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   Abstract—Battery  production  is  crucial  for  determining  the
quality of electrode, which in turn affects the manufactured bat-
tery  performance.  As  battery  production  is  complicated  with
strongly  coupled  intermediate  and  control  parameters,  an  effi-
cient solution that can perform a reliable sensitivity analysis of the
production  terms  of  interest  and  forecast  key  battery  properties
in  the  early  production  phase  is  urgently  required.  This  paper
performs detailed sensitivity analysis of key production terms on
determining the properties of manufactured battery electrode via
advanced  data-driven  modelling.  To  be  specific,  an  explainable
neural  network  named  generalized  additive  model  with  struc-
tured  interaction  (GAM-SI)  is  designed  to  predict  two  key  bat-
tery  properties,  including  electrode  mass  loading  and  porosity,
while the effects of four early production terms on manufactured
batteries  are  explained  and  analysed.  The  experimental  results
reveal that the proposed method is able to accurately predict bat-
tery  electrode  properties  in  the  mixing  and  coating  stages.  In
addition, the importance ratio ranking, global interpretation and
local interpretation of both the main effects and pairwise interac-
tions can be effectively visualized by the designed neural network.
Due  to  the  merits  of  interpretability,  the  proposed  GAM-SI  can
help engineers gain important insights for understanding compli-
cated production behavior, further benefitting smart battery pro-
duction.
    Index Terms—Battery  management, battery  manufacturing, data
science, explainable artificial intelligence, sensitivity analysis.
  

I.  Introduction

DUE to the merits of high energy density and low self-dis-
charging  rate,  lithium-ion  (Li-ion)  batteries  have  estab-

lished themselves as important components of modern energy
systems for renewable energy storage and transportation elec-
trification  sectors [1].  However,  a  key  step  in  limiting  the
wider application of Li-ion batteries relies on the understand-

ing  and  improvement  of  their  production [2].  As  a  highly
complex chain, the production parameters within each stage of
battery  manufacturing  directly  affect  the  properties  of  inter-
mediate  products  such  as  electrodes,  which  in  turn  signifi-
cantly  affects  the  manufactured  battery  performance.  In  this
context, conducting an efficient sensitivity analysis of the bat-
tery  production  parameters  is  of  utmost  importance  with
regard to smart monitoring/control of battery production [3].

A  production  line  for  Li-ion  batteries  usually  comprises
numerous mechanical,  electrical  and chemical  processes with
many  closely  interlinked  production  parameters [4].  Battery
engineers usually rely on experimental tests, trial and error to
perform  the  sensitivity  analysis  of  these  parameters  in  the
respective battery production line [5]. These solutions lead to
high time and labor costs, inaccurate quality management, and
challenges in monitoring/capturing the properties of the manu-
factured battery  products  in  early  production phases.  Against
this background, efficient strategies for reliably analysing pro-
duction  parameters  and  providing  satisfactory  early  predic-
tions of battery properties are urgently needed.

With  the  rapid  development  of  artificial  intelligence  (AI)
and automation technology, data-driven methods have become
powerful tools in the field of battery management [6]. To date,
numerous data-driven strategies have been developed for bat-
tery  state  estimation [7]−[9],  ageing  prediction  under  both
cyclic  conditions [10], [11] or  storage  conditions [12], [13],
various faults diagnosis [14], [15], charging management [16],
and energy management [17], [18]. In summary, efficient bat-
tery management can be obtained by developing suitable data-
driven  methods.  However,  in  comparison  with  battery  man-
agement, for which mature data-driven solutions are available,
research into suitable data-driven methods for benefitting bat-
tery production is still relatively limited [19].

In  the  limited  research  into  battery  production,  great  atten-
tion  is  being  paid  to  designing  suitable  data-driven  methods
for  predicting  the  properties  of  inter-mediate  or  final  battery
products,  and  carrying  out  sensitivity  analyses  of  interested
production  parameters [20].  For  example,  in [21],  a  decision
tree-based data-driven solution is proposed to forecast battery
capacity  and  analyse  the  relevant  production  features.  Turet-
skyy et al. [22] propose a multi-output method based on data-
driven  model  to  capture  the  effects  of  inter-mediate  produc-
tion parameters on final battery properties. Niri et al. [23] pro-
pose a data-driven method to capture interdependency among
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key parameters of battery production and the electrical behav-
ior of manufactured batteries. After designing tree-based mod-
els  named  random  forest [24] and  RUBoost  ensemble  learn-
ing [25],  the  dynamical  effects  of  production  variables  and
material  parameters on the capacities of manufactured batter-
ies are analysed, respectively. In [26], the data-driven models
are  designed  to  enable  virtual  production  experiment  for
analysing the manufactured battery behaviors.

