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   Abstract—This paper studies the target controllability of multi-
layer  complex  networked  systems,  in  which  the  nodes  are  high-
dimensional  linear  time  invariant  (LTI)  dynamical  systems,  and
the  network  topology  is  directed  and  weighted.  The  influence  of
inter-layer  couplings  on  the  target  controllability  of  multi-layer
networks is discussed. It is found that even if there exists a layer
which  is  not  target  controllable,  the  entire  multi-layer  network
can  still  be  target  controllable  due  to  the  inter-layer  couplings.
For the multi-layer networks with general structure,  a necessary
and  sufficient  condition  for  target  controllability  is  given  by
establishing the relationship between uncontrollable subspace and
output matrix. By the derived condition, it can be found that the
system  may  be  target  controllable  even  if  it  is  not  state  control-
lable. On this basis, two corollaries are derived, which clarify the
relationship  between  target  controllability,  state  controllability
and  output  controllability.  For  the  multi-layer  networks  where
the  inter-layer  couplings  are  directed  chains  and  directed  stars,
sufficient  conditions  for  target  controllability  of  networked  sys-
tems are given, respectively. These conditions are easier to verify
than the classic criterion.
    Index Terms—High-dimensional  nodes, inter-layer  couplings,
multi-layer networks, target controllability.
  

I.  Introduction

COMPLEX network is a powerful tool for modeling com-
plex  systems [1]−[3].  A  large  number  of  complex  sys-

tems  can  be  described  by  complex  networks.  The  ultimate
goal  of  studying  complex  network  is  to  understand  and  con-
trol  it  to serve human beings.  Fully controllability is  the pre-
requisite  for  achieving  control  of  complex  networks [4], [5].
Controllability of complex network has been extensively stud-
ied and developed in the past few decades, and many control-
lability conditions have been established.

At  first,  the  research  on  controllability  of  complex  net-
works mainly focuses on the structural controllability [6]−[8]
and  state  controllability  of  the  networks  that  nodes  were
denoted by one-dimensional state variables. In this case, graph
theory and linear algebra are the main theoretical tools. How-

ever, with the deepening of understanding of networks, it has
been  found  that  many  real  complex  networks  cannot  be  per-
fectly  described  by  one-dimensional  nodes,  which  usually
need  to  be  described  by  high-dimensional  nodes [9].  For
example, in power systems, generator units have many physi-
cal parameters that affect the operation of the same units, sim-
ilar  situations  also  exist  in  social  networks [10],  ecological
networks [11], communication networks [12], and transporta-
tion networks [13], which also require high-dimensional nodes
describing  the  situations.  The  research  on  controllability  of
networks  with  high-dimensional  node  dynamics  is  mainly
based on the Kalman rank criterion [14] and the PBH (Popov-
Belevitch-Hautus)  criterion [15].  Wang et  al. [9] studied  the
controllability  of  networked  systems  with  high-dimensional
homogeneous node dynamics, and found the controllability of
the  overall  network  is  the  integrated  result  of  node-system
dynamic  and  network  topology.  Jiang et  al. [16] studied  the
controllability  of  multi-relational  networks,  and  gave  some
controllability  conditions  based on the  geometric  multiplicity
of  the  eigenvalues  of  matrix.  Hao et  al. [17] established  the
relationship between decentralized fixed modes and controlla-
bility in multi-input-multi-output (MIMO) systems and single-
input-single-output  (SISO)  systems  separately.  Kong et  al.
[18] considered the  situation that  the  inner-coupling matrices
among  all  nodes  are  nonidentical,  and  proposed  controllabil-
ity  conditions  suitable  for  networked  systems  with  high-
dimensional  heterogeneous  node  dynamics.  Hao et  al. [19],
[20] derived lower-dimensional conditions by generalized left
eigenvectors  to  verify  the  controllability  of  networked  sys-
tems with high-dimensional node dynamics.

The above works mainly focus on single-layer networks and
do  not  take  into  account  the  interaction  between  networks.
However, in the real world, complex networks are usually not
independent  of  each  other,  but  interact  with  each  other.  For
example, subways and buses on different routes typically have
multiple public stops, which form a multi-layer transportation
network;  In  daily  life,  people  often  have  different  types  of
relationships  with  others,  such  as  kinship  and  friendship,
which form a multi-layer social network [21]. Multi-layer net-
works are very common in reality, but the methods applicable
to single-layer networks may not be applicable to multi-layer
networks.  Therefore,  in  recent  years,  people  have  begun  to
study  methods  suitable  for  multi-layer  networks [22]−[26].
For  general  multi-layer  networks,  Wu et  al. [22] studied  the
state  controllability  of  multi-layer  homogeneous  networks,
and  provided  sufficient  and  necessary  controllability  condi-
tions for two types of multi-layer networks with special inter-
layer couples. For Kronecker product networks, Doostmoham-
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madian and Khan [23] proposed the minimum sufficient con-
dition  for  the  controllability  of  the  networked  systems  based
on  S-rank  and  strong  connectivity;  Hao et  al. [24] proposed
the necessary and sufficient  conditions for  verifying the con-
trollability of the Kronecker product network based on gener-
alized eigenvectors.  For Cartesian product  networks,  Yang et
al. [25] studied the controllability of multilayer sampled-data
network  and  presented  some  easier  verified  methods;  She et
al. [26] studied the controllability of multilayer networks from
the  perspective  of  energy  dependence  and  provided  condi-
tions for determining the controllability.

