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Data Driven Vibration Control: A Review

Weiyi Yang ““, Shuai Li

Abstract—With the ongoing advancements in sensor networks
and data acquisition technologies across various systems like
manufacturing, aviation, and healthcare, the data driven vibra-
tion control (DDVC) has attracted broad interests from both the
industrial and academic communities. Input shaping (IS), as a
simple and effective feedforward method, is greatly demanded in
DDVC methods. It convolves the desired input command with
impulse sequence without requiring parametric dynamics and the
closed-loop system structure, thereby suppressing the residual
vibration separately. Based on a thorough investigation into the
state-of-the-art DDVC methods, this survey has made the follow-
ing efforts: 1) Introducing the IS theory and typical input
shapers; 2) Categorizing recent progress of DDVC methods; 3)
Summarizing commonly adopted metrics for DDVC; and 4) Dis-
cussing the engineering applications and future trends of DDVC.
By doing so, this study provides a systematic and comprehensive
overview of existing DDVC methods from designing to optimiz-
ing perspectives, aiming at promoting future research regarding
this emerging and vital issue.

Index Terms—Data driven vibration control (DDVC), data science,
designing method, feedforward control, industrial robot, input shap-
ing, optimizing method, residual vibration.

I. INTRODUCTION

N real scenes, the system model inevitably suffers from
Iuncertainty due to the parametric inaccuracy and internal/
external disturbance [1]-[3]. To address such issue, data
driven vibration control (DDVC) arouses extensive research
efforts and becomes an important topic in the area of vibra-
tion control [4]. Differently from model-based control
approaches and feedback control returning output command, it
designs a controller directly from the input-output data of the
system [5]—[7].

With the rapid progress and wide applications of the robot
vibration control, it developed rapidly in the past decade [8],
[9]. Ma et al. [10] provide an overview of research endeavors
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in the dynamics and control field utilizing data-driven
approaches, including structural optimization, active vibration
control and system identification, etc. Qin and Xin [11] intro-
duce a data-driven H_, vibration control algorithm to address
the challenges of active suspension vibration control, and
reveal the algorithm’s insensitivity to data size through a
quantitative study of two key parameters. Liu et al. [12] pro-
pose an accurate and efficient approach with a gated recurrent
unit (GRU) data-driven model, which predicts the dynamic
behavior of the nonlinear vibratory system and is proved by
Low evaluation metrics and R2? close to 1. To date, in
response to the demands of industrial applications, hundreds
of DDVC approaches have been designed and proposed
[13]-[17] and are predominantly implemented by feedfor-
ward control.

Input shaping (IS), is a typical feedforward open-loop con-
trol technique used for residual vibration control [18], it not
only shapes the input command directly for efficient and easy
implementation, but also evades the expensive device for
measuring output command like feedback control [19], on the
other hand, no longer suffers the burden in structural mass
caused by adding damping and stiffness [20]. Hence, IS is
highly effective in high-speed motion and high-precision posi-
tioning systems, and is of great significance for the following
reasons:

1) Accurate motion analyses are limited owing to the
increasing complicated robotic operation and system structure.
Fortunately, IS dispenses with a precise mathematical system
model, which opens an opportunity to conduct research on
DDVC; and

2) Advanced control methods are difficult to implement in
practical engineering due to the restriction of achievable sam-
pling rate, sensor requirements and control structure. There-
fore, it is extremely interesting to perform IS without feed-
back quantum and special measuring instruments.

In recent years, IS has proven to be primarily implemented
and highly efficient in DDVC, which generates a series of
self-canceling impulses [21], e.g., industrial robot [22], crane
[23], computer numerical control (CNC) machine tools [24]—
[28] and pick and place in the electronics industry [29]. Addi-
tionally, it exhibits superior vibration suppression capabilities
compared to traditional filtering methods, i.e., low-pass filter-
ing [30] and notch filtering [31]. Another open-loop control
method commonly used in addressing vibration control prob-
lem is trajectory smoothing [32]. Diverging from IS, which
focuses on input impulse design, trajectory smoothing is
model-dependent, and is geared towards modifying the motion
trajectory of a system or robot, thereby ensuring a smooth, sta-
ble trajectory that aligns with specific requirements [33].
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Fig. 1.  Classification of DDVC.

Moreover, filtering techniques and generating new trajecto-
ries [34] are frequently applied in trajectory smoothing. Col-
lectively, IS has played a crucial role in DDVC.

Therefore, IS technology, as an emerging topic in academic
communities, has attracted lots of attention. Piedrafita et al.
[35] present a comprehensive Simulink implementation of IS
and propose seven input shapers to verify the control effi-
ciency, which greatly reduce vibration, between 47% and 81%
the transient and up to 99% the residual. Ghorbani ef al. [36]
conduct a brief overview of three standard input shapers and
make comparisons with various frequencies for the first time.
Bilgic et al. [37] present a brief review of IS methods and pro-
pose a fuzzy logic-based decision support system (FL-DSS) to
provide assistance in the selection of suitable input shapers.
Yavuz and Beller [38] review the IS and hybrid control meth-
ods used in cranes, and demonstrate artificial intelligence
assisted transport operations on a simple pendulum, which
contributes to the overall performance for residual vibrations
elimination, strengthening the impact of intelligent control in
DDVC.