Although  the  above-mentioned  studies  provide  several
promising results in designing data-driven methods to benefit
battery production, there still exist lots of limitations and chal-
lenges  that  require  to  be  further  enhanced,  especially  in  the
sensitivity  analysis  of  the  battery  production  process  as:  1)
Most  studies  simply  adopt  conventional  machine  learning
approaches,  such  as  support  vector  machine,  to  make  only
simple  predictions  on  the  properties  of  manufactured  battery
product. There is a lack of efficient sensitivity analyses of the
involved production parameters that allow engineers to better
understand  their  production  lines.  2)  Although  several
advanced  machine  learning  tools  with  interpretability  have
been  used  to  analyse  the  battery  production  process,  their
interpretability  is  still  worthy  of  further  exploration.  To  our
best  knowledge,  limited  data-driven  studies  are  conducted  to
1)  Provide  both  global  and  local  interpretations  of  how  the
variations  of  battery  early-stage  production  terms  dynami-
cally affect  the qualities and properties of  battery inter-medi-
ate or final product. 2) Identify and rank the importance ratio
of both main effect and pairwise interaction terms simultane-
ously  when  using  them  to  predict  battery  properties.  In  real
battery  production,  engineers  are  very  interested  in  obtaining
the  manufactured  battery  properties  in  the  early  production
phase  and  understanding  how  the  main  effects  and  pairwise
interactions of the production terms will specifically affect the
relevant battery properties.

To  overcome  the  above-mentioned  limitations,  this  study
proposes an explainable neural network based on the general-
ized  additive  model  with  structured  interaction  (GAM-SI)  to
predict battery electrode mass loading and porosity in its early
production phase, while the sensitivity analysis of importance
ratio  ranking,  global  as  well  as  local  interpretations  of  inter-
ested  production  terms  are  also  performed.  Some  contribu-
tions  could  be  summarized  as:  1)  After  identifying  four  key
production terms from mixing and coating phases, an explain-
able  neural  network  is  derived  to  provide  an  early-stage  pre-
diction  of  two  key  battery  electrode  properties.  2)  Through
integrating  three  interpretability  constraints,  namely  sparsity,
heredity  and  marginal  clarity,  the  GAM-SI’s  interpretability
for identifying how the main effects and pairwise interactions
derived  from  four  production  terms  affect  the  corresponding
electrode  properties  is  well  improved.  3)  The  prediction  and
sensitivity  analysis  performance  of  the  designed  GAM-SI
model  is  comprehensively  evaluated  for  both  electrode  mass
loading and porosity. Obviously, the designed model is capa-
ble  of  pursuing  a  satisfactory  balance  between  prediction
accuracy  and  interpretability  of  production  terms  of  interest.
This  is  the  first  known  application  of  designing  GAM-SI-
based  explainable  neural  network  to  predict  the  performance
of  manufactured  battery  and  to  explain  how  the  production
terms  in  early  production  phases  affect  the  properties  of  the

respective electrode product. This could help engineers obtain
critical insight, eventually resulting in closed-loop monitoring
and optimization solutions for battery smarter production.

The rest  of  this  paper  is  organized as  follows.  Battery pro-
duction fundamental and several key production terms in early
production  phases  are  specified  in  Section  II.  Section  III
describes the GAM-SI structure and constraints, the GAM-SI
interpretability,  as well  as the developed GAM-SI model and
performance  indicator.  Section  IV  then  details  the  prediction
results of battery electrode properties, with an in-depth sensi-
tivity  analysis  of  the  involved  battery  production  terms  of
interest. Finally, Section V summarizes this study.  

II.  Battery Production Fundamental

The production of Li-ion battery belongs to a complex pro-
cess involving both continuous and discrete stages. In general,
the entire battery production line is  mainly divided into elec-
trode production, cell assembly, and cell formation [27]. Fig. 1
shows  the  battery  production  fundamental  with  some  key
inter-mediate  phases  especially  for  the production of  the bat-
tery  electrode.  More  specifically,  the  prepared  electrode  key
materials  are  first  mixed  in  a  mixer  to  produce  slurry  in  the
mixing phase. After that, a coating phase is carried out to coat
slurry  on  the  surface  of  mental  foil  (copper  foil  for  anode,
while aluminum foil for cathode) by a coating machine. Then
the  coating  product  is  calendered  and  dried  several  times  to
remove  residual  matter.  Afterward,  the  electrodes  can  be
obtained  finally  by  cutting  them into  the  correct  shape.  Dur-
ing  cell  assembly  stage,  all  battery  components  such  as  the
anode  electrode,  cathode  electrode,  and  electrolyte  are  then
assembled together to produce basic cell.  After the formation
phase,  in  which  the  solid  electrolyte  interphase  (SEI)  film  is
produced,  the battery cell  can finally be used in real  applica-
tions.  It  should be noted that  due to  the  highly complex pro-
duction stages of battery, monitoring key electrode properties
in  the  early  battery  production  phases  (i.e.,  mixing  and  coat-
ing)  and  analysing  the  effects  of  related  production  parame-
ters  are  crucial  and  challenging.  In  this  context,  an  efficient
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Fig. 1.     Key production phases particular for battery electrode.
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sensitivity  analysis  solution  is  urgently  required  for  smarter
battery production.