With  the  deepening  of  research  on  the  controllability  of
complex networks, it has been found that for a large complex
network with thousands of nodes, achieving complete control-
lability  of  each  node  is  very  difficult  and  often  unnecessary.
For  example,  in  fields  such  as  biology  and  economic  net-
works,  it  is  usually not  necessary to guide the state  set  of  all
nodes to the expected value, but only a portion of nodes (state
subset) to the expected values [27]. Therefore, target control-
lability has become a concern in recent years [21], [28]−[32].
Ding et  al. [21] proposed  a  target  controllability  algorithm
with  minimum  cost  and  maximum  traffic.  Song et  al. [31]
solved the problem of adding the least control input to ensure
the controllability of each target node in a two-layer network
with  one-dimensional  node by the  target  path  coverage  algo-
rithm.  Hao et  al. [32] considered  the  target  controllability  of
single-layer  network  with  high-dimensional  node  dynamics
and  provided  sufficient  and  necessary  conditions  based  on
generalized  left  eigenvectors.  In  summary,  most  of  the
researches  on  the  target  controllability  of  networked  systems
with high-dimensional node dynamics mainly focus on single-
layer networks, and few on multi-layer networks.

Based  on  the  above  discussion,  this  paper  investigates  the
problem  of  target  controllability  in  multi-layer  networks,  in
which the nodes are high-dimensional dynamical systems. The
main  work  and  contributions  are  summarized  as  follows:
1) The influence of inter-layer coupling on the target control-
lability of the entire network is revealed. The target controlla-
bility of the entire network is not solely determined by the tar-
get controllability of each layer, but also related to inter-layer
coupling.  2)  The  sufficient  and  necessary  criteria  for  target
controllability  of  multi-layer  networks  with  general  structure
are given by establishing the relationship between the uncon-
trollable subspace and the output matrix of the networked sys-
tem.  Besides,  the  relationship  between  target  controllability,
state  controllability  and  output  controllability  is  clarified.
3)  For  multi-layer  networks  with  special  inter-layer  structure
(directed  chains  and  directed  stars),  sufficient  conditions  are
provided for verifying the target controllability.  Compared to
the conditions in [32], these conditions are more applicable.  

II.  Preliminaries
  

A.  Notation and Mathematical Preliminaries
R C

Rn Cn

Rn×m Cn×m n×m
⊗

In  this  paper,  ( )  represents  the  set  of  real  (complex)
numbers,  ( )  represents n-dimensional  real  (complex)
vector  space,  ( )  represents  the  set  of  real
(complex)  matrices.  represents  Kronecker  product  opera-

In n×n σ(A)
{a1,a2, . . . ,an}

a1,a2, . . . ,an
{A1,A2, . . . ,An}

A1,A2, . . . ,An {v1,v2, . . . ,vk} {∑c
i=1 civi|ci ∈ C}

v1,v2, . . . ,vk

Υ(σ|A)

eT
i ∈ RN

[ei]i = 1

tion.  represents a  identity matrix.  denotes the set
of  eigenvalues  of  matrix A.  diag  represents  a
diagonal  matrix  with  diagonal  entries .
diag  denotes  a  diagonal  matrix  with  diagonal
blocks .  span  = 
represents the linear combination of row vectors .
span(A)  denotes  the  linear  combination  of  row  vectors  of
matrix A.  Lker(A)  denotes  the  left  null  space  of  matrix A.

 denotes  the  left  eigenspace  of A related  to  the  eigen-
value σ.  Without  specified,  the  operations  between  matrices
are  considerd  to  be  compatible.  is  a  column  vector
with all zero entries except for .

xk

xk(A−σI)k = 0 xk(A−σI)k−1 , 0 {x1,

x2, . . . , xk}

Definition 1 [33]:  is  a k-th-order  generalized left  eigen-
vector  (LE)  of  matrix A associated  with  the  eigenvalue σ if

 and .  If  a  set  of  vectors 
 satisfies

 {
x1 ∈ Lker(A−σI)\{0}
xi+1(A−σI) = xi, i = 1, . . . ,k−1

x1then it is called a left Jordan chain (LJC) about  of matrix A.  

B.  LTI System and Controllability
Consider a linear time invariant (LTI) system

 {
ẋ = Ax+Bu
y =Cx

(1)

n×n n× p m×n

where x is  the n-dimension state vector, u is  the p-dimension
input  vector, y is  the m-dimension output  vector, A, B and C
are  state  matrix,  input  matrix  and  output
matrix, respectively.

x(t0) x(t) = 0
[t0; t]

Definition 2 [6]: The LTI system (1) is controllable if there
is  a  piecewise  continuous  input u that  can  make  it  transfer
from any initial state  to final state  within a finite
time .

Lemma  1 [34]: Considering  the  system  (1),  the  following
are equivalent:

1) The system (A, B) is controllable;
λi

αT A = λiα
T αT B = 0

2) For any eigenvalues  of A,  there is no non-zero eigen-
vector α simultaneously satisfying  and ;

rank(sIn−A,B) = n ∀s ∈ C3) , .
⟨A|B⟩ (A,B)

⟨A|B⟩⊥
(A,B)

[B,AB, . . . ,An−1B]

 denotes the controllable subspace of the system ,
where controllable states are all in this subspace. The orthogo-
nal  complementary  space  denotes  the  uncontrollable
subspace of  the system ,  which is  equal  to the left  zero
space  of  the  controllability  matrix  [32].
Any  state  in  this  subspace  is  uncontrollable  and  any  uncon-
trollable state belongs to this subspace.

A µ1, . . . ,µs µi

p1
i , . . . , p

θi
i Ω = {p j

i |p
j
i B = 0, . . . ,

p1
i B = 0,1 ≤ i ≤ s,1 ≤ j ≤ θi}

(A,B) ⟨A|B⟩⊥

The  eigenvalue  of  are .  For  any  eigenvalue ,
the  corresponding  LJC  is .  Let 

.  The  uncontrollable  subspace  of
the system  is  = span (Ω) [32].

[t0; t f ] t0 t f
y(t f )

t = t0

Definition  3 [35]: The  system (1)  is  said  to  be  completely
output  controllable  on ,  if  for  given  and ,  any out-
put  can  be  attained  starting  with  arbitrary  initial  condi-
tions at .

Q = [CB,CAB, . . . ,
CAn−1B] rankQ = m

Lemma 2 [35]: The system (1) is output controllable if and
only  if  the  output  controllability  matrix 

 has full rank, i.e., .  