Notably, single open-loop controllers often exhibit limited
control performance. Therefore, DDVC is critical to the con-
trol capability and robustness problem against model uncer-
tainty [39]-[41]. Yi et al. [42] utilize genetic algorithm (GA)
to identify input shaper parameters, mitigating the influence of
uncertainties in system parameters. Xu ef al. [43] incorporate
the particle swarm optimization (PSO) algorithm into conven-
tional ZVD formers, demonstrating promising simulation and
experimental results in nonlinear systems. However, as sys-
tem parameters shift, the repetitive iterative processes dimin-
ish the controller’s efficiency, and these evolutionary algo-

rithms are also unsuitable for real-time optimization. To
address this issue, Ramli et al. [44] propose a UMZV shaper
using an ANN trained by PSO algorithm. Specifically, it
involves offline construction of optimal shaper parameter sets
corresponding to different system parameters, enabling real-
time prediction and direct updates of the shaper’s parameters.

In order to further enhance real-time system robustness and
shorten optimization duration, Tang et al. [45] devise a con-
trol scheme based on PSO and adaptive techniques via offline
and online dual optimization, and the simulation results
demonstrate higher robustness and effectiveness. For multi-
modal systems, Jaafar et al. [46] propose a model reference
command shaping (MRCS) method based on estimating the
system poles, which operates independently without relying
on precise system parameters or any vibration feedback sen-
sors. Although practical experiments verify its effectiveness
and robustness, it is confined to vibration control, lacking the
capability to drive the system to various desired positions. In
view of this limitation, Jaafar et al. [47] introduce a combined
feedforward and feedback MRCS-PID controller. In addition
to employing a proportional-integral-derivative (PID) con-
troller, simultaneous parameter tuning is realized through
PSO, striving for accurate system positioning and effective
vibration control.

Motivated by the above mentioned successes of residual
vibration control, DDVC has attracted widespread attention,
yielding a rapidly increasing number of related studies. How-
ever, a survey regarding its state-of-the-art remains missing.
This paper presents a comprehensive survey of existing
DDVC methods. As shown in Fig. 1, existing DDVC meth-
ods are categorized from designing steps to optimizing steps.



1900

They can be subdivided into a) Response-based designing; b)
Mechanism-based designing; c) Artificial intelligence method;
4) Iterative method. This work intends to make the following
contributions.

1) Introducing the theory of IS and several standard shapers;

2) Summarizing the progress of IS method from designing
to optimizing perspectives, where the state-of-the-art is care-
fully reviewed and categorized;

3) Summarizing the typical evaluation metrics of DDVC
models, as well as the control metrics for comparing different
DDVC methods; and

4) Discussing the DDVC development trends.

Section II details the theory. Section III reviews state-of-
the-art DDVC methods. Section IV summarizes typical met-
rics for DDVC. Section V discusses DDVC’s applications and
future trends. Eventually, Section VI draws the conclusions.

II. IS THEORY

This section covers: 1) The introduction of IS basis; and 2)
The residual vibration control from designing to optimizing
steps. Abbreviations adopted in this paper are given in Table I.

A. IS Basis

1) Theory

As a feedforward open-loop control method, input shaper
consists of a series of impulses, and reduces vibration by con-
volving input commands. More specifically, its design varies
with the system characteristics, resulting in different ampli-
tudes and time delays of impulses. The basic rule and process
of shaping work is shown in Fig. 2.

Since any system dominated by a single order vibration
mode can be approximated by a second-order system, the
transfer function can be expressed as

w2

- @)

G(§) = ———
() $2+ 20wy s + w2

where s is a complex variable, o, is the undamped natural fre-
quency and { is the damping ratio. Note that the shapers need
to identify these two modal parameters in advance and the tra-
ditional methods are: a) Establishing the system dynamic
model and solving the dynamic equation; b) Hammer method
or other modal experiments; and c¢) Finite element analysis
method [48]. Thus, the unit impulse input response is given as

2

w. _ —
_n e Lwn(t—tn)

w(t) = 7

sinwg (t—t,)

where , is the damped frequency, andwd =wyv1-¢2
Hence, mathematical equation for input shaper is given as

n
F(s)= ZA,»e—ffS
i=1

where 4; and ¢; are the amplitudes and time locations of the
impulses, n is the number of impulses in the impulse sequ-
ence. To obtain the system response, under the conversion of
trigonometric function difference formula and trigonometric
auxiliary angle, it can be expressed as

3
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where ¢ is given as

Zn: Aie{w"l" sinwgt;
¢ = arctan lzl . (5)
> Ajef@nli cos wyt;
i=1
Note that the addition of impulse response becomes the total
system response. The residual vibration ratio (ratio of (4) to
(2)) that results from a sequence of impulses is defined as

Vo) =\ o)+ S Cwn) (6)

where C ({, w,) and S ({, w,) are given as

n
C(Lwn) = ) At cos wyt
t;ll (7)
S (&, wy) = ZA,‘e{w"t" sinwgt;.
i=1
By setting (7) equal to zero, the impulse amplitudes and
time locations leading to zero residual vibration can be
achieved. However, more restrictions on the impulses should
be placed, or the solution will converge to zero or infinity
[49]. The following section details several typical shapers and
their derivations.
2) Typical Input Shapers
a) Zero vibration (ZV) shaper: ZV shaper is the simplest
input shaper and consists of only two impulses [50]. For the
second order system in (1), the ZV input shaper is expressed
as