To  design  a  reliable  solution  for  achieving  effective  early
prediction  of  electrode  properties  and  sensitivity  analysis  of
production  parameters,  several  production  parameter  terms
from  battery  key  early  production  phases,  including  mixing
and coating, are investigated. In addition, the sensitivity anal-
ysis of their impact on the prediction performance of the elec-
trode properties will be performed. To be specific, the investi-
gated  production  terms  are  three  key  production  parameters
named AM mass content, S-to-L ratio, viscosity from mixing
phase  and  one  key  production  parameter  named Comma gap
from  coating  phase.  Here  the  S-to-L  ratio  is  a  ratio  between
the solids content of the slurry and the mass. Viscosity refers
to the coating phase’s shear rate. Comma gap is a gap between
the comma and the coating roller.  Without loss of generality,
the real battery manufacturing dataset from the Franco Labo-
ratoire  de  Reactivite-et-Chimie-des-Solides,  whose  effective-
ness  is  well  validated  in [28] is  explored.  In  the  experiment,
during the mixing stage, all the solid components of the slurry
were blended together using a soft blender. N-methyl pyrroli-
done (NMP) was then added until reaching the desired S-to-L
ratio.  The  total  mass  of  solid  components  was  kept  at  65  g.
During  the  coating  stage,  all  the  electrodes  were  coated  onto
22 μm aluminium foil, with the line speed of the Comma gap
machine maintained at 0.3 m/min. Simultaneously, the size of
the Comma gap was continuously adjusted to  apply different
shear forces during the coating process.

mg/cm2
For  the  battery  electrode  properties,  two  key  terms  includ-

ing  electrode  mass  loading  (unit  is )  and  porosity
(unit is %) are explored in the study. From an engineering pro-
cess  perspective,  both  mass  loading  and  porosity  can  reflect
the  production  quality  of  electrodes,  making  them  become
crucial indicators to be considered in electrode manufacturing.
Through  the  design  of  experiment,  a  total  of  eight  sample
points are obtained on each dried electrode, resulting in a raw
dataset  of  656  sample  points.  The  rigorous  experimental
design ensures the reliability of the data set and thus provides
favourable conditions for performing sensitivity analyses rele-
vant  to  battery  electrode  production  processes.  For  data  pre-
processing,  after  handling  the  outliers  and  missing  points  of
the  raw  data  collected,  each  set  of  eight  samples  from  the
same electrode is averaged to reduce random errors during the
measurements, resulting in 82 observations. Besides, min-max
normalization is used to eliminate scale discrepancies between
different features while preserving original data distribution.  

III.  Methodology

This  section  first  introduces  the  GAM-SI  structure  and
related  interpretability  constraints.  Then,  three  interpretable
elements to perform explainable sensitivity analysis of battery
production is described, followed by the elaboration of estab-
lished  GAM-SI  model  to  predict  electrode  properties  in  the
early  battery  production  phase.  In  addition,  three  classical
indicators to explore prediction performance are given.  

A.  GAM-SI Structure and Constraints
For the designed GAM-SI, it formulates a complicated func-

S 1
S 2

tional relation by a low order representation involving non-lin-
ear main effect and pairwise interaction. Supposing  is the
set of main effect and  is the set of pairwise interaction, the
developed GAM-SI network can be derived as
 

G (E (y) |x) =
∑
i∈S 1

fi (xi)+
∑

(i, j)∈S 2

hi j
(
xi, x j
)
+b (1)

b fi (xi) hi j(xi, x j)where  is intercept.  and  are non-linear shape
functions  for  main  effects  and  pairwise  interactions  respec-
tively, which are assumed to own zero mean as
 

w
fi (xi)dF (xi) = 0, ∀i ∈ S 1w
fi j
(
xi, x j
)
dF
(
xi, x j
)
= 0, ∀(i, j) ∈ S 2

(2)

(i, j) ( j, i) F(xi)
F(xi, x j)

hi j(xi, x j) fi(xi) f j(x j)

where  and  refer to same pairwise interactions, 
and are  cumulative  distribution  functions.  Here  each

 is orthogonal to its main effects  and .

fi (xi)

hi j(xi, x j)

Fig.  2 illustrates  the  network  structure  of  GAM-SI,  which
can be divided into two parts including the main effect  mod-
ule  and  pairwise  interaction  module.  Based  on  this  structure,
each  main  effect  in  (1)  would  be  described  through  a
sub-network containing an input-node, multiple hidden-layers
and an output-node, while each pairwise interaction 
in  (1)  would  be  described  by  a  sub-network  containing  two
input-nodes.  It  is  noteworthy  that  the  main  effects  and  the
pairwise interaction effects do not share the weights. The main
effects  are  trained  first,  followed  by  fitting  the  remaining
residuals  using  pairwise  interactions  subnetworks.  Then,  all
sub-networks  will  be  linearly  combined  with  an  additional
intercept  term  to  capture  the  target  output.  To  be  more  spe-
cific, the sub-networks of main effects and interactions will fit
1D  curves  and  2D  surfaces,  respectively.  Here,  the  feedfor-
ward  neural  networks  with  a  sufficient  quantity  of  hidden
nodes are utilized to approximate arbitrary curves or surfaces,
while multi-layer sub-networks are adopted to capture differ-
ent  forms  of  shape  functions.  Moreover,  one-hot  encoding  is
utilized  to  preprocess  categorical  variables,  which  results  in
the sub-networks that capture the main effect of the categori-
cal variable could be simplified to the multiple bias-nodes.
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Fig. 2.     Network structure of GAM-SI.
 