 2000 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 9, SEPTEMBER 2024



III.  Multi-Layer Network System
  

A.  Model Description
A weighted and directed M-layer  networked system is  pre-

sented below. Each layer consisting of N node systems can be
described as follows:
 

ẋK
i = AK xK

i +

N∑
j=1, j,i

wK
i jH

K xK
j

+

M∑
J=1,J,K

N∑
j=1

dKJ
i j HKJ xJ

j +δ
K
i BKuK

i

yK
i = τ

K
i xK

i , i = 1,2, . . . ,N

(2)

xK
i ∈ Rn uK

i ∈ Rp yK
i ∈ Rm

AK ∈ Rn×n BK ∈ Rn×p

HK ∈ Rn×n

HKJ ∈ Rn×n

HKJ = 0 K = J WK = [wK
i j] ∈

RN×N DKJ = [dKJ
i j ] ∈ RN×N

wK
i j , 0 wK

i j = 0
wK

ii = 0
dKJ

i j , 0

dKJ
i j = 0 δK

i = 1
δK

i = 0 τK
i = 1

τK
i = 0

where ,  and  denote  the  state  vector,
input  vector  and  output  vector  of  node i in  layer K,  respec-
tively.  and  denote  the  state  matrix  and
input  matrix  of  nodes,  respectively  in  layer K.  is
the inner-coupling matrix, which describes the coupling mode
between  components  of  nodes  in  layer K.  is  the
inter-layer  coupling  matrix,  which  describes  the  coupling
mode  between  components  of  nodes  in  layer K and  layer J,

 if . The weighted adjacency matrix 
 and  denote  intra-layer  network

topology  and  inter-layer  network  topology,  respectively.
There  is  a  directed  edge  from  node j to  node i in  layer K if

 and no edge from node j to  node i if .  Gener-
ally, . Similarly, there is a directed edge from node j in
layer J to node i in layer K if  and no edge from node j
in layer J to node i in layer K if .  if the node i in
layer K is  a  controlled  node,  otherwise, .  if  the
node i in  layer K is  selected  as  a  target  node,  otherwise,

.
x = [(x1)T , . . . , (xM)T ]T

xK = [(xK
1 )T , . . . , (xK

N)T ]T

u = [(u1)T , . . . , (uM)T ]T

uK = [(uK
1 )T , . . . , (uK

N)T ]T

y = [(y1)T , . . . , (yM)T ]T

yK = [(yK
i1)T , . . . , (yK

imK
)T ]T

Φ = [ΦKJ] ∈ RMNn × MNn

K = 1, . . . ,M J = 1, . . . ,M ΦKK = IN ⊗AK +WK ⊗HK

K = J ΦKJ = DKJ ⊗HKJ K , J {Ψ1, . . . ,

ΨM}
ΨK = ∆K ⊗BK

∆K =

diag{δK
1 , . . . , δ

K
N}

Ξ = T ⊗ In

{T 1, . . . ,T M}
T K = [(eK

i1)T , . . . , (eK
imK

)T ]T

mK

 is  the  vector  describing  the  whole
state of the networked system, where 
is  the  state  vector  of  layer K.  is  the
vector describing the input of the whole networked system, in
which  is the input vector of layer K.

 is  the  vector  describing  the  output  of
the whole networked system, where 
is  the  output  vector  of  layer K. 
denotes  the  state  matrix  of  the  whole  networked  system,
where , . 
if  and  if .  Ψ  =  diag

 is  the  input  matrix  of  the  whole  networked  system,  in
which  is  the  input  matrix  of  layer K. 

 describes the connection relationship between
external  control  inputs  and  nodes  in  layer K. 
denotes  the  output  matrix  of  the  whole  networked  system,
where T = diag  describes the output channel of the
entire  networked  system.  descri-
bes the output channel of layer K, and  represents the num-
ber of target nodes in the K-th layer. System (2) can be writ-
ten as the following equations: 

{
ẋ = Φx+Ψu
y = Ξx.

(3)

Z = {x1
i1, . . . , x

1
im1n, . . . , x

M
i1 , . . . , x

M
imMn} ⊂

{x1
1, . . . , x

1
Nn, . . . , x

M
1 , . . . , x

M
Nn}

If the system output is represented by a subset of states (the
target  set),  target  controllability  is  a  special  case  of  output
controllability [32]. Let 

 represent  the  set  of  target  nodes.
According  to  the  notion  of  output  controllability,  the  defini-
tion of target controllability is presented.

Ξ = [eT
i1, . . . ,e

T
i(m1+···+mM )n]T ∈ R(m1+···+mM )n × MNn

(Φ,Ψ,Ξ)

Definition  4 [32]: Consider  networked  system  (3),  where
output matrix 
(this  means  the  output  is  the  subset  of  state  of  target  nodes).
System  is said to be target controllable if it is output
controllable.

It  can be seen that target controllability is a special case of
output controllability, which means it is feasible to verify the
target controllability by the output controllability criteria.

(Φ,Ψ,Ξ)Lemma 3 [35]: The system  is target controllable, if
and only if
 

rank(ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ) = (m1+ · · ·+mM)n.
For  single-layer  networks,  a  method  for  calculating  the

eigenvalues of the state matrix and the LJC corresponding to
each eigenvalue of the networks by lower-dimensional matri-
ces  is  provided  in [24].  Therefore,  there  is  the  following
lemma if only one layer is considered (such as the K-th layer).