F(s)=A| +Aze 2", ®)
To avoid the trivial solution of all zero-valued impulses and
to obtain a normalized result, the sum of the impulses should

be one [51]. Besides, ¢, is set to zero for the shortest shaping
time, the constraint is expressed as

t1=0
) ©)
Al +Ay=1.
Based on (7), they are set as
Al + Ayef@n2 coswyty = 0 10)
Azegw"l2 sinwgty =0

where w,t, = nm, n=1,2,..., choosing the smallest value for ,,
the amplitude and time delay are given as

{n

e Vi-22 1
A= ———, Ao= ————
1+eVI-¢ 14+e V18 an
t1 =0, h= l
Wd
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TABLE I

ADOPTED ABBREVIATIONS
Term Explanation Term Explanation
ACO Ant colony optimization MTCA Minimum time control algorithm
ADRC Active disturbance rejection control MTDIS Modified zero-time delay IS
ANN Artificial neural network MTS Maximum transient swing
APIDLNN Adaptive PID like neural network MVI Minimum vibration and integral
BS Bayesian search NA Newton algorithm
CEE Contour error estimation NHMMIS Negative-impulse hybrid multiple-modal input shaper
CEP Contour error precompensation NII Negative impulse input
CNC Computer numerical control NN Neural network
CSACCMRL aCégr;zlyz(;lszclté(;r;n?ngorithm combining cloud model NTVS Nonlinear time-varying systems
CTP Cartesian trajectory planning NzZV Negative zero vibration
DDVC Data-driven vibration control OATF Optimal arbitrary time-delay filter
prPowC Dt fedfomard e ning opimiAin o1 opiimal put shaper
DOF Degree of freedom PA Prediction accuracy
DzV Dynamic zero-vibration PD Proportional-derivative
ECM Error compensation method PFC Predictive functional control
EI Extra insensitivity PID Proportional-integral-derivative
EKF Extended Kalman filtering PIPOFC Position-input position-output feedback controller
ETM Equal shaping-time and magnitude PPS Predictive path scheduling
FIR Finite impulse response PSO Particle swarm optimization
FLC Fuzzy logic control QP Quadratic programming
FL-DSS Fuzzy logic-based decision support system R2 R-squared
FRF Frequency response function RAE Relative absolute errors
GA Genetic Algorithm RBFNN Radial basis function neural network
GD Gradient descent REI Residual energy index
GRNN General regression NN RL Reinforcement learning
GRU Gated recurrent unit RLIS RL-based optimization method for IS
GSP Generalized smith predictor RLS Recursive least square
GSS Golden section search RM Robustness measures
H, H-infinity RMMBC Reference model matching backstepping controller
HDD Hard disk drive RMSE Root mean squared error
IAE Integral absolute error RRT Rapidly exploring random tree
IS Input shaping RZV Robust zero-vibration
ISFF Input shaping joint feedforward SD Specified duration
v Impulse vector SI Specified insensitive
LMM Lagrange multiplier method SISO Single-input single-output
LP Linear programming SMA Simple moving average
LPF Low-pass filter SMC Sliding mode controller
LQR Linear quadratic regulator ST S-curve trajectory
LS Least square TDF Time-delay filter
LTV Linear time-varying TPM Time parameter mapping
MCTS Monte Carlo tree search TVIST Time-varying input shaping technique
MII Multiple impulse input UMZV Unity magnitude zero vibration
MIMO Multi-input multi-output WLS Weighted least square
ML Machine learning ZRV Zero residual vibration
MPC Model predictive control N Zero vibration
MRCS Model reference command shaping ZND Zero vibration and derivative
MSE Mean square error ZV1 Zero vibration and minimum integral
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(a) A block diagram of IS control. The input command passing through the
input shaper is convolved with the impulse sequence to drive the system
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cause vibration, neither does the convolution
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but opposite directions, thereby canceling each other out
when superimposed
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Fig. 2.  The basic rule and shaping process of IS. Note that (d), (e), and (f)
demonstrate the FRF curves of several typical input shapers, i.e., ZV, ZVD
and EI shapers, separately.

Defining K = ¢ V1= the sequence of ZV shaper can
now be summarized as

1 K
A 1+K 1+K
ZV:[ ]: 1+K 1+K (12)
t; 0 Q
2

where Ty = 27/wy is the damped period of vibration.
b) Zero vibration and derivative (ZVD) shaper: In order to
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increase the robustness of the IS process, ZVD shaper con-
strains the differential (6), that is

n
DlAi=1
i=1

0
3V (§-wn) =0.

Notably, ZVD shaper has zero derivative with respect to the
change of vibration. To realize this constraint, it adopts three
impulses to obtain the ZVD shaper

(13)

1 2K K?
Ai c ¢ C
ZVD:[ y }: ©c c ¢ (14)
i Ty
0o ¢ 7T
) d

where C = 1 + 2K + K2. Meanwhile, a ZVDD shaper can be
obtained by setting the second derivative of (6), that is, the
shaper can be extended indefinitely with repeated differentia-
tion [52].