Besides,  it  should  be  noted  that  three  interpretability  con-
straints are assumed in the GAM-SI network, including spar-
sity,  heredity,  and  marginal  clarity.  Here  both  sparsity  and
heredity  constraints  are  used  to  improve  model  interpretabil-
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ity,  while  marginal  clarity  constraint  would  be  used  to
uniquely identify the main effect and pairwise interaction.

i

1) Sparsity-Constraint (S-C): Sparsity belongs to a key buil-
ding  block  for  the  interpretation  of  well-trained  GAM-SI
model by removing unnecessary main and interaction impacts.
Here,  the  importance  of  main  effects  and  pairwise  interac-
tions  could  be  quantified  based  on  their  variations.  The -th
main effect’s variation could be described by sample variance
as
 

D ( fi) =
N∑

l=1

f 2
i

(
xl

i

)
N −1

(3)

N xl
i xi l

s1 D ( fi)
S 1

where  refers  to  sample  size,  is  the  value  of  the -th
sample. In this study, the main effect function with small vari-
ations  will  be  treated  as  trivial  effect  and  enforced  to  be  0,
leading  to  a  sparse  GAM-SI.  Alternatively,  GAM-SI  selects
the top  main effect terms based on , as listed through
the index-set .

s2
D(hi j)

For  pairwise  interaction,  its  sparsity  could  be  similarly
obtained  through  selecting  the  top  pairwise-interactions
based on  defined by
 

D
(
hi j
)
=

N∑
l=1

h2
i j(xl

i, x
l
j)

N −1
. (4)

s2
S 2 S 1 S 2

Here  the  list  of  top  pairwise  interactions  is  denoted  by
index-set .  Both  the  indices  of  the  sets  and  simply
serve as representatives for each input feature to facilitate the
implementation of the GAM-SI.

2) Heredity-Constraint (H-C): Apart from S-C, H-C is also
important  for  capturing  main  effect  as  well  as  low  to  high
order interactions. There generally exists two heredity princi-
pal  versions  including  strong  and  weak  heredities.  In  GAM-
SI,  the  strong  heredity  and  weak  heredities  respectively
impose the constraints as
 ∀ (i, j) ∈ S 2 : i ∈ S 1 and j ∈ S 2

∀ (i, j) ∈ S 2 : i ∈ S 1 or j ∈ S 2.
(5)

S 2
S 1

In this way, the pairwise interactions could be contained by
 under conditions that both of or at least one of their parent

main effects present strong heredity and are included by .

i
(i, j)

3)  Marginal-Clarity  (M-C): In  GAM-SI,  main  effects  or
pairwise  interactions  are  assumed  to  own  zero  mean,  which
can  cause  model  prediction  to  become  unstable  and  affect
model  interpretation.  In  this  context,  M-C  constraint  is
adopted to improve GAM-SI identifiability. Here the orthogo-
nality condition of -th main effect  term and related pairwise
interaction term  is described by
 r

fi (xi)hi j
(
xi, x j
)
dF (x) = 0 (6)

F (x)where  refers  to  joint  cumulative  distribution  function.
Then the non-orthogonality degree could be derived by
 

Ω
(

fi,hi j
)
=

∣∣∣∣∣∣∣∣
∑

fi (xi)hi j
(
xi, x j
)

N

∣∣∣∣∣∣∣∣ . (7)

Ω( fi,hi j) fi
hi j

Here lower  reflects that the marginal effects  can
be  separated  from their  child-interaction  more  clearly.  In

Ω( fi,hi j)

i ∈ S 1
(i, j) ∈ S 2

real applications,  would be slightly larger than zero.
In  this  context,  for  GAM-SI,  to  pursue  marginal  clarity,  the
non-orthogonality  will  be  penalized  for  all  and  their
related child-interaction .

On  the  basis  of  all  interpretability  constraints,  GAM-SI
model  can  be  built  through  handling  the  following  optimiza-
tion issue as:
 

min
θ
Lλ (θ) = l (θ)+λ

∑
i∈S 1

∑
(i, j)∈S 2

Ω
(

fi,hi j
)

s.t.
w

fi (xi)dF (xi) = 0, ∀i ∈ S 1w
hi j
(
xi, x j
)
dF
(
xi, x j
)
= 0, ∀ (i, j) ∈ S 2

(8)

S 1
S 2

l (θ)

λ ≥ 0.

where the main effects  active set and pairwise interaction
 active  set  would  be  obtained  subject  to  S-C  and  H-C

respectively. The empirical loss  would be determined by
the model tasks (i.e., classification or regression). The second
term  in  (8)  refers  to  the  regularization  of  marginal  clarity,
which strength is determined by   

B.  GAM-SI Interpretability
For  the  GAM-SI  network,  three  interpretable  elements  can

be obtained intrinsically as:
1)  Importance-Ratio  (I-R): Based  upon  a  well-trained