WK σ(WK) =

{µK
1 ,µ

K
2 , . . . ,µ

K
N} σ(AK +µK

i HK) = {λK
i1,λ

K
i2, . . . ,λ

K
irK

i
}

σ(ΦKK) = {λK
11, . . . ,λ

K
1rK

1
, . . . ,λK

N1, . . . ,λ
K
NrK

N
}

λK
i j ΦKK ηK

i j(1) = pK
i ⊗ϕK

i j(1), ηK
i j(2) = pK

i ⊗
ϕK

i j(2), . . . ,ηK
i j(θ

K
i j) = pK

i ⊗ϕK
i j(θ

K
i j) pK

i
µK

i WK ϕK
i j(1),

ϕK
i j(2), . . . ,ϕK

i j(θ
K
i j) λK

i j
AK +µK

i HK K = 1, . . . ,M i = 1, . . . ,N j = 1, . . . ,rK
i

Lemma  4 [24]: Assume  is  diagonalizable. 
 and ,  then

.  The  LJC  about  ei-
genvalue  of  is 

,  where  is  the  left  eigen-
vector  associated  with  eigenvalue  of ,  and 

 is  the  LJC  about  the  eigenvalue  of
, for all , , .

Lemmas 3 and 4 will be used in subsequent proofs.  

B.  The Impact of Inter-Layer Couplings on the Target Controlla-
bility of Networks

In  this  section,  an  example  is  provided  to  illustrate  the
impact of inter-layer couplings on the target controllability of
multi-layer networked systems.

N = 3

W1

0 0 0
1 0 0
0 1 0


∆1

1 0 0
0 1 0
0 0 0

 T 1

[
1 0 0
0 1 0

]

A1

[
2 1
0 3

]
B1

[
1 1
0 3

]
H1

[
1 0
2 1

]
rank(T 1⊗ I2[Ψ1,Φ11Ψ1, . . . , (Φ11)5Ψ1]) = 4

Example  1: Consider  a  two-layer  networked  system,  in
which  each  layer  has  nodes,  as  shown  in Fig.  1(a).  In

Layer 1, the topology matrix is  = . Nodes 1 and

2 are selected as both controlled nodes and target nodes (i.e.,

 = ,  = ). The state matrix of node is

 = , the  input  matrix  is  =  and  the  inner-

coupling matrix is  = . After calculation, it can be got

. According  to
Lemma 3,  if  only considering the network structure of  Layer
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W2

0 1 0
1 0 0
0 1 0


∆2

1 0 0
0 1 0
0 0 0


A2

[
1 0
0 0

]
B2

[
1 1
0 0

]
H2

[
0 0
0 1

]
T 2 [0 1 0]

rank(T 2⊗ I2[Ψ2,Φ22Ψ2, . . . , (Φ22)5Ψ2]) = 1 < 2

1,  it  is  target  controllable.  In  Layer  2,  the  topology matrix  is

 = .  Nodes  1  and  2  are  selected  as  controlled

nodes  (i.e.,  = ).  The  state  matrix  of  node  is

 = ,  the  input  matrix  is  =  and  the  inner-

coupling  matrix  is  = .  Node  2  is  selected  as  target
node  (i.e.,  = ).  After  calculating,  it  is  easy  to  get
that .  Accord-
ing to Lemma 3, if  only considering the network structure of
Layer 2, it is target uncontrollable.

D211 0 2
3 1 0
0 0 1

 H21

[
1 0
1 0

]
rank(Ξ[Ψ,ΦΨ, . . . ,Φ11Ψ]) = 6

(Φ,Ψ,Ξ)

D21

0 0 0
0 0 0
0 0 1


rank(Ξ[Ψ,ΦΨ, . . . ,Φ11Ψ]) = 5 < 6
(Φ,Ψ,Ξ)

The topology matrix  from Layer  1  to  the Layer  2  is  =

 and  the  inter-coupling  matrix  is  = .

After  calculation, , one  can  get
that the system  is target controllable. However, if the

topology matrix from Layer 1 to Layer 2 is  = ,

the network is as shown in Fig. 1(b). After calculating, it can
be get that , which indicates
the system  is not target controllable.

Remark  1: It  is  revealed  that  the  target  controllability  of
multi-layer  networks  will  vary  with  the  changes  of  the  inter-
layer couplings by Example 1,  that  is,  the target  controllabil-
ity of the multi-layer networks is not only related to the struc-
ture and dynamic characteristics of each single-layer network,
but also to the inter-layer coupling relationships. This makes it
impossible  to  infer  the  target  controllability  of  the  entire
multi-layer networks by verifying the target controllability of
each layer separately.

Regarding  multi-layer  networks,  it  also  concludes  that  it  is
impossible  to  verify  the  state  controllability  of  the  entire
multi-layer  networks  by  the  state  controllability  of  each  sin-
gle-layer network in [22]. This paper demonstrates the conclu-
sion  is  still  valid  for  target  controllability  of  multi-layer  net-
works by Example 1, i.e., it is also impossible to infer the tar-
get  controllability  of  the  entire  networks  based  on  the  target
controllability of each single-layer network.  

IV.  Target Controllability of
Multi-Lakyer Networks

For  a  multi-layer  network,  achieving  target  controllability
and state controllability is related, but still has differences. To
explore the essential differences between them, in this section,
the  general  multi-layer  networks  and  special  multi-layer  net-
works with directed chain and directed star structure are stud-
ied,  and  several  conditions  are  established  for  verifying  the
target controllability.  

A.   Target  Controllability  of  General  Inter-Layer  Structured
Multi-Layer Networks

A necessary and sufficient condition for verifying the target
controllability of multi-layer networks with general inter-layer
couplings is given.

Theorem 1: Consider system (3). The following equations:
 

M∑
J=1,J,K

(DJK)T [(αK
1 )T , . . . , (αK

N)T ]T HJK

= [(αK
1 )T , . . . , (αK

N)T ]T (sIn−AK)

− (WK)T [(αK
1 )T , . . . , (αK

N)T ]T HK (4)
 

∆K[(αK
1 )T , . . . , (αK

N)T ]T BK = 0 (5)
αK = (αK

1 , . . . ,α
K
N) K = 1, . . . ,M

(Φ,Ψ,Ξ)∩ {0MNn} Ω = {α ∈ C1×MNn|α = (α1, . . . ,

αM)}

have  solutions  (for  all ).  The
system  is  target  controllable,  if  and only if  span(Ω)

 span(Ξ)  = ,  where 
.