¢) Extra insensitivity (EI) shaper: An EI shaper limits the
residual vibration to some low, but acceptable level, and its
constraints are set as

Viwy) =V,
V(wp-n1)=0

V(@nen2) =0 (15

0

a),,=0

where V, is the allowable limited bound of the vibrations,
Wp—n1 and wy4,n are two frequency points near the natural fre-
quency. In undamped or lightly damped systems, the ampli-
tude and time delay are calculated as

1+V, 1-V, 1+V,
A; 4 2 4
El:[ t‘}: ; . (e
i d
0 — T
> d

In order to better explain the essence of IS prefiltering tech-
nology, the FRF curves of ZV, ZVD and EI shapers are shown
in Fig. 2(d)—2(f), respectively.

B. Residual Vibration Control

1) Designing Steps: Considering designing methods, it can
be generally categorized as response-based designing and
mechanism-based designing [53]. On the one hand, the
response-based method emphasizes the system’s external
input-output responses. It infers the system dynamic charac-
teristics and designs controllers accordingly by observing the
actual responses. Note that different systems require different
types of controllers or control strategies, and adequate high-
quality data is critical for effective implementation. On the
other hand, the mechanism-based method basically models the
system vibration as a vibration ratio function, i.e., (6). Specifi-
cally, it emphasizes a deeper understanding of the internal
vibration mechanisms within the system, considering factors
such as structure and material properties and employing dif-
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ferential equations to establish mathematical models. To
obtain robustness, previous studies [54]-[56] relax the con-
straint and define the function as

Vw) = O w0 +S2 0. (17)

Various constraint equations such as robustness [57], time-
delay [58]—[61] and amplitude [62] have been introduced to
jointly achieve the desired input shaper. In addition, the input
shaper convolved with a proper filter can ensure the second-
order derivability of the desired position or avoid undesirable
high frequency [63].

In general, response-based method primarily relies on the
external system responses, making it advantageous for more
complex systems, whereas mechanism-based method involves
analyzing the internal structure and is better suited for simpler
systems.

2) Optimizing DDVC: Recently, research on data-driven
optimizing method emerges, since the achievement of various
sensors and measuring tools brings a great amount of high
precision data [64]. By measuring a certain amount of actual
data, the data-driven optimizing method learns the error
between the ideal and actual values, and adjusts the model
parameters to approximate the actual data. More specifically,
optimizing DDVC can be generally summarized as artificial
intelligence methods [65] and iterative methods [66], [67]. In
an ideal case, the system in the desired position should stay
stationary, thus, the error is the deviation of the measured
speed v, ({, w,) from the stationary condition v, = 0, and the
objective function f({, ®,) is defined as

. 1 2
)= _E (ol 18
argglﬂlgf(&w) arg?if}[zi_l i (£, w )II] (18)

Note that the optimization objective is to minimize the
vibration by figuring out the optimal undamped natural fre-
quency o, and damping ratio {. Besides, in different system
applications, optimization objects can be adjusted to residual
vibration impulses or swing angles.

III. DDVC METHODS

We present a review of state-of-the-art DDVC methods
from designing to optimizing perspectives. In addition, in
Tables II and III, we summarize the main characteristics of
existing studies, and illustrate their structures and feature
descriptions.

A. Designing Steps

1) Response-Based Designing

A response-based method analyzes the system input-output
response and calculates the frequency response, step response,
impulse response, and other characteristics of the system [68],
thus designing the corresponding controller accordingly. As
shown in Tables II(a)—II(j), the response-based methods are
mainly adopted in DDVC, i.e., Feedforward control, and
Feedback control.

a) Feedforward control: As shown in Table II(a) and II(b),
feedforward controller proactively modifies system input to
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achieve better control performance by predicting its future
behavior. Bruijnen and Dijk [69] introduce a filter design that
integrates input shaping and feedforward filter, enabling the
handling of flexible motion systems that might containing
non-minimum phase behavior. Yang and Zhang [70] propose
a feedforward control method for non-repetitive motion,
which can obtain high performance for both repetitive and
non-repetitive motion trajectories under actuator constraints.
In feedforward control, the primary objective is to achieve
precise tracking of a setpoint by compensating for the known
system behavior [71], and the dependence of feedforward con-
troller on system model should be removed as much as possi-
ble, while achieving high control precision and robustness
[721, [73].

b) Feedback control: To achieve precise system control,
feedback control adjusts the controller outputs based on the
error between the system output and the desired one. Besides,
in Tables II(c)—II(j), the commonly used feedback controllers
include PID, LQR, PFC, GSP-PID, and ADRC. A PID con-
troller adopts the past, current and future information of pre-
diction error to control vibration system [74]—[78]. Moreover,
Duong et al. [79] introduce a proportional derivative (PD)
controller that equates the actuator system with the critical
damping system, and establish the gain condition for the con-
troller. Cui et al. [80] combine active disturbance rejection
control (ADRC) with IS that realizes the fast disturbance
rejection and non-overshoot set-point tracking without a pre-
cise model. Abdullah and Rossiter [81] propose potential sim-
ple modifications to conventional predictive functional con-
trol (PFC) algorithms that improve the constraint handling
properties of challenging dynamics processes such as integral,
underdamping, or unstable modes.

