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   Abstract—This paper presents a risk-informed data-driven safe
control design approach for a class of stochastic uncertain nonlin-
ear discrete-time systems. The nonlinear system is modeled using
linear  parameter-varying  (LPV)  systems.  A  model-based  proba-
bilistic  safe  controller  is  first  designed  to  guarantee  probabilistic

-contractivity  (i.e.,  stability  and  invariance)  of  the  LPV  system
with  respect  to  a  given  polyhedral  safe  set.  To  obviate  the
requirement  of  knowing  the  LPV  system  model  and  to  bypass
identifying its  open-loop model,  its  closed-loop data-based repre-
sentation is provided in terms of state and scheduling data as well
as a decision variable. It is shown that the variance of the closed-
loop  system,  as  well  as  the  probability  of  safety  satisfaction,
depends on the decision variable and the noise covariance. A min-
imum-variance  direct  data-driven  gain-scheduling  safe  control
design approach is presented next by designing the decision vari-
able  such  that  all  possible  closed-loop  system  realizations  satisfy
safety  with  the  highest  confidence  level.  This  minimum-variance
approach  is  a  control-oriented  learning  method  since  it  mini-
mizes  the  variance  of  the  state  of  the  closed-loop  system  with
respect to the safe set, and thus minimizes the risk of safety viola-
tion.  Unlike  the  certainty-equivalent  approach  that  results  in  a
risk-neutral  control  design,  the  minimum-variance  method leads
to  a  risk-averse  control  design.  It  is  shown  that  the  presented
direct  risk-averse  learning  approach  requires  weaker  data  rich-
ness  conditions than existing indirect  learning methods based on
system identification and can lead to a lower risk of safety viola-
tion.  Two  simulation  examples  along  with  an  experimental  vali-
dation on an autonomous vehicle are provided to show the effec-
tiveness of the presented approach.
    Index Terms—Data-driven  control, linear  parameter-varying  sys-
tems, probabilistic control, safe control.
  

I.  Introduction

THE past few years have witnessed a surge of attention and
advancement  in  developing  safety  certificates  to  equip

learning-enabled  agents  with  safety  guarantees  during  and
after  learning.  Specifically,  to  certify  the  safety  of  reinforce-
ment learning (RL) agents, as key enablers of autonomy, vari-
ous  safety  certificates  have  been  presented [1]–[7].  These
safety certificates leverage control barrier functions (CBFs) to

fix their actions myopically [8]–[16]. CBF methods, however,
rely on high-fidelity models of the system. As a result, when a
system model is not available, an indirect learning approach is
typically  used  to  learn  a  system  model  from  data.  However,
indirect  learning  methods  that  rely  on  system  identification
might  not  be  suitable  for  safety-critical  systems  with  limited
available  data  for  the  following  reasons.  First,  they  can  only
learn  a  system model  after  some  richness  data  conditions  on
the state-input data are satisfied.  Relaxing these data require-
ments  is  essential  to  the  success  of  next-generation  safe
autonomous systems. Second, the learned open-loop system’s
variance  depends  on  the  signal-to-noise  ratio  (SNR)  of  the
collected data and cannot be decreased by the control mecha-
nism.  Therefore,  it  is  necessary  to  introduce  control-oriented
learning methods that  minimize variance in  safety violations,
given  current  data,  to  improve  safety.  Finally,  model-based
CBF  methods  for  stochastic  systems  are  only  limited  to  the
case where the support of noise is finite [11], [17].

Existing  results  on  safe  control  leverage  CBFs  to  only
myopically correct the actions of RL agents when they are not
safe.  This  myopic  intervention  can  lead  to  convergence  to
undesired  equilibrium [18] and  poor  performance.  Instead,
one  can  learn  a  safe  control  policy  and  merge  it  with  an  RL
control  policy  to  provide  safety  and  performance  guarantees.
This  will  provide  a  completely  model-free  paradigm  under
which both safe and RL controllers  are  directly learned from
data. This is in sharp contrast with CBF methods under which
the safety certificate requires the system model, even if the RL
controller  can  be  learned  directly  from  data.  A  challenge  is
that  direct  data-driven safe  control  design for  stochastic  non-
linear  systems  is  unsettled.  Therefore,  this  paper  presented  a
direct  data-driven  safe  control  design  method  for  a  class  of
uncertain stochastic nonlinear systems.

Designing safe  controllers  that  guarantee safety for  nonlin-
ear  systems  is  a  daunting  challenge,  even  for  deterministic
systems. This challenge can be overcome by using global lin-
earization  methods  such  as  the  Koopman  operator [19],  and
local linearization approaches like dynamic-linearization [20],
[21].  Another  approach  is  to  use  linear  parameter  varying
(LPV)  systems  with  compact  and  convex  safe  sets  by  using
the Minkowski function [22]. LPV systems are represented by
linear  systems  whose  dynamics  depend  on  a  set  of  gain-
scheduling parameters that can be estimated or measured dur-
ing  the  system’s  operation.  Many nonlinear  systems,  such  as
aerospace [23], [24] and  various  robotic  systems [25], [26],
can be expressed as LPV systems with unstructured bounded
uncertainties or disturbances within a convex set. While learn-
ing an explicit model for LPV systems can be data-hungry and
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conservative [27],  it  is  essential  to  design  a  safe  controller
directly from the LPV systems’ data without the intermediate
step of system identification.

Recently,  direct  data-driven control  has  been explored as  a
way to design safe or optimal control while bypassing the sys-
tem  identification  step [28]–[32].  However,  the  current
research on direct data-driven safe control is mainly limited to
deterministic  systems  or  treating  noise  as  either  a  bounded
disturbance and designing a robust conservative controller for
the system or a measurable signal. Unfortunately, robust con-
trol is not effective for systems where noise has a distribution
with  infinite  support.  It  is  of  vital  importance  to  design  risk-
aware  data-based  safe  controllers  that  account  for  the  vari-
ance  in  safety  violations  and  consequently  avoid  fluctuations
in performance when controllers are used in real systems. As
of yet, there is no established method for designing risk-aware
safe control for stochastic LPV systems.

This  paper  introduces  a  novel  risk-informed  data-driven
approach  for  designing  safe  control  strategies  for  stochastic
uncertain  nonlinear  discrete-time  systems  modeled  as  LPV
systems.  A  risk-informed  control  solution  is  presented  for
polyhedral  safe  sets  to  significantly  improve  predictability  in
terms of safety satisfaction and variance reduction of trajecto-
ries  around  the  equilibrium  point  compared  to  existing  risk-
neutral methods. To our knowledge, there is no risk-informed
safe control solution, even for systems with known dynamics
and  polyhedral  safe  sets.  The  presented  approach  borrows
techniques from set-theoretic  control,  chance constraints,  and
primal-dual  optimization  to  design  risk-informed  controllers
relying on the concept of λ-contractivity. A closed-loop data-
based  presentation  of  LPV  systems  is  then  provided  and  is
leveraged to design control-oriented data-based controllers  in
which  the  variance  of  the  closed-loop  system  is  minimized
with  respect  to  the  safe  set.  This  inherently  risk-averse  strat-
egy is better suited for safety-critical applications where mini-
mizing the likelihood of safety violations is crucial.

Another  significant  advantage  of  the  presented  approach is
its data efficiency. It is shown that one can learn a closed-loop
safe  controller  using  a  set  of  data  that  is  not  rich  enough  to
learn the open-loop system model from. Developing data-effi-
cient  safety  certificates  is  a  crucial  step  toward  transitioning
from current autonomous agents primarily operating in simu-
lated  environments  to  future  agents  operating  in  the  physical
world. One challenge in this transformation is that safety cer-
tificates must be learned and verified using only limited avail-
able  data  collected  from  the  system.  This  is  because,  unlike
simulated environments under which agents can gain virtually
unlimited  experience  at  minimal  cost,  collecting  informative
data  in  high-stakes  safety-critical  settings  might  require  per-
forming unsafe and costly actions.

The presented method guarantees probabilistic stability and
invariance of a given polyhedral safe set. This is in sharp con-
trast to works such as [28]–[31] that are limited to linear sys-
tems and deterministic disturbances, making them overly con-
servative  for  systems  with  stochastic  noises.  It  also  differs
from  CBF-based  methods  limited  to  systems  with  known
models  with  deterministic  dynamics [15], [16], [18] or
stochastic noises with finite support [11], [17].

The  effectiveness  of  the  presented  approach  is  demon-
strated  through  two  practical  simulation  examples,  providing
practical evidence of its utility and efficacy. In the first exam-
ple,  the  devised  data-driven  safe  approach  is  employed  for  a
magnetic  suspension  system  characterized  by  parametric
uncertainties.  The  aim  is  to  ensure  that  the  constraints
imposed  on  the  position  and  velocity  of  the  closed-loop  sus-
pension  system are  satisfied.  Subsequently,  given  the  critical
role of safe control in autonomous vehicles [33]–[35], a prac-
tical  scenario involving path tracking is  explored.  The objec-
tive is to govern the trajectory of a self-driving car in a man-
ner  that  avoids  violating  safety  constraints,  such  as  potential
collisions  with  road  boundaries.  To  better  reflect  real-world
conditions,  the  presence of  noise  in  the environment  is  taken
into account.  The risk-aware safe controller presented is then
applied to manage the vehicle with assured safety guarantees
under  these  noisy  conditions.  Additionally,  an  experimental
validation  of  the  approach  on  an  autonomous  vehicle  is  also
provided,  further  substantiating  its  practical  applicability  and
effectiveness.