GAM-SI model, the effects and contributions of each produc-
tion term of  interest  to  the  predicted  battery  properties  (elec-
trode  mass  loading  and  porosity)  can  be  quantified  by  I-R.
Here individual variables include both individual battery pro-
duction terms and their pairwise interactions. For the individ-
ual  battery  production  terms,  the  I-R  of  each  term  could  be
quantitatively obtained by
 

IR (i) =
D ( fi)

D
(9)

D =
∑

i∈S 1 D ( fi)+
∑

(i, j)∈S 2 D(hi j)where . By the same way, the
I-R of pairwise interactions could be also quantified as
 

IR (i, j) =
D
(
hi j
)

D
. (10)

Based  upon  the  above  solution,  I-R  for  all  terms  can  be
obtained and would add up to 1. Then the importance of each
term  on  determining  battery  properties  can  be  ranked  in
decreasing  order  based  on  I-R  values.  Theoretically,  the
greater the I-R value, the more important the production term.

fi (xi) i ∈ S 1

2)  Global-Interpretation  (G-I): Apart  from  quantifying  the
importance of each production term, the relation between indi-
vidual production terms or production term pairs and the prop-
erties  of  interest  for  manufactured  battery  electrode  can  be
analysed  by  visualizing  their  fitted  shape  function.  Here,  the
1D  line  chart  and  the  bar  chart  are  utilized  to  explain  the
inputs-output relationships for numerical and categorical vari-
ables, respectively. The plots would be obtained by using the
final  predictions  of  for .  The  relationships  here
could be linear, monotonic and in other forms. In addition, in
order  to  explain  the  joint  effects  of  two  underlying  battery
production terms, a 2D heatmap will be also utilized for visu-
alizing each predicted pairwise interaction.

3) Local-Interpretation (L-I): According to the well-trained
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GAM-SI  model,  the  prediction  of  battery  production  proper-
ties can also be explained locally, resulting in a clear decision-
making  process.  Specifically,  for  a  sample  of  insterest,  the
GAM-SI model can output not only a prediction, but also the
corresponding function form with respect to the inputs within
the  sample.  In  this  way,  the  value  of  additive  components,
such  as  the  effects  of  individual  and  pairwise  interactions,
could  be  quantified.  Subsequently,  the  decision  for  inputs
could be concretely understood by sorting the quantified effect
values. Moreover, the sensitivity analyses of the predicted bat-
tery  properties  with  respect  to  the  small  variation  of  the
explanatory production term could be performed by visualiz-
ing the corresponding 1D line chart or 2D heat map.  

C.  GAM-SI Model and Performance Indicator
1)  GAM-SI  Model: In  the  battery  production  line,  two  key

phases,  namely  mixing  and  coating,  are  crucial  to  determine
the  properties  of  the  manufactured  electrode,  which  in  turn
significantly  influence  the  final  battery  performance [29].  To
perform an efficient  sensitivity  analysis  of  the interested fea-
ture terms in battery production line, the GAM-SI model with
a structure in Fig. 3 is developed in this study. Here the inputs
include  three  feature  terms  named  AM  mass  content,  S-to-L
ratio  and  viscosity  from  mixing  phase,  and  one  feature  term
named Comma gap from coating phase.  Meanwhile,  two key
properties  of  battery  electrode,  namely  mass  loading  and
porosity, are used as GAM-SI model’s output, respectively.
 
 

GAM-SI regression model
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AM mass content

S-to-L ratio
Viscosity

Comma gap
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Interactions
AM mass content vs. 
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Fig. 3.     GAM-SI model for the sensitivity analysis of battery production.
 

a) All sub-networks of main effect will be trained first for a
few epochs, while trivial main effects would be pruned based
upon their contribution and validation performance.

Kb)  Then,  the  most  pairwise  interactions  will  be  selected
for  training,  while  trivial  pairwise  interactions  are  removed
based on their contribution and validation performance.

c) After phases 1) and 2),  all  network parameters for some
epochs will be fine-tuned.

2)  Performance  Indicators: To  explore  the  performance  of
designed GAM-SI model for electrode properties prediction at
early production stages, three efficient indicators are adopted.

N

Yn Ŷn

a)  Mean  absolute  error  (MAE): Supposing  is  the  total
number  of  electrode  property  points  predicted  from GAM-SI
model,  and  respectively refer to the real electrode prop-
erty points and the predicted property points, then MAE could
be obtained as
 

MAE =
1
N

N∑
n=1

∣∣∣∣Yn− Ŷn

∣∣∣∣ . (11)

b)  Root  mean  square  error  (RMSE): Through  using  the
same definition, RMSE can be obtained by
 

RMS E =

√√√
1
N

N∑
n=1

(Yn− Ŷn)2. (12)

For  battery  electrode  properties  prediction,  when  predicted
property points well match real property values, the MAE and
RMSE would be closed to 0.

c)  Average  execution  time  (AET): The  AET  is  adopted  to
reflect  the  computational  effort  of  developed  model  during
cross-validation process. In this study, the unit of AET is sec-
ond (s) for training GAM-SI models.  

