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 Dear Editor,

This  letter  investigates  the  stability  of n-dimensional  nonlinear
fractional differential systems with Riemann-Liouville derivative. By
using  the  Mittag-Leffler  function,  Laplace  transform  and  the  Gron-
wall-Bellman  lemma,  one  sufficient  condition  is  attained  for  the
asymptotical  stability  of  a  class  of  nonlinear  fractional  differential
systems  whose  order  lies  in  (0,  2).  According  to  this  theory,  if  the
nonlinear term satisfies some conditions, then the stability condition
for  nonlinear  fractional  differential  systems  is  the  same  as  the  ones
for  corresponding  linear  systems.  Two  examples  are  provided  to
illustrate the applications of our result.

Introduction: Fractional  calculus  is  more  than  300 years  history,
but  its  application  to  physics  and  engineering  has  attracted  lots  of
attention  only  in  the  recent  years.  It  has  been  found  that  many sys-
tems in interdisciplinary fields can be described by fractional differ-
ential equations, such as viscoelastic systems, dielectric polarization,
electrode–electrolyte polarization, some finance systems and electro-
magnetic  wave.  Moreover,  applications  of  fractional  calculus  have
been  reported  in  many  areas  such  as  signal  processing,  image  pro-
cessing,  automatic  control  and  robotics.  These  examples  and  many
other  similar  samples  perfectly  clarify  the  importance  of  considera-
tion and analysis of dynamical systems with fractional-order models.
Significant  contributions  have  been  made  to  both  the  theory  and
applications  of  fractional  differential  equations  (see [1] and  refer-
ences  there  in).  Recently,  the  stability  of  fractional  differential  sys-
tems has attracted increasing interest due to its importance in control
theory.  In  1996,  Matignon [2] firstly  studied  the  stability  of  linear
fractional  differential  systems.  Since  then,  many  researchers  have
studied  further  on  the  stability  of  linear  fractional  differential  sys-
tems [3]−[5].  The  stability  analysis  of  nonlinear  fractional  differen-
tial  systems  is  much  more  difficult  and  only  a  few  available.  For
example,  Li et  al.  investigated  the  Mittag-Leffler  stability  of  frac-
tional  order  nonlinear  dynamic systems [6] and proposed Lyapunov
direct method to check stability of fractional order nonlinear dynamic
systems [7]. Wen et al. [8] and Zhou et al. [9] considered the stabil-
ity of nonlinear fractional differential systems. Zhang and Yang [10]
proposed a single state adaptive-feedback controller for stabilization
of  three-dimensional  fractional-order  chaotic  systems.  Based  on  the
theory of linear matrix inequality (LMI), Faieghi et al. [11] proposed
a  simple  controller  for  stabilization  of  a  class  of  fractional-order
chaotic  systems.  Wang  and  Li  present  the  Ulam-Hyers  stability  for
fractional  Langevin  equations [12],  and  Ulam-Hyers-Mittag-Leffer
stability for fractional delay differential equations [13]. The methods
which they proposed for stability of a class of fractional differential
equations provide us with a very useful method for studying Hyers-

Ulam  stable  system.  That  is,  one  does  not  have  to  reach  the  exact
solution. What is required is to get a function which satisfies a suit-
able approximation inequality.

Problem statement: Note that these papers on the stability of the
fractional  differential  systems  mainly  concentrated  on  fractional-
order α lying in (0, 1). Recently, Zhang et al. [14] considered the sta-
bility of nonlinear fractional differential systems with Caputo deriva-
tive whose order lies in (0, 2). In this letter, we study the stability of
the nonlinear  fractional  differential  systems with Riemann-Liouville
derivative  whose  order  lies  in  (0,  2).  By  using  the  Mittag-Leffler
function, Laplace transform and the Gronwall-Bellman lemma, a sta-
bility  theorem  is  proven  theoretically.  The  stability  conditions  have
no restriction on the norm of the linear parameter matrix A.