⊗

Ai
Ai j

A(≤,≥)B
Ai j(≤,≥)Bi j Q(⪯,⪰)0

S µ ≥ 0 µS µx
x ∈ S

Notations: Throughout  the  paper,  the  Kronecker  product  is
denoted by  and the Khatri-Rao product, which is a column-
wise Kronecker  product  of  two matrices with the same num-
ber of  columns,  is  denoted by ⊙.  Moreover, I is  the identity
matrix with the appropriate  dimension and 1 is  a  vector  with
all of its elements being one. When A is a matrix,  refers to
its i-th row and  is the element in the i-th row and j-th col-
umn  of A.  If A and B are  matrices  or  vectors  with  the  same
dimensions,  denotes  a  component-wise  inequality,
i.e.,  for all i and j. If Q is a matrix and ,
it  means that Q is negative or positive semi-definite. Given a
set  and  a  scalar ,  is  defined  as  the  set  of  all 
such that .

B

The  Boolean  domain,  also  known  as  zero-one-valued
domain, is represented by . A multi-index, which is a collec-
tion of indices, is defined as
 

i = (i1, . . . , ip) ∈ Bp (1)
Bp = {i : i j ∈ B, j = 1, . . . , p}

i P(i) Pm(Mi)
Mi

P(i)

where . The set of permutations of
the entries of  is  represented as ,  and  denotes a
matrix that contains all possible matrices  arranged accord-
ing to the permutations in .

(Γ,F ,P)
F P

ν : Γ→ Rn

(Γ,F ,P) ν ∈ Rn

E[ν] E[ν] = ν̂
E[(ν− ν̂)(ν− ν̂)T ]

Also, it is assumed that all random variables are defined on
a probability  space denoted as ,  where  Γ is  the  sam-
ple space,  is its associated σ-algebra, and  is the probabil-
ity  measure.  Given  a  random variable  defined  on
the  probability  space ,  the  notation  is  used to
indicate  its  dimension.  The  mathematical  expectation  of ν is
denoted as ,  and if one has , then the covariance
of ν can be found using the formula .

Definition  1 [22]: A C-set  is  a  set  that  is  both  convex and
compact, and its interior contains the origin.

S(F,g)Definition 2 [22]: A polyhedral C-set, denoted by , is
represented by
 

S(F,g) = {x ∈ Rn : Fx ≤ g}
= {x ∈ Rn : F jx ≤ g j, j = 1, . . . ,q} (2)
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F ∈ Rq×n F j j = 1, . . . ,
q g j j = 1, . . . ,q
where  is a matrix with q rows, i.e.,  for 

, and g is a vector with elements , .
Lemma  1 [36]: Assume  that  there  is  a  joint  chance  con-

straint denoted by
 

P[Hx+Mw ≤ g] ≥ (1−ε) (3)
x ∈ Rn

N(0,Σ)
q×n Rq

where  represents  the decision variable, w is  a  random
variable  with  a  normal  distribution , H and M are
matrices with dimensions , and g is a vector in . Now,
if the constraints
 

H jx+M jµ ≤ g j− k j

√
M jΣM j (4)

j = 1, . . . ,q k j =

√
1−ε j
ε j∑

j ε j ≤ ε
are  satisfied  for  all ,  where  and

, then the original joint chance constraint (3) is also
satisfied.

k j ε j
Hx+Mw ≤ g

In Lemma 1,  is a constant, and  represents the accepted
probability of violation of the constraint .  

II.  Problem Formulation

This section provides a discussion on LPV systems and then
states the safe control problem for nonlinear systems that can
be modeled by uncertain LPV systems.  

A.  LPV Systems
In  this  subsection,  LPV  and  Quasi-LPV  systems  are  dis-

cussed, for which a unified safe controller will be designed in
the subsequent sections.

LPV systems are a representation of nonlinear systems that
offer  a  structured  framework  for  embedding  nonlinearities
into varying parameters within a predefined range. LPV surro-
gate models are often used in practice to describe a large sub-
set of nonlinear systems, thereby providing a valuable tool for
solving complex control problems. The LPV systems are typi-
cally modeled as
 

x(t+1) = A
(
ω(t)
)
x(t)+B

(
ω(t)
)
u(t)+w(t) (5)

x(t) ∈ Rn

u(t) ∈ Rm A
(
ω(t)
)

B
(
ω(t)
)

A(ω) B(ω)

w(t) ω(t)

where  denotes  the  system’s  state  vector,  and
 represents  the  control  signal.  Furthermore, 

and , referred to as  and  for simplicity from
now on, are the system’s internal dynamics and input matrix,
respectively.  Also,  is  the  noise  vector,  and  repre-
sents the scheduling variables.

w(t) = [w1(t), . . . ,wn(t)]T

w ∼ N(0,Σ)
E[wi(t)w j(t)] = 0 ∀i , j E[w2

i (t)] = σ2
i ∀i = 1, . . . ,

n

Assumption  1: The  noise  in  the  system (5),  represented  by
the  vector ,  has  a  Gaussian  distribu-
tion with a mean of zero and variance of Σ, i.e., ,
where ,  and 

.
LPV systems  are  a  versatile  class  of  dynamic  systems  that

effectively capture both linear and nonlinear behavior by con-
sidering the system’s dynamics as a function of time-varying
parameters.  These  parameters,  which  encompass  physical
quantities  like  operating  conditions,  inputs,  or  environmental
factors,  directly  influence  the  system’s  behavior.  LPV  sys-
tems offer a flexible framework for modeling and controlling
complex  systems  that  display  time-varying  characteristics.
The  gain-scheduling  variables  in  LPV  systems  can  be  mea-
sured  in  real-time,  such  as  the  speed  of  an  aircraft [23],  but
they cannot be predicted in advance.

LPV systems  are  typically  classified  as  standard  LPV sys-
tems, for which the gain-scheduling variables are independent
of the systems’ states,  and quasi-LPV systems, for which the
gain-scheduling variables are functions of the systems’ states.
For LPV systems, the polytopic representation of (5) becomes
 

x(t+1) =
Nv∑
r=1

ωr(t)
(
Ar x(t)+Bru(t)

)
+w(t) (6)

Nv Ar Br

ωr(t)

where  represents the number of vertices, while  and 
refer to the system matrices at the rth vertex, accompanied by
its corresponding scheduling variable .

On  the  other  hand,  Quasi-LPV  systems  relax  some  of  the
stringent requirements of LPV systems, enabling more practi-
cal  modeling  and  control  approaches [37].  In  Quasi-LPV
modeling,  the  gain-scheduling  variables  are  expressed  as  a
function of the system states, providing a comprehensive rep-
resentation that accounts for the interaction between state vari-
ables and scheduling parameters.
 

ωr(x) = Tr
(
x(t)
)
, r = 1, . . . ,Nv (7)

ω = [ω1, . . . ,ωr]also,  is the vector of gain-scheduling parame-
ters.

This  approach  enhances  the  ability  to  capture  the  complex
dynamics  of  real-world  systems  and  facilitates  the  develop-
ment  of  accurate  and  robust  control  strategies  that  consider
both  the  system’s  current  state  and  varying  operating  condi-

 

TABLE I 
Comparison of Existing Methods and the Proposed Methodology

Reference System type Disturbance nature Safety certificate Data requirements Key features

[18] Nonlinear Deterministic CBF-based N/A Myopic correction of RL agent actions

[19] Nonlinear Deterministic N/A Moderate Handles nonlinear systems through global linearization

[20]−[21] Nonlinear Deterministic N/A Moderate Handles nonlinear systems through local linearization

[22] LPV Deterministic Minkowski function Moderate Compact and convex safe sets for LPV systems

[23]−[26] LPV Bounded N/A N/A Handles LPV systems with unstructured uncertainties

[27] LPV Bounded N/A High Data-hungry and conservative model learning for LPV systems

[28]–[31] Linear Deterministic Risk-neutral High Limited to linear systems and deterministic disturbances,
overly conservative

Proposed LPV Stochastic Risk-informed Low Handles stochastic LPV systems, probabilistic stability,
reduced data requirements
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tions.
A(ω) B(ω)

T (x) =
(
T1(x), . . . ,Tp(x)

)
T 0

j ≤
T j(x) ≤ T 1

j T j(x) T j(x) =
T 0

j (x)ω j
0(x)+T 1

j (x)ω j
1(x) ω

j
0(x) =

(
T 1

j −T j(x)
)
/(T 1

j −T 0
j )

ω
j
1(x) = 1−ω j

0(x) j = 1, . . . , p

The  matrix  components  and  contain  nonlinear
state-dependent  terms  that  can  be  combined  and  represented
as  scheduling  variables  denoted  as .
As a result, given that the scheduling variables are continuous
and  belong  to  a  compact  set,  there  are  limits  such  that 

,  which  allow  us  to  express  as 
 with 

and  for .  Therefore,  the  system
described in (5) can be represented as a polytopic form [38]
 

x(t+1) =
∑
i∈Bp

ωi(x)
(
Aix(t)+Biu(t)

)
+w(t) (8)

ωi(x) ∑
i∈Bp ωi(x) = 1 ωi(x) ≥ 0

where  are  the  scheduling  variables  satisfying  the  con-
vex  properties,  i.e.,  and ,  and  they
are computed as follows:
 

ωi(x) =
p∏

j=1

ω
j
i j

(x) (9)

i j ∈ B B = {0,1} i
Ai ∈ Rn×n Bi ∈ Rn×m

with , where . The subscript  is a multi-index
defined  in  (1).  Also,  and  are  vertices  of
the polytope.