Note that various controllers may exhibit similar control
architectures despite having different control mechanisms.
Kocak et al. [82] propose an intelligent IS selection method
based on fuzzy logic control (FLC), which can set optimum
settling time, positioning accuracy and minimum residual
vibrations. Yuan et al. [83] propose a vibration control strat-
egy combining IS and sliding mode, which utilizes clonal
selection algorithm combining cloud model and reverse learn-
ing (CSACCMRL) to optimize the parameters of the sliding
mode controller (SMC), thus suppressing residual vibration
caused by forging press impact.

2) Mechanism-Based Modeling

A mechanism-based method mainly depends on a) Residual
vibration measures; b) Input command processing; c) Trajec-
tory processing; and d) Filter combination. The structure and
description of methods b)—d) are shown in Tables I1(i)—1I(j).

a) Residual vibration measures: These methods define new
constraints or residual vibrations ratio to deal with differential
equations, thus obtaining efficient input shapers. Shan et al.
[84] propose a robust optimal input shaper (OIS) and a highly
efficient index, i.e., the residual energy index (REI), to
achieve quick measurements of the vibration reduction effi-
ciency. Alghanim et al. [85] propose the control strategies
including zero vibration and minimum integral (ZVI) and
minimum vibration and integral (MVI) to provide additional
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flexibility.

b) Input command processing: The main task of input com-
mand processing is to modify the input impulse, including
selecting impulse properties, impulse acceleration, and com-
pensation. Kang [86] introduce the impulse vector (IV) and
propose an equal shaping-time and magnitude (ETM) shaper
that can be well applied to systems with varying natural fre-
quencies. Li et al. [87] propose an input command error com-
pensation method (ECM) to track slope commands without
delay. Li et al. [88] introduce the positive and negative alter-
nating impulse sequence and propose the input shaper with
negative impulse input (NII) that achieve smooth transition
and faster time response. Du et al. [89] propose a generalized
input shaper with multiple impulse input (MII) to promote the
anti-roll control performance of the second-order damping
system.

As shown in Table II(h), the impulse acceleration and com-
pensation processing effectively addresses the time delay.
Zhao and Tomizuka [90] propose a modified zero-time delay
IS (MTDIS) method, which accelerates the input command
and designs the impulse compensator to suppress residual
vibration of industrial robot with flexibility.

¢) Trajectory processing: These methods aim to plan
motion trajectory, velocity magnitude and direction to com-
pensate trajectory error caused by IS. Zhang et al. [91] pro-
pose a trajectory design strategy using Cartesian coordinates
to obtain the shaped trajectory, thus controlling system vibra-
tion. Zhang et al. [92] propose a vibration control strategy that
adopts Lagrange multiplier method (LMM) to obtain the opti-
mal impulse amplitude parameters, and uses predictive path
scheduling (PPS) to reduce the system response time delay,
motion control error and positioning control error caused by
IS. Li et al. [93] propose a Cartesian trajectory planning
(CTP) IS method based RLS, which shapes the normalized
interpolation function of Cartesian trajectory planning.

As shown in Table II(i), trajectory processing is able to
effectively compensate for contour errors. Wang et al. [94]
propose time parameter mapping (TPM) and CEP for multi-
axis IS, which uses the Newton algorithm (NA) to optimize
the contour error estimation (CEE), thus reducing the struc-
tural vibration.

d) Filter combination: The most common IS methods are
summarized as time-delay filter (TDF) [95] and low-pass fil-
ter (LPF) [96]. TDF is suitable for simple target system that
natural frequencies and damping ratios can be easily obtained,
and LPF is often combined with finite impulse response (FIR)
filter to ensure finite settling time for system modes with
known natural frequency and damping ratio [97]. As shown in
Table I1(j), the filter is mostly convolved with an input shaper.
Thomsen et al. [98] convolve discrete time time-varying input
shaping technique (TVIST) with output side algorithm FIR fil-
ter, which can be extended to higher order for additional
effectiveness. Kim and Croft [99] propose the optimal S-curve
trajectory (ST), robust zero-vibration (RZV) shaper and
dynamic zero-vibration (DZV) shaper using simple moving
average (SMA) filter to suppress a wider frequency range.
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B. Optimizing DDVC Steps

1) Artificial Intelligence Method

An artificial intelligence method can effectively learn
parameter variations in complex and nonlinear systems [100]
and realize real-time control [101]. As shown in Tables III(a)—
ITI(f), the commonly adopted artificial intelligence methods in
DDVC mainly include a) Neural network ones; and b) Rein-
forcement learning ones.

a) Neural network: As shown in Table Ill(a), the ANN
methods exhibit powerful adaptive and nonlinear learning
capabilities, enabling them to learn complex mappings
between system states and input shaper parameters. Rehman
et al. [102] propose an adaptive ZVD shaper based on ANN,
which realize the swing control of crane under the variation of
cable length and payload mass. Zhang et al. [103] propose a
post-adaptive zero residual vibration (ZRV) input shaper,
which establishes a full connection multilayer ANN trained by
multiple sets of excitation trajectory samples and adopts adap-
tive forgetting factor to update recursive least square (RLS)
method, thus solving the issue of time cost in the case of fre-
quent trajectory variation. Ramli et al. [104] propose a hybrid
method of predictive NNUMZV and adaptive PID like neural
network (APIDLNN) controller to realize real-time swing
control of an overhead crane under simultaneous hoisting and
external interference.

