weight coefficient k1.
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Figure 5. (a) The VAC as a function of k2. Here k1 = 6 (b)The optimal value of k1 as
a function of R.

additional communication between the agents. The new updating rule introduced
in this paper ensures higher convergence probability and lower average conver-
gence steps for a system of self-propelled swarm with open boundaries. Moreover,
proposed parameter VAC effectively evaluates the convergency performance and
matches the real results. These results can enlighten other researchers to design
the manmade swarms. In this work, we have just considered this method in
Vicsek model. Extending these results to other models are currently in progress.
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