IV.  Result and Discussion

To carry out sensitivity analysis including importance ratio
quantification,  global  and  local  interpretations  for  the  effects
of  early-stage  production  terms  on  electrode  properties,  the
developed GAM-SI model is adopted to predict manufactured
battery electrode mass loading and porosity in this section.  

A.  Analyses of Battery Electrode Mass Loading
In this test, according to the structure shown in Fig. 3, four

battery production terms, including AM mass content,  S-to-L
ratio,  viscosity,  and  Comma  gap,  are  used  as  inputs  of  the
GAM-SI model,  while  the  mass  loading of  the  manufactured
battery  electrode  is  taken  as  the  output  of  the  model.  The
detailed  results,  including  the  training  and  validation  results,
as  well  as  sensitivity  analyses  of  I-R,  G-I,  and  L-I  are  then
presented and discussed.

1)  Training  and  Validation  Analyses: Fig.  4 illustrates  the
GAM-SI training as well as validation losses for mass loading
case.  It  could  be  noted  that  both  these  two  types  of  losses
decrease  dramatically  during  the  training  stage  of  main
effects,  while they continue to reduce further by adding pair-
wise interactions to the GAM-SI. Specifically, there are large
jumps for both training and validation losses in the first half of
the  tuning  process,  which  are  mainly  due  to  the  pruning  of
trivial pairwise interactions. It  can be observed that the train-
ing loss and validation loss finally stabilize around 0.003 dur-
ing the fine-tuning stage. In 20 times repeated training, GAM-
SI can converge within 800 epochs consistently. Fig. 5 shows
the validation loss for determining the optimal values of both
main effects and pairwise interactions. Here, the x-axis refers
to  the  number  of  main  effects  or  pairwise  interactions  that
need  to  be  included  in  GAM-SI  model,  while  the  red  star
marks  the  best  number  value.  Quantitatively,  for  mass  load-
 

0.3211

0.0550

0.0094

0.0016

0.0003
0 100 200 300 400 500 600 700

Lo
ss

 (L
og

 sc
al

e)

0.3211

0.0550

0.0094

0.0016

0.0003

Lo
ss

 (L
og

 sc
al

e)

Number of epochs

Training loss Validation loss

(a)

0 100 200 300 400 500 600 700
Number of epochs

(b)

Stage l: Training main effects
Stage 2: Training interactions
Stage 3: Fine tuning

Stage l: Training main effects
Stage 2: Training interactions
Stage 3: Fine tuning

 
Fig. 4.     GAM-SI training and validation losses for mass loading case.
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ing  case,  the  best  number  are  four  and  three  for  the  main
effect and interaction terms included in GAM-SI model, as the
validation  losses  decrease  below 0.0053 and 0.0034,  respec-
tively. Thereafter, the benefit of adding further main effects or
pairwise  interactions  derived  from  battery  production  terms
would be negligible.

2) I-R Analyses: For battery electrode mass loading predic-
tion,  after  well-training  relevant  GAM-SI  model,  the  quanti-
fied  I-R  ranking  for  all  main  effect  and  pairwise  interaction
terms could be obtained and are shown in Fig.  6.  Obviously,
the main effect terms make a greater contribution to the elec-
trode  mass  loading  prediction  than  the  pairwise  interaction
terms.  Specifically,  for  main  effect  terms,  Comma  gap
presents  the  most  important  contribution,  as  its  I-R  value
reaches  91.3%.  This  result  is  as  expected  since  Comma  gap
has a significant influence on the weight and thickness of the
coating,  while  these  coating  properties  determine  to  a  large
extent  the  mass  loading of  the  battery electrodes.  The S-to-L
ratio provides the second most important contribution with an
I-R  value  of  4.4%,  which  is  62.9% and  34.0% larger  than
those of viscosity and AM mass content respectively. In com-
parison,  the  I-Rs  of  pairwise  interaction  terms  are  relatively
low with a total value of 0.6%, indicating that the mass load-
ing is mainly determined by four main effect terms.
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Fig. 6.     Importance ratio ranking for mass loading case.
 

3) G-I and L-I Analyses: To provide a more comprehensive
understanding  of  the  influence  of  main  effects  and  pairwise
interactions on the prediction of electrode mass loading, both
the global and local interpretations of the GAM-SI model for
the  mass  loading  case  are  depicted  in Figs.  7 and 8,  respec-
tively. Leveraging the GAM structure of GAM-SI, the model
captures  the  contribution  of  each  feature  to  the  output.  In
Fig.  7,  the x-axis  illustrates  the  distribution  of  sample  data,
while  the y-axis  describes  the  contribution  of  each  feature.
The  higher  the  I-R  value  of  the  battery  production  term,  the
wider the range of the contribution that the term can make to