Preliminaries:
A ∈ Cn×n, 0 < α < 2, β

µ πα
2 < µ <min{π,πα}

Lemma  1 [8]:  If  is  an  arbitrary  real  num-
ber，  is such that  and C1 > 0 is real constant,
then
 

||Eα,β(A)|| ≤ C1

1+ ||A|| (1)

µ ≤ arg(λ(A)) ≤ π, λ(A)
|| · ||

where  denotes  the  eigenvalues  of  matrix A
and  denotes the l2-norm.

Lemma 2 [15] (Gronwall-Bellman lemma): If
 

φ(t) ≤ h(t)+
w t

t0
g(τ)φ(τ)dτ, t0 ≤ t ≤ t1

g(t), h(t) ϕ(t) t1→∞
g(t) ≥ 0. φ(t)
where  and  are  continuous  on [t0, t1]， ,  and

 Then, satisfies
 

ϕ(t) ≤ h(t)+
w t

t0
h(τ)g(τ)exp[

w t

τ
g(s)ds]dτ, t0 ≤ t ≤ t1. (2)

h(t)In addition, if  is nondecreasing, then
 

φ(t) ≤ h(t)exp[
w t

t0
g(s)ds]dτ, t0 ≤ t ≤ t1. (3)

Main results: In  this  section,  based  on  the  above  definitions  and
lemmas, we present the stability theorem of a class of nonlinear frac-
tional differential systems as follows.

Theorem 1: Consider the following systems of nonlinear fractional
differential equation:
 

RL
0 Dαt x(t) = Ax(t)+ f (x(t)) (4)

x(t) ∈ Rn×1 A ∈ Rn×n

f (x(t)) ∈ Rn×1 0 < α < 2
where is the state vector, is the constant parame-
ter matrix, is a nonlinear function vector and .
If

|λ(A)| , 0, |arg(λ(A))| > απ/21) The matrix A such that ;
f (x(t)) f (0) = 02) The function  satisfies  and

 

lim
x(t)→0

|| f (x(t))||
||x(t)|| = 0. (5)

Then, the zero solution of (11) is asymptotically stable.
0 < α < 1Proof: 1) The case .

In this case, the initial condition is
 

RL
0 Dα−1

t x(t)|t=0 = x0. (6)
Taking Laplace transform on (11), we have

 

X(s) = (Isα−A)−1(x0+L[ f (x(t))]) (7)
n×nwhere I is an  identity matrix.

Then, taking Laplace inverse transform for (7), it yields
 

x(t) = x0tα−1Eα,α(Atα)+
w t

0
(t−τ)α−1Eα,α(A(t−τ)α) f (x(τ))dτ. (8)

δBy the condition (5), there exists C1 > 0 and > 0, such that
 

|| f (x(t))|| < α||A||
C1
||x(t)|| as ||x(t)|| < δ. (9)

From (9) and Lemma 1, (8) gives 
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||x(t)|| ≤ C1||x0||tα−1

1+ ||Atα|| +
w t

0

||(t−τ)α−1||C1

1+ ||A(t−τ)α||
α||A||
C1
||x(τ)||dτ

=
C1||x0||tα−1

1+ ||A||tα +
w t

0

α||A||(t−τ)α−1

1+ ||A||(t−τ)α ||x(τ)||dτ.

According to Lemma 2.2, we obtain
 

||x(t)| ≤ C1||x0||tα−1

1+ ||A||tα +
w t

0

C1||x0||τα−1

1+ ||A||τα ×
α||A||(t−τ)α−1

1+ ||A||(t−τ)α

× exp(
w t

τ

α||A||(t− s)α−1

1+ ||A||(t− s)α
ds)dτ

=
C1||x0||

t1−α+ ||A||t
+

w t

0

αC1||x0||τα−1||A||(t−τ)α−1

1+ ||A||τα dτ

≤ C1||x0||
t1−α+ ||A||t

+αC1||x0||
w t

0
τα−1(t−τ)α−1dτ

≤ C1||x0||
t1−α+ ||A||t

+αC1||x0||Γ(α)Γ(α)t2(α−1)→ 0 as t→∞.