Equation (8) can also be written as follows:
 

x(t+1) = As
(
ω⊗ x(t)

)
+Bs
(
ω⊗u(t)

)
+w(t) (10)

As = Pm(Ai) Bs = Pm(Bi)where  and .
T
(
x(t)
)

Nv = 2p
Assumption 2: The scheduling map  and the number

of  vertices  in  the  polytopes,  which  is ,  are  both
known.

T
(
x(t)
)

Nv = 2p

This assumption is  a  common and standard assumption for
creating gain scheduling maps using prior  knowledge of  sys-
tem dynamics, as described in [39]. This prior knowledge typ-
ically  encompasses  information  about  the  system’s  behavior,
dynamics,  or  other  pertinent  characteristics.  The  methods
detailed in [39] facilitate the development of scheduling maps
that  adjust  the  control  parameters  of  a  system  based  on  its
operational  conditions.  These  maps  are  devised  with  a  com-
prehensive  understanding  of  the  underlying  system behavior,
ensuring that the control modifications are suitable and effec-
tive.  By  assuming  the  knowledge  of  the  scheduling  map

 and  the  number  of  vertices ,  our  research
builds  on  this  proven  methodology  and  capitalizes  on  the
advantages  of  gain  scheduling  to  enhance  control  perfor-
mance.

Ai Bi

In this paper, since a direct data-driven control is presented,
it is not necessary to have an explicit LPV model, and only the
scheduling map is required. That is, it is assumed that the sys-
tem matrices  and  are unknown (e.g.,  due to parametric
uncertainties  in  the  original  nonlinear  system  for  Quasi-LPV
systems). To directly learn a safe controller for its correspond-
ing  LPV model,  data  collected  from the  original  system will
be  used.  It  is  worth  noting  that,  for  the  remainder  of  this
paper,  the  Quasi-LPV  modeling  will  be  considered  for  the
control design procedure without loss of generality. Neverthe-
less, it is important to highlight that the theoretical results also
hold true for the LPV modeling.  

B.  Probabilistic Safe Control Design: Problem Formulation
This subsection provides the problem formulation for proba-

bilistic  safe  control  of  stochastic  LPV  systems  under  safety
constraints.

Before  presenting  the  problem  statement,  given  that  set
invariance is the primary technique used to ensure safety, the
following  definitions  are  provided  to  clarify  the  concept.
These  definitions  help  to  establish  a  framework  for  ensuring
that  the  system  remains  within  a  predetermined  set  of  states
over  time,  which  is  essential  for  safety-critical  applications,
and to facilitate  the design of  controllers  that  can enforce set
invariance.

S
x(0)

S x(t) S
t ≥ 0 (1−ε)

Definition 3 [40]: For the system (5), the set  is a positive
invariant set in probability (ISiP) if  the initial  state  is in

, then the probability of the state  remaining in the set 
for  all  is  at  least ,  where ε is  a  small  but  accept-
able risk level.

To ensure that a safe set is ISiP, the concept of λ-contractiv-
ity can be leveraged, which is defined next.

S

0 ≤ λ < 1 x(t) S
x(t+1)

S (1−ε) t ≥ 0 P[x(t+1) ∈ λS] ≥
(1−ε)

Definition 4: For the system (5),  the set  is considered to
be λ-contractive  in  probability  if,  for  a  given  value  of

, when the state  is in the set , the probability of
the next state  being contained within a scaled version
of  is  at  least  for  all ,  i.e., 

, where ε is a small but acceptable risk level.
The λ-contractive  in  probability  property  is  important  for

ensuring  that  the  system  remains  safe  and  stable  while
accounting  for  the  probabilistic  nature  of  the  system dynam-
ics.  As  shown  in [32], λ-contractive  in  probability  property
guarantees the ISiP. Therefore, by definition of the ISiP, once
the system starts from the safe sets, it does not leave it with a
high  probability,  which  guarantees  probabilistic  safety.  The
contraction  rate λ controls  the  speed  of  convergence,  with
larger  values  leading  to  faster  convergence  but  potentially
higher oscillations and overshoots.

Problem  1: Consider  a  nonlinear  system  modeled  by  the
stochastic  LPV  system  (5).  Design  a  gain-scheduling  con-
troller in the form of
 

u(t) = K(ω)x(t) =
∑
i∈Bp

ωi(x)Kix(t) (11)

S(F,g)such that a given polyhedral safe set  remains ISiP, or
equivalently  it  satisfies  the λ-contractive  in  probability  prop-
erty.

Both model-based and data-based solutions to this problem
will  be  provided.  The  following  assumption,  followed  by  a
related definition is needed to solve this problem.

u(t) = K(ω)x(t)
x(t+1) =(

A(ω)+B(ω)K(ω)
)
x(t)

Definition 5 [22]: The system (5) is called gain scheduling
stabilizable,  if  a  controller  in  the  form  of 
exists  such  that  the  nominal  closed-loop  system 

 is globally asymptotically stable.
Assumption  3: The  system  (5)  is  gain-scheduling  stabiliz-

able.

T
(
x(t)
)

Nv = 2p

Assumptions  2  and  3  are  commonly  used  in  the  field  of
LPV systems, as demonstrated in [38] and [41]. The schedul-
ing  map  and  the  number  of  vertices  can  be
determined according to  the  specific  nonlinearities  present  in
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the system model.
Now, a closed-loop form of the LPV system under the gain-

scheduling control of the form (11) is presented.
Lemma 2: Consider  that  Assumptions 2  and 3 are  satisfied

for the system (5). Then, using the controller (11), the closed-
loop LPV system can be expressed as
 

x(t+1) =
∑
i∈Bp

ωi(x)
∑
j∈Bp

ωj(x)
(
Ai+BiKj

)
x(t)+w(t) (12)

i = (i1, . . . , ip) j = ( j1, . . . , jp)where  and  are multi-indices.
Proof: Substituting the gain-scheduling controller  (11)  into

the LPV system (8) results in
 

x(t+1) =
∑
i∈Bp

(
ωi(x)Aix(t)

)
+
∑
i∈Bp

(
ωi(x)Bi

)∑
j∈Bp

(
ωj(x)Kjx(t)

)
+w(t). (13)∑

j∈Bp ωj(x) = 1Also,  due  to  the  fact  that ,  (13)  can  be
rewritten as
 

x(t+1) =
∑
i∈Bp

ωi(x)
(∑

j∈Bp

ωj(x)Aix(t)+Bi
∑
j∈Bp

ωj(x)Kjx(t)
)

+w(t). (14)
After some mathematical manipulation, (14) is equivalent to

(12), which concludes the proof.　　 ■

B(ω)
∑

i∈Bp
(
ωi(x)Bi

)Remark  1: It  should  be  mentioned  that  when  the  input
matrix,  i.e., ,  is  fixed,  the  term  in  (13)
becomes a constant matrix B, and hence, one gets
 

x(t+1) =
∑
i∈Bp

ωi(x)
(
Ai+BKi

)
x(t)+w(t). (15)

LPV  system  (12)  can  be  written  as  the  following  compact
form:
 

x(t+1) =
(
(As⊗1T

2p )+ (Bs⊗1T
2p )(I2p×2p ⊗Ks,d)

)
× ((ω⊗ω)⊗ x(t)

)
+w(t) (16)

Ks,d

Ki i ∈ Bp A′s = As⊗1T
2p

B′s = Bs⊗1T
2p K′s = I2p×2p ⊗Ks,d

where  is a block-diagonal matrix in which each diagonal
component  is  for .  By  defining ,

,  and ,  (16)  can  also  be  repre-
sented as
 

x(t+1) = (A′s+B′sK′s)
(
(ω⊗ω)⊗ x(t)

)
+w(t). (17)

In  the literature,  there  is  no existing risk-informed solution
for even linear systems with known dynamics and polyhedral
safe sets. To address this gap, we design a risk-informed con-
troller  by  integrating  techniques  from  set-theoretic  control,
primal-dual optimization, and chance constraint. In the subse-
quent  sections,  we present  model-based and model-free solu-
tions  to  Problem 1.  More  specifically,  Theorem 1  in  Section
III  provides  a  model-based  solution  to  Problem  1.  Since  the
system models are not typically available, Theorem 2 in Sec-
tion  IV-A  leverages  the  results  of  Theorem  1  to  provide  a
data-based  solution.  Theorem  2,  however,  assumes  that  the
noise is measurable, which is not realistic. To provide a risk-
informed safe control  solution that  solves Problem 1 for  sys-
tems with unmeasurable noise, Theorem 3 is presented in Sec-

tion IV-B. That is, Theorem 3 extends the results of Theorem
2 for the case where the system noise cannot be measured.  