×

the  predicted  electrode  mass  loading.  It  is  interesting  to  note
that for all individual main effects, increasing their term value
first reduces the negative contributions and then increases pos-
itive  contributions  to  the  battery  electrode  mass  loading.  For
example, for Comma gap with a largest I-R, its negative con-
tribution initially decreases from 0.4 to 0 when its term value
is  increased  from 100 to  200.  Thereafter,  the  positive  contri-
bution gradually increases as the Comma gap becomes greater
than 200. For AM mass content, when its value increases from
93 to 94, its negative contribution remains almost the same. In
addition, the pairwise interaction effects can be also captured
by pairwise interaction subnetworks. Within the features influ-
encing  mass  loading,  pairwise  interaction  effects  also  play  a
role.  For  example,  in Fig.  7(e),  AM mass  content  Comma
gap  term  demonstrates  that  positive  contributions  to  the  out-
come occur  only when both values  fall  within  the  red region
in the figure. This indicates that, in the process of battery elec-
trode  production,  besides  main  effects,  the  interactions
between different features also need to be considered.

Next,  a  sample  point  of  mass  loading  prediction  is  ran-
domly selected for the local  interpretation of the well-trained
GAM-SI  model,  as  shown in Fig.  8.  The  contributions  of  all
features  on  this  sample  are  displayed,  with  each  correspond-
ing to a subnetwork in the model. It is notable that the contri-
butions  of  four  main  effects,  three  pairwise  interactions,  as
well as the intercept are well determined, enabling the GAM-
SI  model  to  provide  a  satisfactory  prediction  result  for  the
local  mass  loading  point  with  an  absolute  error  of  0.0095.
These facts signify that electrode mass loading could be well
captured by four production terms in battery early production
phases.  

B.  Analyses of Battery Electrode Porosity
In  this  test,  the  sensitivity  analyses  of  battery  electrode

porosity are performed. The inputs here are the same as those
of mass loading test, while the output is electrode porosity.

s1 s2

s1 s2

1) Training and Validation Analyses: Fig. 9 shows the train-
ing and validation losses of the GAM-SI model for the case of
battery electrode porosity. For the electrode porosity, both the
training and validation losses  reduce  significantly  to 0.00982
and 0.01763 when main effects are added to the network. Dur-
ing  the  training  phase  of  pairwise  interaction,  the  losses  will
be  slightly  adjusted.  Finally,  the  training  loss  and  validation
loss stabilize around 0.00963 and 0.01763 respectively during
the  fine-tuning stage.  In  20 times  repeated  training,  GAM-SI
can  converge  within  500  epochs  consistently. Fig.  10 further
shows the validation loss for the determination of  and  in
the case of porosity. Here, the optimal number of main effects
is still four, while the optimal number of pairwise interactions
becomes two. Further adding more interaction terms from bat-
tery production would even cause the validation loss increase
from 0.01644 to  0.01653.  In  this  context,  =  4  and  =  2
are adopted in the GAM-SI model for the case of battery elec-
trode porosity.

2)  I-R  Analyses: The  values  of  the  importance  ratio  of  the
main  effect  involved  and  pairwise  interaction  terms  for  the
case of electrode porosity are listed in Fig. 11. The indicators
show  that  for  main  effects,  S-to-L  ratio  and  viscosity  here
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become  the  most  two  important  terms,  while  AM mass  con-
tent  is  the  least  important  term.  Theoretically,  this  is  reason-
able as the physical property of the electrode, such as porosity,
is difficult to be affected by the mass content of active mate-
rial.  In  comparison,  the  importance  ratio  values  of  two  pair-
wise  interaction  terms  are  much  lower  than  those  of  main
effect terms, indicating that electrode porosity predictions are
mainly  determined  by  four  related  main  effect  production
terms.

3) G-I and L-I Analyses: Next, based upon the well-trained
GAM-SI, the global interpretation for the case of battery elec-
trode porosity is illustrated in Fig. 12. For the most important
main  effect  term  S-to-L  ratio,  an  increase  in  its  value  first
leads to a decrease in the associated positive contribution to 0
at  67.5  point  and  then  to  an  increase  in  the  associated  nega-
tive  contribution  to  0.05  at  68.2  point.  Thereafter,  a  further
increase in the S-to-L ratio has little  influence on the change
in the contribution. Interestingly, an increase in the values for
the other three main effect terms would first  reduce the posi-
tive contributions and then increase the negative contributions
up to the maximum points.  Thereafter,  the negative contribu-
tions are reduced with the increase of term values. According
to the pairwise interaction diagrams shown in Figs. 12(e) and
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Fig. 8.     Local interpretation of GAM-SI for mass loading case.
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Fig. 9.     GAM-SI training and validation losses for porosity case.
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12(f), high S-to-L ratio and low Comma gap, high S-to-L ratio
and  Viscosity  could  give  additional  positive  contribution  to
the prediction of battery electrode porosity.

×

For  L-I  analysis, Fig.  13 illustrates  a  sample  point  of  the
electrode porosity prediction to perform a local interpretation
of  the  well-trained  GAM-SI  model.  Differently  from  mass
loading sample point case, here the three terms including Vis-
cosity,  Intercept,  and  S-to-L  ratio  Comma gap  make  posi-
tive  contributions  while  the  other  four  terms  make  negative
contributions  to  the  determination  of  sample  point  of  elec-
trode porosity. Besides, an acceptable absolute error of 0.0017
is achieved here, indicating that electrode porosity is also well
predicted  by  the  contributions  of  the  mixing  as  well  as  coat-
ing terms in battery early production stages.
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Fig. 13.     Local interpretation of GAM-SI for porosity case.
   