So, the zero solution of (4) is asymptotically stable.
1 < α < 22) The case .

In this case, the initial condition is
 

RL
0 Dα−k

t x(t)|t=0 = xk−1, (k = 1, 2). (10)
We  can  get  the  solution  of  (4)  with  the  initial  condition  (10)  by

using the Laplace transform and Laplace inverse transform
 

x(t) = x0tα−1Eα,α(Atα)+ tα−2 x1Eα,α−1(Atα)

+
w t

0
(t−τ)α−1Eα,α(A(t−τ)α) f (x(τ))dτ. (11)

δBy the condition (5), there exists C1 > 0 and > 0, such that
 

|| f (x)|| < α||A||
2C1
||x(t)||as||x(t)|| < δ. (12)

From (12) and Lemma 1, (11) gives
 

||x(t)|| ≤ C0||x0||tα−1

1+ ||Atα|| +
C1||x1||tα−2

1+ ||Atα||

+
w t

0

||(t−τ)α−1||C1

1+ ||A(t−τ)α||
α||A||
2C1
||x(τ)||dτ

=
C0||x0||tα−1

1+ ||A||tα +
C1||x1||tα−2

1+ ||A||tα

+
w t

0

||(t−τ)α−1||
1+ ||A||(t−τ)α

α||A||
2
||x(τ)||dτ

≤ C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα

+
w t

0

||(t−τ)α−1||
1+ ||A||(t−τ)α

α||A||
2
||x(τ)||dτ.

According to Lemma 2, we obtain
 

||x(t)| ≤ C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα

+
w t

0

( C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα
)

× α||A||(t−τ)
α−1

2(1+ ||A||(t−τ)α) exp
(w t

τ

α||A||(t− s)α−1

2(1+ ||A||(t− s)α)
ds
)
dτ

=
C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα

+
w t

0

( C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα
)
× α||A||(t−τ)α−1

2(1+ ||A||(t−τ)α)0.5 dτ

=
C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα +
w t

0

C0||x0||tα−1

(1+ ||A||tα)0.5

× α||A||(t−τ)α−1

2(1+ ||A||(t−τ)α)0.5 dτ+
w t

0

C1||x1||tα−2

1+ ||A||tα
 

· α||A||(t−τ)α−1

2(1+ ||A||(t−τ)α)0.5 dτ ≤ C0||x0||tα−1

(1+ ||A||tα)0.5 +
C1||x1||tα−2

1+ ||A||tα

+
αC0||x0||
2||A||0.5

w t

0
τ0.5α−1(t−τ)0.5α−1dτ

+
αC1||x1||

2||A||
w t

0
τα−2(t−τ)0.5α−1dτ

≤ C0||x0||
||A||0.5t1−0.5α +

C1||x1||
||A||t2 +

αC0||x0||
2||A||0.5

Γ(0.5α)Γ(0.5α)
Γ(α)t2−α

+
αC1||x1||

2||A||
Γ(2−α)Γ(0.5α)
Γ(2−0.5α)t3−1.5α → 0 as t→∞.

So, the zero solution of (4) is asymptotically stable. ■
Remark  1:  The  nonlinear  term  of  many  fractional  order  chaotic

systems  satisfy  (5).  For  example,  fractional-order  Lorenz  system
[15],  fractional-order  Chen  system [16],  fractional-order  Lu  system
[17], fractional-order Liu system [18], fractional-order Arneodo sys-
tem [19],  fractional-order  Chua  system [20] and  fractional-order
hyperchaotic  Chen system [21],  etc.  So,  Theorem 1 can be  applica-
ble  to  control  chaos  in  a  large  class  of  generalized  fractional-order
chaotic or hyperchaotic systems via a linear feedback controller.

f (x(t))

Remark  2:  Theorem  1  provides  us  with  a  simple  procedure  for
determining  the  stability  of  the  fractional  order  nonlinear  systems
with Riemann-Liouville derivative with order 0 < α < 2. If the non-
linear term  satisfies (10), then one does not have to reach the
exact solution. What is required is to calculate the eigenvalues of the
matrix A, and test their arguments. If | arg(λi(A))| > απ/2 for all i, we
conclude that the origin is asymptotically stable.