α(sIMNn−Φ) = 0 αΨ = 0 α(sIMNn−Φ) =
0

Proof: There  exists  a  vector α that  simultaneously satisfies
 and .  According  to 

, it is easy to get
 

α(sIMNn−Φ) = (α1, . . . ,αM)(sIMNn−Φ) = 0
which is equivalent to
 

αK sINn−αK(IN ⊗AK)−αK(WK ⊗HK)

−
M∑

J=1,J,K

αJ(DJK ⊗HJK) = 0

K = 1, . . . ,Mfor all .
Further, one can get

 

(αK
1 , . . . ,α

K
N)sINn− (αK

1 AK , . . . ,αK
N AK)

−

 N∑
j=1, j,i

wK
j1α

K
j HK , . . . ,

N∑
j=1, j,i

wK
jNα

K
j HK


−

M∑
J=1,J,K

 N∑
j=1, j,i

dJK
j1 α

J
j HJK , . . . ,

N∑
j=1, j,i

dJK
jN α

J
j HJK


= 0

 

Layer 1

1 2 3

1 2 3

u1
1 u1

2

u1
2 u2

2

Layer 2

(a)

Layer 1
u1

1 u1
2

u1
2 u2

2

1 2 3

1 2 3

Layer 2

(b)
 
Fig. 1.     Two  two-layer  networks  with  different  inter-layer  coupling  modes
((a) The original multi-layer network; (b) The multi-layer network with vary-
ing inter-layer couplings).
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K = 1, . . . ,Mfor all .
Then it is easy to get

 

[(αK
1 )T , . . . , (αK

N)T ]T (sIn−AK)

− (WK)T [(αK
1 )T , . . . , (αK

N)T ]T HK

=

M∑
J=1,J,K

(DJK)T [(αK
1 )T , . . . , (αK

N)T ]T HJK

K = 1, . . . ,M αΨ = 0for all , i.e., (4). After calculation for , it is
easy to get
 

(α1, . . . ,αM)


∆1⊗B1

. . .

∆M ⊗BM

 = 0

∆K[(αK
1 )T , . . . , (αK

N)T ]T BK = 0 K = 1, . . . ,Mi.e., ,  for  all ,  i.e.,
(5).

β ∈Ω βΦ = λβ
βΨ = 0 λ ∈ C β[Ψ,ΦΨ, . . . ,ΦMNn−1Ψ] = 0

⟨Φ|Ψ⟩⊥ ⟨Φ|Ψ⟩⊥
γ ∈ ⟨Φ|Ψ⟩⊥ γ[Ψ,ΦΨ, . . . ,ΦMNn−1Ψ] = 0
γΨ = 0,γΦΨ = 0, . . . ,γΦMNn−1Ψ = 0

γΦ = µγ,γΨ = 0 µ ∈ C ⟨Φ|Ψ⟩⊥
⟨Φ|Ψ⟩⊥

Ω is  the  subspace  generated  by  all  the  vectors α satisfying
both  (4)  and  (5).  For  any  vector ,  one  has ,

,  where .  Then, .  It  is
concluded that all  the elements of Ω are also the elements of

,  which  means  Ω  is  the  subspace  of .  For  any
vector ,  one  knows ,
that  is, .  In  other  words,

,  where .  is  the  subspace  of  Ω.
One can get  is equivalent to Ω.∩

, {0MNn}
α ∈ C1×(m1+···+mM )n\{0(m1+···+mM )n} αΞ ∈Ω
αΞ[Ψ, ΦΨ, . . . , ΦMNn−1Ψ] = 0 α[ΞΨ, ΞΦΨ, . . . ,
ΞΦMNn−1Ψ] = 0 rank(ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ) <
(m1+ · · ·+mM)n

(Φ,Ψ,Ξ)

Sufficiency: If  span(Ω)  span(Ξ) ,  there  exists
 satisfying .  Then

,  that  is, 
. One can get 
. According to Lemma 3, one can get the sys-

tem  is target uncontrollable.
(Φ,Ψ,Ξ)

rank(ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ) <
(m1+ · · ·+mM)n

α[ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ] = αΞ[Ψ,
ΦΨ, . . . ,ΦMNn−1Ψ] = 0 β = αΞ ∈Ω

Ω)
∩

(Ξ) , {0MNn}

Necessity: According to Lemma 3, if the system  is
target  uncontrollable,  then 

,  which  means  that  there  exists  a  non-zero
vector  satisfying  that 

. One can get . It can be con-
cluded that span(  span . ■

(Φ,Ψ,Ξ)
(Φ,Ψ,Ξ)

(Φ,Ψ)
(Φ,Ψ,Ξ)

(Φ,Ψ)

Remark  2: Theorem  1  provides  a  necessary  and  sufficient
condition for verifying the target controllability of multi-layer
networks. Differing from Lemma 3, Theorem 1 does not ver-
ify  the  rank  condition  of  the  system  directly,  but
rather determines the target controllability of system 
by verifying the  relationship between the  uncontrollable  sub-
space  and the output matrix Ξ. By Theorem 1, it is easy
to  find  that  the  system  may  be  target  controllable
even  if  the  system  is  not  complete  state  controllable.
Therefore,  if  a  networked system is  found to  be  state  uncon-
trollable by the conditions in [22],  it  is  not  possible  to deter-
mine the target controllability of the multi-layer networks.

(Φ,Ψ)
Remark  3: Based  on  the  PBH  criterion,  the  uncontrollable

subspace  of  the  system  is  calculated  in  Theorem 1  by
lower-dimensional  matrix  operations.  The  scale  of  the  matri-
ces involved in the operations is smaller than the scale of the
entire  network  system  matrices.  In  addition,  for  many  actual
networked  systems,  the  topology  between  different  layers  of
networks is sparse (for example, each subway line in the sub-

DJK
way  networks  often  has  a  few  public  stations),  that  is,  the
matrix  is usually sparse matrix, which makes Theorem 1
easier to verify in real multi-layer networks.