III.  Model-Based Design: A Probabilistic Safe
Control Approach

This section presents a new solution for designing a model-
based  controller  for  Problem  1.  To  this  end,  the  presented
method establishes conditions for λ-contractiveness of the safe
set for the system (5). Establishing this condition is challeng-
ing  since  it  requires  finding  a  risk-dependent  term that  tight-
ens  the constraints  to  ensure  achieving the desired risk level.
We formalize an optimization to characterize the risk-aware or
probabilistic set contractiveness and then provide its dual opti-
mization to find this term in a non-conservative manner.

The following theorem outlines  the  conditions  required  for
the safe set to be λ-contractive, ensuring that the probabilistic
behavior of the system remains within a scaled version of the
safe set. By satisfying these conditions, the model-based con-
trol design can guarantee both safety and stability, even in the
presence of noise.

S(F,g)

Pi ≥ 0, i = (i1, . . . , ip)

Theorem  1: Consider  the  LPV  system  (8)  satisfying
Assumptions  1–3  with  the  controller  (11).  Then,  the  polyhe-
dral  set  is λ-contractive  in  probability  for  the  closed-
loop  system  if  and  only  if  there  exist  non-negative  matrices

 such that
 

PiF = F(Ai+BiKi) (18)
 

Pig ≤ λg− l (19)

l = (l1, . . . , lq)Twhere  with
 

l j =

√
1−ε j

ε j

√
F jΣF j (20)

j = 1, . . . ,qfor .

S(F,g)
S(F,g)

S(F,g)
Fx(t) ≤ g S

Proof: To demonstrate that the conditions (18) and (19) are
sufficient  to  ensure λ-contractiveness  of  the  safe  set ,
one must first identify the conditions necessary for  to
be λ-contractive.  By  satisfying  these  necessary  conditions,  it
can be shown that the safe set is also λ-contractive, as defined
by Definition 7. Specifically, if x belongs to , which is
defined by ,  then λ-contractivity in probability of 
can be ensured by satisfying the following inequality:
 

P[x(t+1) ∈ λS] ≥ (1−ε) (21)
or
 

P[F
(
A(ω)+B(ω)K(ω)

)
x(t)+Fw(t) ≤ λg] ≥ (1−ε). (22)

This  is  the  same  as  the  following  inequality  obtained  by
applying Lemma 1 on the joint chance constraint:
 

F
(
A(ω)+B(ω)K(ω)

)
x(t) ≤ λg− l. (23)

In terms of (12) and (23), one has
 

F
∑
i∈Bp

ωi(x)
∑
j∈Bp

ωj(x)
(
Ai+BiKj

)
x(t) ≤ λg− l. (24)

The next step is to show that the inequality in (24) holds for

 1922 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 9, SEPTEMBER 2024



F
(
A(ω)+

B(ω)K(ω)
)
x(t)

i ∈ Bp

all ω in  the  set  Ω  if  it  holds  for  each  vertex  of  Ω.  The  left
side  of  (24),  which  involves  the  polytopic  term 

,  reaches  its  maximum value at  one of  its  ver-
tices.  Therefore,  (24)  and  consequently,  (22)  hold  if  the  fol-
lowing inequality holds for all :
 

F(Ai+BiKi)x(t) ≤ λg− l. (25)
It  is  now shown that satisfaction of the model-based safety

conditions  (18)  and (19)  satisfies  (25).  By virtue  of  (18),  the
left hand-side of (25) becomes
 

F(Ai+BiKi)x(t) = PiFx(t). (26)
x(t) ∈ S Fx(t) ≤ gAlso, since , i.e., , and using (19), one gets

 

F(Ai+BiKi)x(t) = PiFx(t) ≤ Pig ≤ λg− l (27)

S
x(t) ∈ S

which  is  the  same  as  (25).  The  proof  of  sufficiency  is  now
complete.  To  demonstrate  the  necessity  condition,  suppose
that the safe set  is λ-contractive in probability.  It  will  now
be shown that both (18) and (19) are fulfilled. If , then
(22) is satisfied due to λ-contractivity in probability. Consider
the linear programming problem below:
 

γi, j =max
x

F j
(
(Ai+BiKi)x+w

)
(28)

 

s.t. Fx ≤ g, ∀i ∈ Bp, j = 1, . . . ,q. (29)

γi, j ≤ λg
As  a  result  of  the λ-contractivity  condition  in  probability

given by (23),  it  follows that .  This  leads  to  the  fol-
lowing dual optimization problem of (28):
 

γi, j =min
ξi, j
ξi, j

T g+F jl (30)

 

s.t. ξi, jT F = F j(Ai+BiKi), (31)
 

ξi, j ≥ 0, ∀i ∈ Bp, j = 1, . . . ,q. (32)

ξi, j

The  Lagrangian  multipliers  for  the  optimization  problem
given in (28) are denoted by . As the primal problem has a
feasible  solution,  the  optimal  value  of  the  dual  problem  is
equal to the optimal value of the primal problem.

PiDefine  as
 

Pi =



ξi,1
T

ξi,2
T

...

ξi,q
T


∈ Rq×q. (33)

Pi ξi, j
γi, j λg

i ∈ Bp

j = 1, . . . ,q ξi j
T g+F jl ≤ λg

 is non-negative due to the non-negativity of . Further-
more, since  is less than or equal to  according to the λ-
contractivity  in  probability  property,  then  for  all  and

,  the  inequality  holds.  Equation
(31) is equivalent to (18), and using (33), (27) is equivalent to
(19). ■

S(F,g)
Ps = Pm(Pi)T

Corollary 1: Consider the LPV system (8) with the control
input  (11).  Then, λ-contractive  in  probability  property  of  the
polyhedral set  is met for the closed-loop system (12) if
and  only  if  a  non-negative  matrix  exists  such

that the following conditions are satisfied:
 

PsF = (I2p×2p ⊗F)(As+BsKs)T (34)
 

PsG ≤ λG−Ls (35)

Ks = Pm(Ki) ∈ Rm×(n×2p) Ki ∈ Rm×n As+BsKs =

Pm(Ai+BiKi) G = (12p×1⊗g) Ls = 12p×1⊗ l l =
(l1, ..., lq)T

where  with , 
, ,  and  with 

 defined in (20).

S(F,g)
2p Pi

Ki i ∈ Bp

Proof: Theorem  1  states  that  the  closed-loop  LPV  system
represented by (8) and controlled using the method defined in
(11)  will  be λ-contractive  in  probability  with  respect  to  the
polyhedral set  if and only if certain conditions are met.
Specifically, there must exist  non-negative matrices  and

 for  that satisfy both (18) and (19). These two condi-
tions  can  be  combined  into  a  single  equality  and  a  single
inequality, respectively, as follows:
 

Pm(Pi)T F = (I2p×2p ⊗F)Pm(Ai+BiKi)T (36)
 

Pm(Pi)T G ≤ λG−


l
...

l

 (37)

which yields (34) and (35), respectively. ■  

IV.  Data-Driven Probabilistic Safe Control Design

u(0),u(1), . . . ,u(N −1)

This section aims at presenting a data-based version of con-
ditions  (18)  and  (19)  that  eliminates  the  need  for  the  system
model  in  the  safe  controller.  To  achieve  this,  let  us  suppose
that  an  input  sequence of  is  applied  to
the system (5), and N state and gain-scheduling variable sam-
ples are collected. These samples are then arranged as follows:
 

U0 = [u(0),u(1), . . . ,u(N −1)] (38)
 

X0 = [x(0), x(1), . . . , x(N −1)] (39)
 

W0 = [w(0),w(1), . . . ,w(N −1)] (40)
 

Ω0 = [ω(0),ω(1), . . . ,ω(N −1)] (41)
 

X1 = [x(1), x(2), . . . , x(N)] (42)
 

Xωω = (Ω0⊙Ω0)⊗X0 (43)
 

Uω = Ω0⊙U0. (44)

Ω0

It should be noted that the scheduling map in (41) is depen-
dent on the system’s states, which means that the data matrix

 can  be  easily  obtained  from  state  measurements.  Mean-
while,  to  learn the dynamics of  the LPV system described in
(5), it is necessary for the data matrix represented by
  U0

Xωω

 (45)

N ≥ (m+1)n2p+m2p
to have a full-row rank. This condition can be satisfied by col-
lecting  at  least  samples  from  the  LPV
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Xωω

system.  However,  to  directly  learn  a  safe  controller,  it  is
shown  that  a  significantly  smaller  number  of  samples  is
required, which only needs to ensure that the matrix  has
a full row rank.