As shown in Tables I1I(b)—1II(d), with the radial basis func-
tion structure, the RBFNN generally has a faster training
speed while the GRNN has a better generalization ability
which can help to avoid overfitting problems [105], Nithi-
Uthai and Chatlatanagulchai [106] propose an RBFNN IS ref-
erence model matching backstepping controller (RMMBC),
which compensates the uncertainty and disturbance of the sys-
tem.

b) Reinforcement learning: As shown in Tables III(e) and
I11(f), Reinforcement learning (RL) is a typical discrete behav-
ior learning model, which conducts multiple interactive learn-
ing between the agent and the dynamic environment without
any pre-existing knowledge and makes appropriate choices to
obtain rewards, thus achieving optimal solution. Xu et al.
[107] propose an RL based control method for specified
insensitive (SI) input shaper, which utilizes the RL agent to
find the maximum reward function, i.e., the optimal parame-
ter with minimum vibration amplitude, thus achieving better
vibration control effect and robustness. Zhang et al. [108] pro-
pose a deep reinforcement learning-based optimization
method for input shaping (RLIS), which increases the learn-
ing efficiency and simplifies the design process through a
selection mechanism based on state value and a fuzzy reward
system.

2) Iterative Method

a) Least squares problem: The least square (LS) method is
an efficient and scalable optimization method for identifying
system parameters [109]. Yin et al. [110] propose a hybrid
feedforward force/position control strategy that applies multi-
mode adaptive IS and uses weighted least square (WLS)
method to identify shaper parameters. Zou et al. [111] intro-
duce a learning exponential jerk trajectory planning, which
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dynamically adjusts the parameters of exponential filter in
real-time using an iterative learning strategy designed by gra-
dient descent (GD) principle, thereby maximizing the effec-
tiveness of vibration suppression. Zhang et al. [112] propose
an optimal arbitrary time-delay filter (OATF), which apply an
iterative learning scheme based on the secant method and
WLS to obtain a better natural frequency estimate.

b) Evolutionary algorithm: As shown in Table III(g), the
evolutionary algorithm, represented by PSO, involves individ-
uals searching for optimal solutions by iteratively updating
their own positions and velocities as well as the position and
velocity of the global optimal solution. Jallouli-Khlif et al.
[113] propose a composite control law based on the IS
approach and a fractional proportional integral controller,
which is tuned by ant colony optimization (ACO) algorithm
and reduces the settling time and vibrations of the system. Li
et al. [114] propose a PSO algorithm based on RLS finite
search space (RLS-PSO), which identifies the dynamic param-
eter and uses the results to design a coupled ZVD shaper, sup-
pressing residual system vibration with a higher accuracy and
convergence speed. The self-tuning capability of the evolu-
tionary algorithm can effectively deal with the issue of IS tun-
ing in black boxes, systems with nonlinear, and more com-
plex plants [115].

¢) Search algorithm: As shown in Tables III(h) and III(i),
The search algorithms use strategies, i.e., probability, and
search tree structures, to iteratively adjust the solutions in the
search space, thereby finding the optimal solution. Jia et al.
[116] present a parameter learning strategy for two impulse
input shaper that adjusts offline parameters by extrapolation
interpolation algorithm and golden section search (GSS)
through vibration amplitude measurement. Patel and Wearer
[117] propose a minimum time control algorithm (MTCA)
that applies Monte Carlo tree search (MCTS) method to find
the optimal control strategy for the input shaper. Pasztori et al.
[118] apply Bayesian search (BS) algorithm considering the
previous Gaussian Process as a prior distribution to select the
optimal input shaper parameters.

C. Summary

We present a holistic overview of the progress in DDVC
from the designing to optimizing perspectives, where the
state-of-the-art is comprehensively reviewed and categorized.
Besides, the main characteristics and classification of existing
designing and optimizing methods are summarized in
Tables IV and V, including their tasks and applications.

Considering the limitations of existing DDVC methods:

1) They mostly focus on advancing either the designing or
optimizing processes separately, neglecting the potential bene-
fits of concurrently improving both processes, which is worth
further investigation.

2) Existing optimizing DDVC methods mainly utilize sim-
ple neural network or basic artificial intelligence techniques,
and are limited to validation on other experimental equipment
and environment, lacking sufficient generality [119], [120].
Considering this aspect, it is urgent to explore advanced artifi-
cial intelligence techniques to enhance the adaptability of
DDVC methods to various systems and vibration modes. In
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addition, there is currently no standardized publicly available
dataset to validate various state-of-the-art DDVC methods.

IV. METRICS

This section summarizes the DDV C-related metrics, includ-
ing 1) Commonly-adapted evaluation metrics for a DDVC
model; and 2) Control metrics used to compare different
DDVC methods.

A. Evaluation Metrics

In the realm of DDVC models, evaluation metrics serve as
essential tools for gauging the performance and accuracy of
models in predicting outcomes. These metrics encompass a
range of measures, including but not limited to root mean
square error (RMSE), mean square error (MSE), and coeffi-
cient of determination (R?) [121], offering quantitative
insights into algorithmic performance within a given dataset.
Besides, they provide a more comprehensive insight into the
model’s effectiveness in data-driven tasks, facilitating the
model optimization and the enhancement of prediction accu-
racy. In Table VI, several commonly used evaluation metrics
in DDVC models are summarized.