(Φ,Ψ)
(Φ,Ψ)

(Φ,Ψ)

Theorem  1  considers  the  existence  of  non-zero  vectors  in
the uncontrollable subspace of system . If only zero vec-
tor exists in the uncontrollable subspace of system  (i.e.,
the  system  is  complete  state  controllable),  the  follow-
ing condition can be derived.

(Φ,Ψ,Ξ)Corollary  1: Consider  system .  If  the  following
equations:
 

M∑
J=1,J,K

(DJK)T [(αK
1 )T , . . . , (αK

N)T ]T HJK

= [(αK
1 )T , . . . , (αK

N)T ]T (sIn−AK)

− (WK)T [(αK
1 )T , . . . , (αK

N)T ]T HK (6)
 

∆K[(αK
1 )T , . . . , (αK

N)T ]T BK = 0 (7)
αK

i = 0 K = 1, . . . ,M i = 1, . . . ,
N (Φ,Ψ,Ξ)
have a unique solution ,  for  all , 

,  then  the  system  is  target  controllable  for  all
selected target subsets.

(Φ,Ψ)
α(sIMNn−Φ) = 0 αΨ =

0 α = 0 α(sIMNn−Φ) =
0

Proof: According to Lemma 1, the system  is comple-
te state controllable if and only if  and 
 have a unique solution .  According to 
, one can get

 

(α1, . . . ,αM)



sINn−Φ11 −Φ12 · · · −Φ1M

−Φ21 . . .
...

...
. . .

...

−ΦM1 · · · · · · sINn−ΦMM


= 0

which is equivalent to
 

αK(sINn−ΦKK)−
M∑

J=1,J,K

αJΦJK = 0

K = 1, . . . ,Mfor all .
One can further obtain

 

(αK
1 , . . . ,α

K
N)



sIn−AK −wK
12HK · · · −wK

1N HK

−wK
21HK . . .

...

...
. . .

...

−wK
N1HK · · · · · · sIn−AK


−

M∑
J=1,J,K

(αJ
1 , . . . ,α

J
N)


dJK

11 HJK · · · dJK
1N HJK

...
. . .

...

dJK
N1 HJK · · · dJK

NN HJK

 = 0

K = 1, . . . ,Mfor all .
Then

 

αK
i (sIn−AK)−

N∑
j=1, j,i

wK
jiα

K
j HK

−
M∑

J=1,J,K

N∑
j=1, j,i

dJK
ji α

J
j HJK = 0
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K = 1, . . . ,M; i = 1, . . . ,N αΨ =
0
for  all ,  i.e.,  (6).  According  to 
, one can further get

 

(α1, . . . ,αM)


∆1⊗B1

. . .

∆M ⊗BM

 = 0

αK(∆K ⊗BK) = 0 K = 1, . . . ,M
δK

i α
K
i BK = 0 K = 1, . . . ,M i = 1, . . . ,N

Ω)
∩

Ξ) = {0MNn}
(Φ,Ψ,Ξ)

which is  equivalent  to ,  for  all ,
that is , for all , . Accord-
ing to Theorem 1, span (   span ( , the system

 is target controllable. ■
Remark 4: Corollary 1 presents a condition for verifying the

target  controllability  when  the  system  is  complete  state  con-
trollable, and also clarifies the relationship between complete
state  controllability  and target  controllability:  if  a  multi-layer
networked system is complete state controllable, the system is
target  controllable  for  all  selected target  subsets.  For  a  linear
system, the complete state controllability cannot guarantee the
output  controllability.  Target  controllability  is  different  from
output  controllability.  For  target  controllability,  a  subset  of
nodes is selected as the target node set, so only one element in
each row of the output matrix is non-zero. However, for out-
put controllability, there is no limit to the number of non-zero
elements in each row of the system output matrix, so that the
output  controllability matrix may not  be row full  rank.  Com-
plete state controllability cannot guarantee output controllabil-
ity,  which  is  different  from  the  target  controllability.  There-
fore, a system is target controllable for all selected target sets
if it is complete state controllable.

Many actual multi-layer networks only have edges that from
the upper layers to the lower layers.  The inter-layer coupling
mode  of  such  multi-layer  networks  is  called  the  driven-
response mode. There is the following conclusion for this type
of multi-layer networks.

Corollary  2: For  an M-layer  network  with  the  driven-
response mode, the system is target controllable if and only if
the following hold simultaneously:

η = (η1,0, . . . ,0) = η1 ∈ C1×Nn\{0}
λ1

i j ∈ σ(Φ11) η1 ∈ Υ(λ1
i j|Φ11) η1(∆1⊗B1) , 0

i = 1, . . . ,N j = 1, . . . ,r1
i

1) For all  span(Ξ), where ,
if  and ,  then ,  for
all , .

η = (η1, . . . ,ηK ,0, . . . ,0) = ηK ∈
C1×Nn\{0} λK

i j ∈ σ(ΦKK) ηK ∈ Υ(λK
i j |ΦKK)

[η1(∆1⊗B1), . . . ,ηK(∆K ⊗BK)] , 0 η1(λK
i j INn−Φ11) =

η2Φ21+ · · ·+ηKΦK1, . . . ,ηK−1(λK
i j INn−ΦK−1,K−1) = ηKΦK,K−1

i = 1, . . . ,N, j = 1, . . . ,rK
i , K = 2, . . . ,M.