These  data  are  then  used  to  derive  data-based  versions  of
conditions  (18)  and  (19).  The  resulting  conditions  can  be
directly  used  to  design  a  safe  controller  without  requiring
knowledge of the system model.

XωωAssumption 4: The data matrix  in (43) is full-row rank.
Assumption  4  introduces  a  data  richness  condition  for  the

design  of  a  data-based  safe  controller.  Rather  than  being
restrictive,  this  assumption  actually  eases  the  data-richness
requirement  compared  to  existing  indirect  data-based  con-
trollers,  a  point  that  will  be  further  elaborated  in  Remark  2
later.  

A.  Data-Based Safe Control: Available Noise Measurements
Theorem 1  provided  a  model-based  solution  to  Problem 1.

This  subsection  extends  these  results  to  the  data-based  case
and  outlines  the  design  procedure  of  an  online  data-driven
safe control, assuming the availability of noise measurements.

S(F,g)
GK,s = Pm(GK,i)

Pi ≥ 0 i ∈ Bp

Theorem 2: Consider the LPV system (8). Let the open-loop
data  be  collected  and  arranged  as  shown  in  equations
(38)–(44).  Let  Assumptions  1–4 be satisfied.  Then,  the  poly-
hedral set  is λ-contractive in probability for the closed-
loop system if and only if decision variables 
and , for , exist such that
 

PiF = F(X1−W0)GK,i (46)
 

Pig ≤ λg− l (47)
 

XωωGK,s = I (48)

l = (l1, . . . , lq)T

KT
s ⊗1T

2p = UωGK,s

where  is defined in Theorem 1. Moreover, the
controller gains are computed as .

Proof: Using the proof of Lemma 2, (10) is written as
 

x(t+1) = (As⊗1T
2p )
(
(ω⊗ω)⊗ x(t)

)
+Bs
(
ω⊗u(t)

)
+w(t). (49)

Xωω
GK,s

XωωGK,s = I

Assumption  4  states  that  has  full  row  rank,  which
implies that there exists the right inverse matrix  such that

.  Using  this  result  and  LPV  system  (49)  along
with the open-loop data given by (38)−(44), one can express
 

X1 = AsXωω+BsUω+W0. (50)

GK,sBy multiplying  on both sides of (50), it yields
 

As+BsUωGK,s = (X1−W0)GK,s. (51)

KT
s ⊗1T

2p = UωGK,s As+Bs(KT
s ⊗1T

2p ) =
(X1−W0)GK,s

A′s+B′sK′s (X1−W0)GK,s

According to , one has 
.  Furthermore,  since,  in  terms  of  (11),  (8)  is

equal to (12), it can be concluded that the closed-loop system
matrix,  i.e., ,  is  equal  to ,  and hence,
(17) is written as the following data-based form:
 

x(t+1) = (X1−W0)GK,s
(
(ω⊗ω)⊗ x(t)

)
+w(t). (52)

i ∈ BpTherefore, condition (18) becomes (46) for . The rest

of the proof is analogous to that of Theorem 1.　　 ■
The results of Theorem 2 can be trivially obtained under the

assumption that the noise is measurable based on the results of
Theorem 1 and a data-based closed-loop representation of the
system. However, the controller designed based on Theorem 2
has  a  drawback  in  that  it  needs  the  measurement  of  noise,
which is not practical. Therefore, to overcome this challenge,
a  data-driven  safe  controller  based  on  minimum  variance  is
designed in the subsequent  part  of  the paper.  It  is  a  daunting
challenge  to  provide  risk-informed  controllers  with  safety
guarantees when the noise is not measurable. To achieve this
goal,  we  characterized  the  set  of  all  the  next  states  given  a
probabilistic  characterization  of  closed-loop  systems  and
leveraged  set  containment  tools  to  provide  a  condition  under
which  risk-informed  safety  is  guaranteed.  We  also  provided
new optimization  formulations  to  provide  minimum-variance
controllers.  

B.   Minimum  Variance-Based  Method:  Unavailable  Noise  Mea-
surements

In  this  subsection,  a  minimum  variance-based  approach  is
presented  to  relax  the  restrictive  assumption  regarding  the
availability  of  noise  measurements.  This  approach  aims  to
mitigate the limitations associated with this assumption.

A(ω)
B(ω) K(ω)

B(ω)K(ω)

A(ω)+B(ω)K(ω)
K(ω)

When using indirect  learning approaches [30], [31],  prede-
termined high-confidence sets are assigned for dynamics 
and .  This  means  that  the  controller  can  only
impact  the variance associated with the  portion of
the closed-loop dynamics. Conversely, with the designed min-
imum  variance-based  direct  learning,  the  entire  closed-loop
dynamics  is  learned,  and  the  control  gain

 can be developed to decrease the variance for the entire
dynamics.

As+BsUωGK,s X1GK,s

To  begin  with,  according  to  (52),  the  nominal  model  of
 is .  Thereupon,  the  nominal  next  state

is computed as
 

xn(t+1) = X1GK,s
(
(ω⊗ω)⊗ x(t)

)
. (53)

x(t+1)Then, the random part of  is obtained as
 

xr(t+1) = x(t+1)− xn(t+1)

= −W0GK,s
(
(ω⊗ω)⊗ x(t)

)
+w(t). (54)

x̄(t) =
(
(ω⊗ω)⊗ x(t)

)
xr(t+1)By defining ,  the  variance  of 

is computed as
 

E[xr(t+1)xT
r (t+1)] = E[W0GK,s x̄(t)x̄T (t)GT

K,sW
T
0 ]+Σ

= ΣTr
(
x̄(t)x̄T (t)GT

K,sGK,s
)
+Σ. (55)

ν ∈ Rn×1 Q ∈ Rn×n
The  last  equality  in  (55)  is  obtained  owing  to  the  fact  that

for  a  given  random  vector  and  a  matrix ,
one has [42]
 

E[νT Qν] = Tr(QE[ν̃ν̃T ])+E[ν]T QE[ν] (56)

ν̃ = ν−E[ν]where .  Now,  based  on  the  Cauchi-Schwarz
inequality [43], one gets 
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Tr
(
x̄(t)x̄T (t)GT

K,sGK,s
) ≤ ∣∣∣Tr

(
x̄(t)x̄T (t)GT

K,sGK,s
)∣∣∣

≤
√

Tr
((

x̄(t)x̄T (t)
)2)Tr

(
(GT

K,sGK,s)2)
≤
√

Tr
(
x̄(t)x̄T (t)

)2Tr(GT
K,sGK,s)2

= x̄T (t)x̄(t)Tr(GT
K,sGK,s). (57)

Then, it yields
 

E[xr(t+1)xT
r (t+1)] ≤ Σ∥x̄(t)∥2Tr(GT

K,sGK,s)+Σ. (58)

∥x̄(t)∥ = ∥(ω⊗ω)⊗ x(t)∥ = ∥ω∥2∥x(t)∥ ∥ω∥ ≤ 1Since  and ,
one gets
 

E[xr(t+1)xT
r (t+1)] ≤ Σ∥x̄(t)∥2Tr(GT

K,sGK,s)+Σ

≤ Σ∥x(t)∥2Tr(GT
K,sGK,s)+Σ. (59)

F jx(t) ≤ g j j = 1, . . . ,qOn account of the inequality  for , it is
concluded that
 

∥x(t)∥ ≤
|g j|
∥F j∥

=⇒ ∥x(t)∥2 ≤
(
max

j

|g j|
∥F j∥
)2
= κ. (60)

Thus, (59) becomes
 

E[xr(t+1)xT
r (t+1)] ≤ V̄ (61)

V̄ = Σ
(
κTr(GT

K,sGK,s)+1
)

where .
Now, the following theorem summarizes the results for the

minimum  variance-based  safe  control  design  technique.  This
extends the results of Theorem 2 for the more realistic case for
which the noise is not measurable.

u(t) = K(ω)x(t)
S(F,g)

GK,i Pi ≥ 0 i ∈ Bp

Theorem  3: Consider  the  LPV  system  (8).  Let  the
input/state data be collected by applying an open-loop control
sequence  to  the  system  and  organized  by  (38),  (39),  and
(41)–(44).  Let  Assumptions  1–4  be  satisfied.  Then,  the  con-
troller  guarantees a probabilistic λ-contractive
property with risk level δ for the safe set  if there exist
matrices  and non-negative matrices  for  that
satisfy the optimization problem given by
 

min
Pi,GK,i,ρ

ρ (62)

 

s.t. PiF = FX1GK,i (63)
 

Pig ≤ λg− l′m (64)
 

XωωGK,s = I (65)
 

Pi ≥ 0 (66)
 

Tr(GT
K,sGK,s) ≤ ρ (67)

l′m = (l′m,1, . . . , l
′
m,q)T l′m, j =

√
F jVmFT

j j = 1, . . . ,q

Vm = Σ
(
κρ+1

)(
n+2

√
nlog( 1

δ )+2log( 1
δ )
)