B. Control Metrics

Table VII outlines the control metrics in the DDVC meth-
ods, which serve as the foundation for a comprehensive
assessment of system performance, and encompass parame-
ters like settling time, transient response time, and robustness
[122], etc. Additionally, a thorough evaluation of these con-
trol metrics enables a more detailed understanding and com-
parison of the performance among different vibration control
methods, offering robust support for system optimization and
design decisions.

V. DDVC IN ENGINEERING AND FUTURE DEVELOPMENT

A. DDVC in Engineering

DDVC is a versatile method with a broad range of potential
applications in various engineering, the detailed characteris-
tics and the corresponding specific DDVC methods are pre-
sented in Table VIII, and some engineering scenarios are as
follow:

1) Robot Control: DDVC can be used in various aspects of
robot control, such as position control, velocity control, and
force control [123]. Chen et al. [124] utilize the finite element
method and the IS technique to improve the performance and
reliability of mechatronics systems. Thomsen et al. [125]
apply the TVIST on UR robots to achieve more precise
motion control. Sahoo and Singhose [126] utilize the IS to
reduce impact loads during collisions of flexible robots,
thereby improving the reliability and durability of the system.
In conclusion, DDVC has shown significant advantages in
promoting the control performance of robots in various
aspects.

2) Pendulum Control: Collectively, DDVC methods are wid-
ely adopted to control pendulum system, i.e., Flexible beam
[127]-[129], underactuated system [130], and Boom system
[131]. Kim et al. [132] present a detailed modeling analysis of
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TABLE VI

SUMMARY OF EVALUATION METRICS
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TABLE VIII
SUMMARY OF DDVC IN ENGINEERING

Evaluation metrics

Equation & Description

Application Characteristics & Specific DDVC

_ Ju-iil
5, 0=
The absolute error ratio [44].
1 -5
PA=100%-—»" i~ X 100%.
PA n- i
The prediction accuracy [44].
RMSE= |} En:(t- 7)?
RMSE n&itt
The root mean square error [121].
n
> (6-5)
R=1-2L
2 n
R 2 =17
i=
The coefficient of determination [121].
MSE = Zn:(t- 7)?
MSE n&itt
The mean square error [104].
MTS =max{|A()}.
MTS . . .
The maximum transient swing [108].
AR IAE = fo |t =] d.
The integral absolute error [96].
RAE = 72,’3:1 i~
RAE Y =TI

The relative absolute errors [114].

Where i =1, 2,..., n, and n denotes the number of the samples, y; and P den-
ote the actual and estimated value of residual vibration respectively, and 7' is

the average of the measured values.

TABLE VII

SUMMARY OF CONTROL METRICS

Control metrics

Equation & Description

Transient response
time

Steady state vibra-
tions

Robustness

Settling time

L1 control effort

L2 control effort

H_ control effort

The time required for the system to reach steady
state from disturbance or instruction change [36].

The amplitude and frequency of the output com-
mands periodically fluctuate within a certain range
and tend to stabilize after the transient response
time [36].

Robustness is used to evaluate the ability of input
shapers to resist external interference such as uncer-
tainty, disturbance, and noise [36].

The time required for the system to reach and main-
tain within a given error band in its motion direc-
tion after disturbance or change in instruction [113].

L1 control effort = jom (0| dt.

The time integral of the absolute value of the con-
trol signal [105].

L2 control effort = jom &2 (1.

The time integral of the square of the control com-
mand [105].

A controller to minimize the system H-infinity
norm to achieve optimal control [105].

a) Each axis exhibits similar vibration char-
acteristics;

b) Each axis has different vibration fre-
quency in different positions; and

¢) Uncertain system modal parameters.

It requires adaptive IS control methods and
optimization methods for identifying sys-
tem parameters, e.g., OATF [112], RLIS
[108], BS [118], GA [115], WLS [110],
[112], etc.

a) The system parameters are uncertain but
fluctuate within a certain range; and

b) Rapid transportation and less expense
require fast maneuverability.

It requires IS methods that can perform
effectively within specific system parame-
ter ranges, e.g., SI[101].

a) The system is actuated with finite actua-
tion states; and

b) Variations in payloads and cable lengths
induce changes in the system’s natural fre-
quency and damping ratio.

It requires artificial intelligence optimiza-
tion methods that can learn and adjust IS
parameters online, e.g., ANN, [64], [65],
APIDLNN [104], RBFNN [100], etc.

(c) Crane control

a) Lightweight damping structure;

b) Unavoidable transient vibration and elas-
tic deformation; and

c¢) External disturbances during motion
bring about inertial uncertainty.

Vg
"{,_ﬁv'&v
il
=

(d) Aviation control

It typically requires IS methods that com-
bine fuzzy theory control, e.g., FLC [65],
etc.

where u(?) denotes the control command.

the flexible beam for IS control. Cao et al. [133] apply the IS
method to the servo motor and swing arm, and compare the
effects of three input shaper ZV, ZVD and EI. In general,
DDVC is typically employed to mitigate the issues of vibra-
tion and impact in pendulum control, which may arise from
the nonlinear dynamics or external disturbances [134]-[139].