2)  For  all  span(Ξ),  where 
,  if  and ,  then

,  where 
,

for all   
(Φ,Ψ,Ξ)

∃ λ ∈ σ(Φ) η(λIMNn

−Φ,Ψ) = 0 λ ∈ σ(ΦKK) (η1, . . . ,ηK ,0, . . . ,0)
(λIMNn−Φ) = 0 η1(λINn−Φ11) = η2Φ21+ · · ·+
ηKΦK1, . . . ,ηK−1(λINn−ΦK−1,K−1) = ηKΦK,K−1 K =
2, . . . ,M (η1, . . . ,ηK ,0, . . . ,0)Ψ = 0

[η1(∆1⊗B1), . . . ,ηK(∆K ⊗BK)] = 0
λ ∈ σ(Φ11) λ < σ(ΦKK)

η1(λINn−Φ11) = 0 η1,0, . . . ,0)(λIMNn−Φ) = 0

Proof: Sufficiency: If the system  is not target con-
trollable, then   and η = span(Ξ) satisfying 

.  If ,  according  to 
,  one  can  get 

 ,  for  all 
.  Similarly,  according  to ,  it

is easy to get . Condition 2)
is  not  satisfied.  If  and ,  one  can  get

 according  to  ( ,

K = 2, . . . ,M η1(∆1⊗B1) = 0
(η1,0, . . . ,0)Ψ = [η1(∆1⊗B1),0, . . . ,0] = 0

for  all .  Besides,  one  can  get 
according to . Condi-
tion 1) is not satisfied.

η1(∆1⊗B1) =
0 (η1,0, . . . ,0)

Necessity: If Condition 1) is not satisfied, then 
. There exists η = span(Ξ) =  satisfying

 

η(λ1
i jIMNn−Φ) = [η1(λ1

i jINn−Φ11),0, . . . ,0] = 0

and
 

ηΨ = [η1(∆1⊗B1),0, . . . ,0] = 0∩
Ξ) = η , 0

(Φ,Ψ,Ξ)
[η1(∆1⊗B1), . . . ,ηK(∆K ⊗BK)] = 0
(η1, . . . ,ηK ,0, . . . ,0)

that is, span (Ω)  span ( . According to Theorem 1,
the system  is target uncontrollable. If Condition 2) is
not  satisfied,  then .  There
exists η = span (Ξ) =  satisfying
 

η(λK
i j IMNn−Φ)

= [η1(λK
i j INn−Φ11)− · · ·

−ηKΦK1 · · ·ηK−1(λK
i j INn−ΦK−1,K−1)

−ηKΦK,K−1,ηK(λK
i j INn−ΦKK),0, . . . ,0] = 0

and
 

ηΨ = [η1(∆1⊗B1), . . . ,ηK(∆K ⊗BK),0, . . . ,0] = 0.∩
Ξ) = η , 0

(Φ,Ψ)
One can get span (Ω)  span ( . According to The-

orem 1, the system  is target uncontrollable.

ηK

MNn
Nn Nn×Nn

Remark  5: Compared  to  Theorem  1,  the  relationship
between  the  uncontrollable  subspace  of  layer K and  the  ele-
ment  in the vector of linear combination of row vectors of
the  output  matrix  is  considered  in  Corollary  2.  Theorem  1
involves  dimension  vector  operations,  and  Corollary  2
only  involves  dimension  vectors  and  dimension
matrices,  which means Corollary 2 is  easier  to calculate than
Theorem 1 when verifying the target  controllability of multi-
layer networks with driven-response modes.  

B.   Target  Controllability  of  Special  Inter-Layer  Structured
Multi-Layer Networks

Some  criteria  have  been  provided  for  verifying  the  target
controllability of multi-layer networks with general inter-layer
structure  in  the  previous  section.  In  practical  networks,  there
are  many  networks  with  special  inter-layer  structure,  which
are the basic units of large-scale networks. At the same time,
it is easier to verify the target controllability of networked sys-
tems with special inter-layer structure.

DK,K−1 (K = 2, . . . ,M)

1)  Target  Controllability  of  Multi-Layer  Networks  With
Directed Chain Inter-Couplings: Consider M-layer  networks,
where  the  inter-layer  couplings  are  directed  chains  and  each
layer  has N identical  nodes,  as  shown  in Fig.  2(a).  In  the
multi-layer networks, there are only coupling effects from the
upper  layers  to  the  lower  layers,  that  is,  all  the  inter-layer
topology  matrices  are  zero  except  for .
The system matrix Φ of the networked system (3) has the fol-
lowing form: 
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Φ =



Φ11

Φ21 Φ22

. . .
. . .

. . . ΦM−1,M−1

ΦM,M−1 ΦMM


(8)

ΦKK = IN ⊗ AK +WK ⊗ HK K = 1, . . . ,M
ΦK,K−1 = DK,K−1⊗HK,K−1 K = 2, . . . ,M
where ,  for  all ;

, for all .
The input matrix Ψ of the networked system (3) has the fol-

lowing form: 

Ψ =



Ψ1

Ψ2

. . .
. . .

ΨM


(9)

ΨK = ∆K ⊗BK K = 1, . . . ,Mwhere , for all .
For  multi-layer  networks  with  directed  chain  inter-cou-

plings, the following results are obtained.

σ(WK) = {µK
1 , . . . ,µ

K
N}

K = 1, . . . ,M (Φ,Ψ,Ξ)

Theorem 2: Consider the multi-layer networks described in
networked  system  (3).  Assume  the  inter-layer  couplings  are
directed  chains  (i.e.,  the  state  matrix  and  input  matrix  are
shown  in  (8)  and  (9),  respectively).  The  topology  matrix  of
each layer is diagonalizable. Let , for all

.  The  networked  system  is  target  con-
trollable  if  the  following  conditions  are  satisfied  simultane-
ously:

T K ∩ ⟨WK |∆K⟩⊥ = {0N} K = 1, . . . ,M1) span ( )  , .

(AK +µK
i HK ,BK) K = 1, . . . ,M i = 1, . . . ,

N
2)  is  controllable, , 
.