C.  Comparison Analysis
To further explore the effectiveness of our designed GAM-

SI model for electrode properties prediction in the early stages
of  battery  production,  three  other  classical  data-driven  meth-
ods  including  decision  tree  (DT),  support  vector  regression
(SVR), and Gaussian process regression (GPR) are adopted as

MAE RMSE
AET

benchmarks for comparison analysis. To ensure a fair compar-
ison, all these methods are derived by using a 2.60 GHz Intel
Pentium 4 CPU. To be specific, DT is a classical data-driven
method  based  on  the  classification  and  regression  tree [30].
Both SVR and GPR are kernel-based methods for transferring
inputs  from  the  low-dimensional  space  to  the  high-dimen-
sional space for regression [12], [31]. Without loss of general-
ity,  the  classical  and  effective  squared-exponential  kernel  is
adopted for SVR and GPR in this study. To quantify the pre-
diction  accuracy  and  computational  effort  of  these  methods,
three key performance indicators including , , and

 are used in the comparison studies.

AET
MAE

RMSE

RMSE
RMSE

AET

After  performing  a  five-fold  cross  validation,  the  compari-
son results  of these data-driven methods are summarized and
shown in Table I, where bold values refer to the best results. It
can be seen that DT provides the smallest  for both elec-
trode  mass  loading  and  porosity  cases,  but  its  and

 values  are  the  worst.  This  is  reasonable  as  the  struc-
ture  of  DT  is  the  simplest  to  be  trained  but  its  capability  to
capture highly non-linear conditions like electrode mass load-
ing  and  porosity  is  limited.  In  comparison,  our  proposed
GAM-SI  gives  the  best  prediction  performance  for  all  elec-
trode  properties.  For  the  case  of  mass  loading,  GAM-SI’s

 is 0.09% and 2.71% better than that of GPR and SVR,
respectively.  For  the  porosity  case,  its  is  13.26% and
15.31% better than those of GPR and SVR, respectively. This
indicates  that  more  other  battery  production  terms  are  sug-
gested to  be considered for  further  improving prediction per-
formance  of  electrode  porosity.  In  addition,  the  of
GAM-SI  for  both  mass  loading  and porosity  are  within  8.5s,
leading  to  a  satisfactory  computational  effort.  These  facts
show that our designed GAM-SI is capable of providing com-
petent  performance  to  efficiently  predict  battery  electrode
properties by using production terms in the battery early pro-
duction phases.  
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Fig. 12.     Global interpretation of GAM-SI for porosity case.
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V.  Conclusion

As  battery  production  is  of  great  importance  for  determin-
ing  battery  performance,  the  efficient  sensitivity  analysis  of
battery  production  terms  is  significantly  needed.  This  study
proposes  an  explainable  neural  network  named  GAM-SI  to
not  only  predict  battery  electrode  properties  at  battery  early
production  phases  but  also  carry  out  sensitivity  analysis  of
four  key  production  terms  of  interest.  The  importance  ratio
ranking,  global  and  local  interpretations  of  the  main  effects
and  pairwise  interactions  from  four  battery  early-production
terms (AM mass content, S-to-L ratio, viscosity, and Comma
gap)  on  the  predictions  of  electrode  mass  loading  as  well  as
porosity  are  performed  and  analysed.  Illustrative  results
demonstrate  that  the  developed  GAM-SI  is  able  to  perform
satisfactorily  in  predicting the  electrode properties  and sensi-
tivity analysis  of  the production terms of interest.  The devel-
oped method makes the sensitivity analyses of battery produc-
tion  more  interpretable  and  provides  a  convenient  alternative
for  early  prediction  and  monitoring  of  manufactured  battery
properties,  especially  for  the  battery  production  chain  in
which  there  are  strongly  coupled  mechanical,  electrical  and
chemical parameters. This can significantly benefit the moni-
toring and control  of the production chain to achieve smarter
battery  production.  For  example,  due  to  the  merits  of  data-
driven nature and good interpretability, after collecting proper
battery  production  data,  engineers  could  conveniently  adopt
this  GAM-SI-based  method  to  carry  out  effective  sensitivity
analysis  of  the  production  terms  of  interest  and  monitor  bat-
tery  properties  in  the  early  production  phases.  Here  to  over-
come the practical challenge of generating available database
for  battery  production  with  low  cost,  the ‘design  of  experi-
ments’ solution  is  suggested [32],  in  which  the  areas  of  the
database are defined and it is ensured that there are also suffi-
cient  breakpoints  between  the  individual  control  variables.
Moreover, engineers can control and adjust the slurry compo-
sition  or  coating  parameters  based  on  the  early  predictions
without the need for time-consuming trial and error testing, or
detect  defective  products  based  on  the  corresponding  local
interpretation results from GAM-SI.
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