3) Crane Control: In crane control, DDVC is commonly
used to shape the acceleration or angular acceleration result-
ing in control commands that are tailored to the system
dynamic characteristics, e.g., tower crane [140], bridge crane
[141], and overhead crane [142]. Montonen et al. [143] inves-
tigate the application of tower crane slewing control from the
perspective of reducing load vibrations. Peldez et al. [144]
implement the IS to address real-time control issues of multi-
body vibration system on a suspended double-link gantry
crane. Bhayadia et al. [145] utilize IS to generate travelling
wave motion and investigate its application in mechanical sys-
tems, particularly in suspended gantry cranes.

4) Aviation Control: After being deployed in orbit, a space-
craft can be considered as a main body with a flexible attach-
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ment which suffers from large span, low stiffness, and weak
damping issues [146]—[149]. Zhu et al [150] apply DDVC
method to suppress spacecraft vibration excitation during atti-
tude adjustment. To enhance its control performance and sta-
bility, DDVC methods are commonly applied to the attitude
control, velocity control, and position control [151]. Jia and
Shan [152] propose a control strategy combining IS and vari-
able-speed control moment gyros to suppress the flexible
vibration of gyro elastic spacecraft.

B. Future Development Trends

Based on the above method summary and literature review,
this section discusses the future development trends of
DDVC.

1) Hard Real-Time DDVC: As shown in Fig. 2(c), IS meth-
ods inevitably suffer from time delay issues. On the other
hand, the practical engineering tasks mostly deal with
dynamic and varying systems [153]—[155]. Therefore, it is
worth exploring more efficient and intelligent DDVC meth-
ods to respond to system changes and interferences, thus
meeting the real-time and adaptive control requirements of
different systems.

2) Remote Control DDVC: Notably, existing vibration con-
trol methods are limited to on-site control, while DDVC meth-
ods can utilize technologies, i.e., cloud computing and remote
access to achieve remote control [156]-[160]. Particularly,
equipped with high-performance computing and large-scale
storage resources, DDVC methods can transfer the control
tasks from on-site to remote servers, which will provide more
possibilities for industrial automation and intelligent control.

3) Networked Control-Based DDVC: Currently, the rapid
development of the Internet of Things and distributed control
is driving the networked control-based DDVC as a significant
direction in control fields. By distributing control tasks across
various computing nodes for collaborative processing, it lever-
ages abundant network and computing resources to achieve
more efficient and precise command processing and control
[161], which will bring promising prospects for the fields such
as smart manufacturing, intelligent transportation, and indus-
trial automation.

C. Intractable Problems and Difficulties

Despite the continuous advancements in DDVC methods,
there are still some intractable problems and difficulties that
require ongoing refinement.

1) Idealized Scenario: Although composite filters offer
notable enhancements compared to linear or nonlinear filters,
their effectiveness may be constrained in certain specific real
scenarios, i.e., high angular speed of rotation. Besides, the
common practice idealistically considers only the system’s
first-order natural frequency for shaper design, even though it’s
effective in suppressing most vibrations. Obtaining additional
actual vibrational modes remains key to enhancing suppres-
sion effectiveness.

2) Online Real-Time: The current methods for achieving
real-time DDVC entail offline learning preceding online
updates, thus, an online learning method is worth developing
and high demands on data and algorithms will be new difficul-
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ties. Furthermore, existing real-time updates exclusively
account for changes in cable length and load, overlooking the
intricate and diverse factors inherent in real-world scenarios.
It’s crucial to consider these factors to enhance overall robust-
ness.

3) Poor Portability: The widespread application of DDVC
methods in engineering not only enhances system efficiency
but also brings forth new challenges that need to be addressed.
For instance, the coordinated application of a positioning
robot and a manipulator poses a challenge in determining the
natural frequency, particularly due to their frequent interac-
tion with payloads of varying geometries and weights.

4) Universally Applicable DDVC: Present research has
solely focused on assessing the performance of specific input
shapers, neglecting the standard of selecting the appropriate
input shaper for specific systems. Consequently, formulating a
comprehensive set of criteria for shaper selection is an intrigu-
ing proposition. Furthermore, it is challenging yet worthwhile
for us to explore a universally applicable shaper for all sys-
tems with the assistance of data-driven methods.

VI. CONCLUSIONS

As industrial applications move towards automation and
higher precision, DDVC has received more attention. Com-
pared to traditional vibration control methods, DDVC over-
comes their limitations in dealing with complex and time-
varying systems, as well as non-periodic impulses, etc. This
paper presents a comprehensive review of the latest research
progress in DDVC methods, from designing to optimizing.
We first introduce the IS theory and fundamental rules, and
then provide detailed discussions of DDVC methods involved
in the designing and optimizing processes, where the state-of-
the-art is comprehensively reviewed and categorized. After-
wards, a summary of typical evaluation and control metrics is
presented. Ultimately, practical applications in engineering
and potential future research directions are summarized. In the
future work, in addition to researching more advanced DDVC
methods, we will also focus on establishing high-quality, pub-
licly available datasets that can serve as a benchmark for
researchers to validate the effectiveness of their algorithms.
We hope that this comprehensive review can encourage
researchers and engineers to perform further research on
DDVC and its applications, thereby benefitting the industry.
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