Two  illustrative  examples: The  following  illustrative  examples
are provided to show the effectiveness of the stability theorem. When
numerically  solving  fractional  differential  equations,  we  adopt  the
method introduced in [22].

Example 1: Consider the nonlinear fractional differential systems
 

RL
0 Dαt x1 = x1+ x2+ x3+ x2x3
RL
0 Dαt x2 = −x1+ x2− x3+ x2

2
RL
0 Dαt x3 = x1x2− x3. (13)

System (13) can be rewritten as (1), in which
 

A =

 1 1 1
−1 1 −1
0 0 −1

 , f (x(t)) =

 x2x3
x2

2
x1x2

 . (14)

Obviously, it is easy to verify that
 

lim
||x(t)||→0

|| f (x(t)||
||x(t)|| = lim

||x(t)||→0

√
(x2x3)2+ x4

2 + (x1x2)2√
x2

1 + x2
2 + x2

3

≤ lim
||x(t)||→0

√
(x2x3)2+ x4

2 + (x1x2)2√
x2

2

≤ lim
||x(t)||→0

√
x2

3 + x2
2 + x2

1 = 0

f (x(t)
λ 1,2 = 1± i

λ3 = −1

α = 0.49
α = 0.5.

which  implies  that  satisfies  Conditions  (2)  in  Theorem  1.  By
using  simple  calculation,  the  eigenvalues  of A are  and.

.  According  to  Theorem  1,  if α <  0.5,  the  zero  solution  of
(13)  is  asymptotically  stable.  Simulation  results  are  displayed  in
Fig. 1. Fig. 1(a) shows the zero solution of the system (13) is asymp-
totically stable with , Fig. 1(b) shows the zero solution of the
system (13) is not stable with 

Example 2: Consider the nonlinear fractional differential systems
 

πL
0 Dαt x1 = −x1+ x2x3
a
0Dαt x2 = x3
πL
0 Dαt x3 = x1− x2− x3− x1x2 (15)

(15) can be rewritten as (1), in which
 

A =

 −1 0 0
0 0 1
1 −1 −1

 , f (x(t)) =

 x2x3
0
−x1x2

 . (16)
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lim||x(t)||→0
|| f (x(t)||
||x(t)|| = 0,

f (x(t)
λ 1,2 = −1/2±

√
3i/2

λ 3 = −1 α < 4/3

α = 1.30
α = 1.34

Obviously,  it  is  easy  to  verify  that  which
implies  that  satisfies  Condition  (2)  in  Theorem  1.  By  using
simple calculation, the eigenvalues of A are  and

. According  to  Theorem  1,  if ,  the  zero  solution  of
(13)  is  asymptotically  stable.  Simulation  results  are  displayed  in
Fig. 2. Fig. 2(a) shows the zero solution of the system (15) is asymp-
totically stable with , Fig. 2(b) shows the zero solution of the
system (15) is not stable with .
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Fig. 2. The  stability  of  the  zero  solution  of  system  (15).  (a)  System  (15)  is
asymptotically  stable  with ;  (b)  System  (15)  is  not  stable  with

.
 

Conclusions: In  this  letter,  we  have  studied  the  local  asymptotic
stability  of  the  zero  solution  of  n-dimensional  nonlinear  fractional
differential  systems  with  Riemann-Liouville  derivative.  The  results
are  obtained  in  terms  of  the  Mittag-Leffler  function,  Laplace  trans-
form and the Gronwall-Bellman lemma. Compare the current results
with the results in [14], it shows the stability condition of Riemann-
Liouville  fractional  differential  systems,  is  same  as  one  of  Caputo
fractional  differential  systems.  Three  numerical  examples  are  given
to demonstrate the effectiveness of the proposed approach.
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