KT
s ⊗1T

2p = UωGK,s

where  with  for 

and .  Furthermore,
the controller gains are calculated as .

x(t+1)
1−δ

Proof: It  is  firstly  shown  that  the  next  state  will,
with a probability of , be contained in a particular confi-
dence ellipsoidal set described as 

ζ(V,1) =
{
x :
(
x−X1GK,s x̄(t)

)T V−1(x−X1GK,s x̄(t)
) ≤ 1
}
. (68)

E[xr(t+1)] = 0 xr(t+1)
V̄
1−δ

According  to  (61)  and  since ,  is  a
sub-Gaussian random signal with covariance . As a result, it
is possible to say with a probability of at least  that [44]
 

xr(t+1)T V̄−1xr(t+1) ≤ n+2

√
nlog(

1
δ

)+2log(
1
δ

). (69)

This can also be written as
 

xr(t+1)T V−1xr(t+1) ≤ 1. (70)
If  the  following  condition  is  met,  then  probabilistic λ-con-

tractivity with the risk level δ is satisfied:
 

x(t) ∈ S(F,g)⇒ P[x(t+1) ∈ S(F,λg)] ≥ 1−δ. (71)

S 1−δ

To ensure that the right-hand side of (71) holds, it is neces-
sary  to  make  sure  that  the  set  of  all  feasible  next  states  is  a
part  of  the  safe  set  with  a  probability  of .  In  other
words, it is required that
 {

x :
(
x−X1GK,s x̄(t)

)T V−1(x−X1GK,s x̄(t)
)}

⊆ {x : Fx ≤ λg}. (72)
Equivalently,

 

1− (x−X1GK,ix(t)
)T V−1(x−X1GK,ix(t)

) ≥ 0

⇒ λg−Fx ≥ 0, ∀i ∈ Bp. (73)

τi, j
i ∈ Bp j = 1, . . . ,q

The application of the S-procedure allows for the identifica-
tion of certain scalars  for which the fulfillment of the sub-
sequent  condition,  for  and ,  is  equal  to  the
fulfillment of (73)
 

λg j−F jx−τi, j

× [1− (x−X1GK,ix(t)
)T V−1(x−X1GK,ix(t)

)] ≥ 0,

∀x, i ∈ Bp, j = 1, . . . ,q. (74)
Li, j = λg j−F jx−τi, j

[
1− (x−X1GK,ix(t)

)T V−1×(
x−X1GK,ix(t)

)]
Li, j

By defining 
,  the  optimal x that  minimizes  is  calcu-

lated as
 

x = (
1
2
τ−1

i, j V)FT
j +X1GK,ix(t). (75)

Li, jSubstituting (75) into  yields
 

Li, j = λg j−
1
4
τ−1

i, j F jVFT
j −τi, j−F jX1GK,ix(t) ≥ 0. (76)

Condition  (76)  is  equivalent  to  the  following  optimization
problem:
 

βi, j =min
x

Li, j ≥ 0 (77)
 

s.t. Fx ≤ g, ∀i ∈ Bp, j = 1, . . . ,q. (78)
The  dual  optimization  problem  can  also  be  written  as  fol-

lows:
 

βi, j =max
ηi, j
λg j−

1
4
τ−1

i, j F jVFT
j −τi, j−ηT

i, jg (79)

 

s.t. ηT
i, jF = F jX1GK,i (80)
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ηi, j ≥ 0, ∀i ∈ Bp, j = 1, . . . ,q (81)
ηi, jwhere  are  the  Lagrangian  multipliers.  Since  a  feasible

solution exists for the primal problem, the optimal value of the
dual problem is equivalent to the optimal value of the primal
problem.

0 ≤ βi, j

To  analyze  the  feasibility  of  the  dual  problem  (79),  and
since , one has
 

λg j ≥
1
4
τ−1

i, j F jVFT
j +τi, j+η

T
i, jg. (82)

τi, j τ∗i, j =
1
2

√
F jVFT

j τ∗i, j

By computing first and second derivatives of the right-hand-
side  of  (82)  with  respect  to ,  it  is  deduced  that 

 is its maximum value. Hence, by substituting 
into (79), it yields
 

βi, j =max
ηi, j
λg j− l′j−ηT

i, jg ≥ 0 (83)

 

s.t. ηT
i, jF = F jX1GK,i (84)

 

ηi, j ≥ 0, ∀i ∈ Bp, j = 1, . . . ,q (85)

l′j =
√

F jVFT
j

l′j Tr(GT
K,sGK,s)

l′ Vm l′m

where . Equation (83) is equivalent to minimiz-
ing  or in other words,  in V. Thus, with respect
to condition (67),  the optimization problem (62) incorporates
upper bounds for V and , denoted as  and , respectively.

Now, consider
 

Pi =



ηT
i,1

ηT
i,2
...

ηT
i,q


∈ Rq×q. (86)

Pi
τ∗i, j
ρ ≥ 0

Therefore, the proof is completed by using (85) to show that
the  matrix  is  non-negative.  Also,  according  to  (86)  and
(84), (63) is obtained, and inequality (82) using  is shown
to be equivalent to (64). Next, the decision variable  sat-
isfying condition (67)  is  defined,  and the  minimization prob-
lem (62), which is a linear programming, is obtained.　　 ■

2Nv(n+m)

2Nvn

Remark 2: Compared to the indirect data-based safe control
design  methods  that  rely  on  system  identification,  the  pre-
sented direct  learning control  scheme requires a considerably
smaller  amount  of  independent  data  to  identify  the  LPV sys-
tem. Specifically, to identify the system,  indepen-
dent data points must be collected to learn about the open-loop
system  dynamics.  On  the  other  hand,  the  presented  scheme
only  requires  independent  data  points  to  learn  directly
about  the  closed-loop  system  that  satisfies  safety.  Reducing
the required amount of data is advantageous in practical appli-
cations, as it can significantly decrease the time and resources
needed  to  collect  and  process  the  necessary  data.  Therefore,
the  presented  scheme  is  a  more  efficient  and  practical
approach to  data-based safe  control.  Moreover,  the  presented
approach’s  reduced  data  requirement  does  not  lead  to  higher
computational  demands.  We  use  a  linear  program  (LP),
known  for  its  computational  efficiency.  The  smaller  number

of data translates into fewer decision variables, lowering com-
putational  needs.  Also,  reducing  the  number  of  data  samples
required for learning avoids risky exploration to collect more
data, which is crucial in safety-critical systems.

(Ai,Bj) i , j

Xωω

Remark 3: If vertices of a polyhedral safe set, which are its
extreme  points,  are  activated,  the  corresponding  weights  of
other  dynamics,  i.e.,  for ,  become  zero.  This
implies  that  for  designing a  safe  controller,  only  the  extreme
points of a polyhedral safe set are essential in learning the safe
control gains during the simulation. In other words, similar to
the model-based case, i.e., Theorem 1, other cases do not con-
tribute  to  the  learning  process  of  the  data-based  safe  gains.
This consideration ensures that the hypothesis of  becom-
ing full row rank is satisfied during the implementation step.

Remark  4: In  this  paper,  we  have  developed  two  types  of
safe  control  methods:  a  model-based  approach  and  a  data-
based  probabilistic  approach.  When  a  comprehensive  under-
standing  of  the  LPV  system  is  accessible,  the  model-based
controller  outlined  in  Theorem  1  can  be  seamlessly  applied.
However, in situations where the complete model is not acces-
sible, the data-based version of the designed safe controller, as
outlined in accordance with Theorem 3, can be employed.

Remark 5: The safe control design based on λ-contractivity
is not myopic; it ensures safety not just for the immediate next
step, but for all future time steps. This approach aims to iden-
tify  a  feedback  controller  that  guarantees  the  invariance  of  a
set, ensuring long-term safety. If a linear controller exists that
can achieve this, our method is capable of finding it [22].  

V.  Simulation and Experimental Validation

In this section, two practical examples are provided to vali-
date  the  efficiency  of  the  designed  approach.  First,  the
designed method is applied to a magnetic suspension system,
and  then,  a  safe  control  of  an  autonomous  vehicle  is  consid-
ered in Example 2.  

A.  Example 1: Magnetic Suspension System
Magnetic suspension systems are used in many engineering

applications,  such  as  high-speed  trains,  frictionless  bearings,
vehicle suspension systems, and wind tunnels. These systems
are  inherently  nonlinear  and  exhibit  open-loop  instability,
necessitating closed-loop control to ensure their states remain
within a safe operating range. Fig. 1 depicts the magnetic sus-
pension system under closed-loop control using the presented
method. A reference point is established to stabilize the ball at

 

+

−

x1(t) Probabilistic safe
gain-scheduling

control
Sensor

 
Fig. 1.     Control  diagram  of  the  magnetic  suspension  system  using  the
designed safe control approach.
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a specific location.
Discrete-time dynamics of a magnetic suspension system is

considered as follows [45]:
 

x1(t+1) = x1(t)+hx2(t)

x2(t+1) =
hgaµ(µx1(t)+2µy0+2)x1(t)

(1+µ(x1(t)+ y0))2 x1(t)

+ (1− hKm

m
)x2(t)− hLµ

2m(1+µ(x1(t)+ y0))2 u(t)+w(t).

(87)

x1 x2
w(t)

y0 = 0.05 m

The  ball’s  deviation  from  its  intended  position  is  repre-
sented by ,  while its  vertical velocity is represented by .
The  coil  voltage  noise  is  denoted  as .  The  desired  posi-
tion for  the ball  is  set  at .  It  should be noted that
the  learning  algorithm  does  not  utilize  the  system  dynamics
(87),  but  instead  uses  it  to  generate  data  for  learning  solely
within a simulation environment.

Cs = {x = (x1, x2) ∈ R2
∣∣∣ |x1| ≤ 0.05, |x2| ≤ 1}

The  admissible  set  for  the  system  states  is  defined  as
. This set is used to

establish the boundaries of the scheduling variables. A subset
of the admissible set, which is a polyhedral set in the form of
(2) with the following F matrix, is considered the safe set:
 

F =


20.3835 1.3397
−20.3835 −1.3397
−19.8079 0.6697
19.8079 −0.6697

 . (88)

Km

m = 0.068 kg Km = 0.001 Nsm−1 L = 0.46 H
h = 0.01 s

ga = 9.8 ms−2

µ = 2 m−1

The  values  of  the  unknown parameters m (the  mass  of  the
ball),  (the viscosity friction coefficient), and L (the induc-
tance  capacity)  are  not  known,  but  their  actual  values  are

, ,  and .  The  sam-
pling time for the system is set to , the gravitational
constant  is ,  and  the  coefficient  for  inductance
variation  is .  Using  the  Quasi-LPV  modeling,  the
scheduling variables in (7) are defined as follows:
 

T1(x) =
hgaµ
(
µx1(t)+2µy0+2

)
x1(t)(

1+µ(x1(t)+ y0)
)2 (89)

 

T2(x) = − hLµ

2m
(
1+µ(x1(t)+ y0)

)2 . (90)

Cs
T1(x) T2(x)

−0.0206 ≤ T1(x) ≤ 0.0157 −0.0676 ≤ T2(x) ≤ −0.0470
T1(x) T2(x)

2p = 4
Ai Bi i ∈ B2

With  the  given  parameters  and  the  safety  set ,  the
scheduling  variables  and  meet  the  conditions

 and ,
respectively.  Due  to  the  extreme  values  of  and ,
the  LPV representation  of  the  nonlinear  system (87)  requires
four vertices, which corresponds to . The unknown val-
ues of  and , for all , are
 

A00 = A01 =

 1.0000 0.0100
−0.0206 0.9990

 (91)

 

A10 = A11 =

1.0000 0.0100
0.0157 0.9990

 (92)
 

B00 = B10 =

 0
−0.0676

 (93)

 

B01 = B11 =

 0
−0.0470

 . (94)

ω1
0 =

0.0157−T1(x)
0.0363 ω1

1 = 1−ω1
0
ω2

0 =
−0.0470−T2(x)

0.0206 ω2
1 = 1−

ω2
0 T1(x)

ω1
0 ω1

1 T1(x) = −0.0206ω1
0+

0.0157ω1
1 T2(x) = −0.0676ω2

0−0.0470ω2
1

w(t)
0.00001I λ = 0.90 δ = 0.10

Furthermore,  the  gain-scheduled  variables  are  defined  as
, , , and 

.  It  is  worth noting that  can be expressed as a func-
tion  of  and  using  the  equation 

. Similarly, one gets .
In  order  to  conduct  the  simulation,  it  is  presumed  that  the
noise  follows  a  Gaussian  distribution  and  has  a  covari-
ance of , with  and .

To ensure a fair comparison and highlight the robustness of
the  presented  minimum-variance  method,  it  is  important  to
note  that  the  safe  control  approach  outlined  in  Theorem 2  is
performed  without  the  inclusion  of  any  noise  measurements.
This particular approach is referred to as the certainty-equiva-
lence safe control method. By adopting this approach, one can
assess the core performance of the minimum-variance method
and  its  capability  to  handle  challenging  conditions,  such  as
noisy  environments,  without  any  additional  considerations  or
adjustments.

2Nv(n+m) = 2×4× (2+
1) = 24

2Nvn = 2×4×2 = 16

It should be pointed out that as stated in Remark 2, indirect
learning  methods  like [28] require 

 independent samples to design a control policy for the
system (87), while the presented data-based approach in Theo-
rem  3,  which  bypasses  system  identification,  only  requires

 independent samples to learn a safe con-
trol policy.

x = [−0.0333,0.5071]T
Fig. 2 illustrates the state trajectories of the closed-loop sys-

tem,  starting  from ,  and  computed  for
100  distinct  realizations  of  the  noise  for  both  safe  control
learning  methods.  By  analyzing  this  figure,  it  is  evident  that
utilizing  the  designed  minimum  variance-based  approach
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Fig. 2.     Time  history  of  the  system  trajectory  for  100  realizations  of  the
Gaussian noise with  using a) certainty-equivalence safe control
and b) minimum variance-based probabilistic safe control.
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1−δ
results in system trajectories that remain within the bounds of
the  safe  set  with  a  probability  of  at  least ,  and  do  not
exceed them. In contrast, the system trajectories using the cer-
tainty-equivalence  method  have  the  potential  to  violate  the
safety  conditions.  This  indicates  that  the  presented  safe  con-
troller is more robust in the presence of noise.

w(t)
Fig. 3 displays the progression of the system’s states for one

of  the  realizations  of  utilizing  the  certainty-equivalence
and  the  presented  probabilistic  safe  controllers.  It  should  be
pointed out that no control approach can guarantee exact con-
vergence to the equilibrium point in the presence of noise. The
presented  approach  offers  probabilistic  convergence,  which
provides more predictability and reduced variance around the
equilibrium  point,  as  illustrated  in Fig.  3.  Additionally,  the
simulation results  demonstrate  that  after  one second,  the sys-
tem states converge to a vicinity of the origin with high proba-
bility. Also, time traces of the system input under both meth-
ods are exhibited in Fig. 4.
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Fig. 3.     Time history  of  the  system states  for  100 realizations  of  the  Gaus-
sian noise with  using a) certainty-equivalence safe control and
b) minimum variance-based probabilistic safe control.
 

0.0001I

x = [0.0167,−1]T

To  further  demonstrate  the  effectiveness  of  the  established
probabilistic  safe  controller,  another  Gaussian  noise  with  a
covariance  of  is  applied  to  the  system  described  in
(87).  The  initial  values  of  the  system  states  are  set  to

.  The phase portrait  of  the system states for
100 different realizations of the noise are exhibited in Fig. 5.
The  result  clearly  indicates  that  the  presented  approach
exhibits significantly higher robustness in noisy environments
compared to the certainty-equivalence method, which is prone
to  safety  violations.  Therefore,  the  superiority  of  the  proba-
bilistic  safe  gain-scheduling  controller  is  further  highlighted
through this simulation.

Additionally,  to  better  verify  the  performance  of  the  pre-
sented approach, Figs. 6 and 7 provide the results of applying
the method established in [46] to the system (87). Specifically,
Fig.  6 is  compared  to  the  results  shown  in Fig.  2(b)  starting
from  the  same  initial  condition,  and Fig.  7 is  compared  to

those in Fig. 5(b) starting from the same initial condition. The
results clearly demonstrate that the designed probabilistic safe
control  significantly  reduces  the  variance  of  the  closed-loop
system in the presence of noise, thereby underscoring its supe-
rior performance.  

B.  Example 2: Autonomous Vehicle
Kinematic model of an autonomous vehicle is considered as

follows [34]:
 

ẋe = ωkye+ vd cosθe− vx

ẏe = −ωk xe+ vd sinθe

θ̇e = ωkd −ωk (95)
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Fig. 4.     Time  history  of  the  system input  for  100  realizations  of  the  Gaus-
sian noise with  using a) certainty-equivalence safe control and
b) minimum variance-based probabilistic safe control.
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Fig. 5.     Time  history  of  the  system  trajectory  for  100  realizations  of  the
Gaussian  noise  with  using  a)  certainty-equivalence  safe  control
and b) minimum variance-based probabilistic safe control.
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xe ye θe
vx ωk

vd ωkd

Ts
Γ(t) := [ωk(t),vd(t),

θe(t)] ωk ∈
[−1.417,1.417] rad/s vd ∈ [0.1,18] m/s θe ∈ [−0.0873,
0.0873] rad

in which , , and  denote the errors in position and orien-
tation. The variables  and  represent the longitudinal and
angular velocities, while  and  are the reference veloci-
ties  for  longitudinal  and  angular  motion,  respectively.  It  is
important  to  note  that  the  autonomous  vehicle’s  kinematic
model  is  open-loop unstable,  requiring careful  control  design
to ensure stability and safety. By defining  as the sampling
time, the vector of scheduling variables as 

,  where  each  component  is  constrained  within 
 ,  ,  and 

 , and the state, input, and reference vectors as
 

x =


xe

ye

θe

 , u =

vx

ωk

 , rd =

vd cosθe
ωkd

 . (96)

The  nonlinear  kinematic  model  transforms  into  a  discrete-
time LPV representation, as expressed below:
 

x(t+1) = A(Γ(t))x(t)+Bu(t)−Brd(t) (97)
where
 

A(Γ(t)) =


1 ωkTs 0

−ωkTs 1 vd
sin(θe)
θe

Ts

0 0 1

 , B =


−1 0
0 0
0 −1

Ts.

(98)

According to Remark 1, the system (97) can be expressed as
the following LPV model:
 

x(t+1) =
Nv∑
r=1

ωi(Aix(t)+B
(
u(t)− rd(t)

)
. (99)

ū(t) := u(t)− rd(t) =
∑nv

i=1 Kix(t)Defining , one gets
 

x(t+1) =
Nv∑
r=1

ωi(Ai+BKi)x(t). (100)

Nv Nv = 2Ng

Ng

Here, number of vertices, i.e.,  is computed as ,
where  shows  the  number  of  gain-scheduling  variables.
Furthermore, the gain-scheduling weights are computed as
 

ωr =

Ng∏
s=1

νrs(ωs
0,ω

s
1), r = 1, . . . ,Nv (101)

with
 

ωs
0 =
Γu

s −Γs(t)

Γu
s −Γl

s
(102)

 

ωs
1 = 1−ωs

0, s = 1, . . . ,Ng (103)
Γs(t)

Γ(t) Γl
s Γu

s

νrs(ωs
0,ω

s
1)

r = 1, . . . ,Nv

where  is  the s-th  component  of  the  vector  of  gain-
scheduling  variables,  i.e., ,  and  and  denote  their
corresponding  lower  and  upper  bounds,  respectively.  Also,

 signifies  any  weighting  function  associated  with
each rule r for .

Γ(t) = [ωk(t),vd(t), θe(t)]

Nv = 23 = 8
Ai

Since, in this example, there are three gain scheduling vari-
ables,  i.e., ,  and  each  of  them  are
bounded  with  their  corresponding  lower  and  upper  bounds,
one  has .  Each  of  the  polytopic  vertex  systems,
i.e., ,  is  derived as a  combination of  the extreme values of
the scheduling variables [47].

Cs = {x = (x1, x2, x3) ∈ R3
∣∣∣ |x1| ≤ 0.2, |x2| ≤ 0.5, |x3| ≤ 0.0873}

The  admissible  set  for  the  system  states  is  specified  as
.

2Nv(n+m) = 2× (3+2) = 80

2Nvn = 2×
8×3 = 48

It’s important to note that, as mentioned in Remark 2, indi-
rect learning techniques such as those discussed in [28] neces-
sitate  the  collection  of  indepen-
dent  samples  to  create  a  control  strategy  for  the  system
defined in equation (95). In contrast, the data-driven approach
introduced  in  Theorem  3,  which  avoids  the  need  for  system
identification,  only  mandates  the  gathering  of 

 independent  samples  to  acquire  the  information
needed for developing a safe control policy.

0.01
During the simulation phase, all  states are subject to Gaus-

sian noise with a variance of . We then apply the acquired
data-based  probabilistic  safe  control  policy  to  the  system
described in (95). Fig. 8 provides a time-based representation
of the system states, while Fig. 9 displays the trajectory of the
autonomous  vehicle  operating  in  a  noisy  environment.
Notably, these visualizations reveal that the autonomous vehi-
cle  successfully achieves safe path tracking even in the pres-
ence of noise, without encountering any safety violations such
as collisions with road boundaries1.  
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Fig. 6.     Time history of  the  system trajectory for  100 realizations  of  Gaus-
sian  noise  with  covariance  using  the  safe  control  method  pre-
sented  in [46].  This  can  be  compared  to  the  result  of  the  control  method
designed  in  this  paper,  as  shown  in Fig.  2(b),  starting  from  the  same  initial
condition.
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Fig. 7.     Time history of  the  system trajectory for  100 realizations  of  Gaus-
sian  noise  with  covariance  using  the  safe  control  method  pre-
sented  in [46].  This  can  be  compared  to  the  result  of  the  control  method
designed  in  this  paper,  as  shown  in Fig.  5(b),  starting  from  the  same  initial
condition.

  
 

1 To watch the animation of the path tracking performance, please click on the
following link: Safe path tracking animation.
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C.  Experimental Implementation: Autonomous Vehicle
In  this  part,  the  designed  controller  is  implemented  on  an

actual  autonomous  vehicle,  named  the  ROSbot  2R  robot,  as
shown in Fig. 10. The robot operating system (ROS) is used to
control its kinematics. The robot environment is illustrated in
Fig.  11,  where  the  black  boxes  represent  obstacles  and  the
polyhedral safe set is defined as the 2D space between them.
The  black  dot  on  the  floor  indicates  the  desired  set-point  for
the robot. The kinematic model of this robot is as follows:
 

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ωb. (104)

ωb

xs = [x,y, θ]T xs,d = [xd,yd, θd]T

In this model, x and y represent the robot’s positions, and θ
denotes  its  orientation.  Additionally, v and  are  the  linear
and angular  velocities  of  the  robot,  respectively.  By defining

 as the state vector and  as the
desired  state,  the  discrete-time  error  model  of  the  kinematic
system is obtained as follows:
 

xe(t+1) = Axe(t)+B(θe+ θd)us(t) (105)
where 

A = I, B(θe+ θd) =


cos(θe+ θd) 0
sin(θe+ θd) 0

0 1

Ts (106)

xe = xs− xs,d = [xe,ye, θe]Tand  is the error system’s state. The
objective  is  to  stabilize  the  error  system,  which  is  equivalent
to tracking a desired set-point.

Initially,  the  environment  and  the  controller  are  imple-
mented  in  Gazebo.  The  dynamic  behavior  of  the  robot  in
Gazebo is illustrated in Fig. 12 with different episodes of the
simulation over time2. Subsequently, a real implementation on
the  robot,  as  shown  in Fig.  10,  is  conducted.  Different
episodes  of  this  real  implementation  are  presented  in Fig.  13
to  provide  a  visual  representation  of  the  robot’s  performance
over time3. It is demonstrated that, under the designed proba-
bilistic safe control approach, the robot can effectively follow
the  desired  set-point  in  practice.  In  the  experimental  valida-
tion,  no  significant  computational  burden  is  encountered  due
to the fact that a linear programming optimization problem is
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Fig. 8.     Time evolution of the states for the system (95).
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Fig. 9.     Time  evolution  of  the  vehicle’s  trajectory  (the  red  rectangle  repre-
sents the vehicle).

 

 
Fig. 10.     The ROSbot 2R robot.

 

 
Fig. 11.     Robot’s environment.

  
 

2 To  watch  the  video  of  the  set-point  tracking  performance  of  the  robot  in
Gazebo, please click on the following link: Safe set-point tracking simulation.
  
 

3 To  watch  the  video  of  the  set-point  tracking  performance  of  the  robot  in
real-world,  please click on the following link: Safe set-point  tracking imple-
mentation.
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solved  once  using  the  data  collected  offline  to  calculate  the
LPV gains. These gains are then employed in the implementa-
tion,  resulting  in  a  considerable  decrease  in  computational
requirements, particularly in practical scenarios.  

VI.  Conclusion

This  paper  presents  a  risk-informed  model-free  safe  con-

troller for nonlinear discrete-time systems. A probabilistic safe
gain-scheduling  controller  is  directly  learned  from  data  to
bypass  the  system  identification  and  learn  a  safe  controller
while  only  relying  on  measured  data.  The  presented  data-
based  safe  control  design  amounts  to  a  numerically-efficient
linear  program  for  polyhedral  safe  sets.  In  comparison  with
the  existing  indirect  approaches,  a  minimum-variance  direct
safe controller that takes into account the risk of safety viola-
tion is  learned using less  data,  and provides  robustness  guar-
antees.

A  limitation  of  the  presented  approach,  in  contrast  to  the
existing barrier  certifier  approach,  is  that  it  is  limited to only
convex safe sets. Future work will extend these results to sys-
tems with nonconvex safe sets. Furthermore, the designed safe
control scheme will be integrated with reinforcement learning-
based  controllers  to  certify  their  safety  while  minimizing
interference  with  their  actions.  Additionally,  for  situations
where  the  LPV  approximation  is  inadequate  and  significant
nonlinear  dynamics  persist,  our  future  work  will  aim  to
develop  a  combined  LPV  and  explicit  nonlinear  representa-
tion approach. This will provide a more accurate depiction of
the  system’s  dynamics.  We  will  then  design  a  direct  data-
driven safety control strategy that utilizes the LPV framework
while  also  addressing  residual  nonlinearities  in  the  closed-
loop behavior.
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