(WK ,∆K)
K = 1, . . . ,M

3) The quantitaty of uncontrollable LEs of  are the
same, .

dL
i ∈ C hL

i j ∈ C
pL

i DL,L−1 = dL
i pL−1

i ϕL
i j(k)HL,L−1 = hL

i jϕ
L−1
i j (k) λ1

i j+d2
i h2

i j =

λ2
i j+d3

i h3
i j = · · · = λM−1

i j +dM
i hM

i j = λ
M
i j = λi j θ1i j = · · · =

θM
i j = θi j 1 ≤ k ≤ θi j K = 1, . . . ,M L = 2, . . . ,M i = 1, . . . ,

N j = 1, . . . ,rK
i

4)  There  exist  and  satisfying  both
,  and 

,  where 
 and , , , 

, .
pK

i
µK

i WK λK
i j

AK +µK
i HK ϕK

i j(k)
λK

i j AK +µK
i HK

Proof:  denotesthe  LE  corresponding  to  the  eigenvalue
 of topology matrix  in layer K.  is the eigenvalue of

, and  is an element of LJC corresponding to
the eigenvalue  of .
 

η1
i j(1) = p1

i ⊗ϕ1
i j(1), . . . ,η1

i j(θi j) = p1
i ⊗ϕ1

i j(θi j)
· · ·

ηM
i j (1) = pM

i ⊗ϕM
i j (1), . . . ,ηM

i j (θi j) = pM
i ⊗ϕM

i j (θi j)

λ1
i j λM

i jrepresent the LJCs of eigenvalue from  to . Let
 

ξi j(1) = (η1
i j(1),η2

i j(1), . . . ,ηM
i j (1))

· · ·
ξi j(θi j) = (η1

i j(θi j),η2
i j(θi j), . . . ,ηM

i j (θi j)).

Since
 

ξi j(1)Φ = λi j(p1
i ⊗ϕ1

i j(1), . . . , pM
i ⊗ϕM

i j (1)) = λi jξi j(1)

ξi j(1)one can get that  is the left eigenvector of Φ.
ξi j(k)Φ = λi jξi j(k)+ ξi j(k−1) 2 ≤ k ≤ θi j

ξi j(1), . . . , ξi j(θi j) λi j

Since ,  where ,  one
can get  is the LJC about the eigenvalue  of
Φ.
λi j

λi j (Φ,Ψ)
{0MNn} λi j

1 ≤ l ≤ θi j [ξi j(1)T · · ·
ξi j(l)T ]TΨ = 0 ξi j(l+1)Ψ , 0

λi j (Φ,Ψ)
Ui j {ξi j(1), . . . , ξi j(l)} σ = λi1 j1 = · · · = λiq jq

β1 ∈ C1×q

β1[ξi1 j1 (1)T · · ·ξiq jq (1)T ]TΨ = 0

If  is  a  controllable  eigenvalue,  then  the  uncontrollable
subspace  about  the  eigenvalue  of  the  system  is

.  If  is  an uncontrollable  eigenvalue with  geometric
multiplicity  1,  there  exists  satisfying 

 and .  The  uncontrollable  sub-
space corresponding to the eigenvalue  of the system 
is  =  span .  If  is  an
uncontrollable  eigenvalue  with  geometric  multiplicity  more
than  1,  there  exists  non-zero  vector  satisfying

.
 

v1(β1) = β1[ξi1 j1 (1)T · · ·ξiq jq (1)T ]T , . . .

vθ(βθ) = β1[ξi1 j1 (θ)T · · ·ξiq jq (θ)T ]T + · · ·

+βθ[ξi1 j1 (1)T · · ·ξiq jq (1)T ]T

v1(β1) β2, . . . ,

βθ 1 ≤ l ≤ θ
[v1(β1)T · · ·vl(βl)T ]TΨ = 0 vl+1(βl+1)Ψ , 0

v1(β1)
{v1(β1), . . . ,vl(βl)}

U(σ) {v1, . . . ,vl}
U(σ) = Ui1 j1 = · · · = Uiq jq

(Φ,Ψ) ⟨Φ|Ψ⟩⊥ = ⊕N
i=1⊕

ri
j=1 Ui j

denote the LJC of Φ with the top vector , where 
 are  arbitrary  vectors.  There  exists  satisfying both

 and . The uncontrol-
lable  subspace  corresponding  to  the  top  vector  is
span .  Then  the  uncontrollable  subspace
about  the  eigenvalue σ is  =  span ,  where

.  In  summary,  the  uncontrollable
subspace of the system  is .

(WK ,∆K) pK
k1
, . . . ,The  uncontrollable  eigenvectors  of  are 
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Fig. 2.     Two special structures of multi-layer networks ((a) A directed chain
multi-layer network; (b) A directed star multi-layer network).
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pK
ks

(p1
i ⊗ϕ1

i j(1), . . . , pM
i ⊗ϕM

i j (1))
(AK +µK

i HK ,BK) ϕK
i j(1)BK , 0

(Φ,Ψ)

.  The  form  of  LE  of  Φ  is .
Since  is  controllableand ,  the
uncontrollable subspace of the system  is
 

span
{
[p1

k1
⊗ In, . . . , pM

k1
⊗ In], . . . , [p1

kS
⊗ In, . . . , pM

kS
⊗ In]
}
.

According to
 

span (T K)
∩

span
{
pK

k1
, . . . , pK

kS

}
= {0N}

it is easy to get
 

span(Ξ)
∩
⟨Φ|Ψ⟩⊥ = 0.

If the system is not target controllable, then
 

rank(ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ) < (m1+ · · ·+mM)n.
There exists non-zero vector α satisfying

 

α[ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ]

= αΞ[Ψ,ΦΨ, . . . ,ΦMNn−1Ψ] = 0.
β = αΞ ∈ ⟨Φ|Ψ⟩⊥

Ξ)
∩ ⟨Φ|Ψ⟩⊥ , {0MNn}

In other words, there exists vector  satisfy-
ing span (   . ■

T K ∩ ⟨WK |∆K⟩⊥
{0N} (WK ,∆,T K)
Remark 6: Condition 1) guarantees span ( ) 

= , that is the K-th layer networked system  is
target controllable. According to Theorem 2, one can see that
the  target  controllability  of  the  entire  networked  systems  is
relevant  to  the  target  controllability  of  some  lower-dimen-
sional  systems.  In  other  words,  Theorem  2  gives  the  target
controllable  conditions  for  the  multi-layer  networks.  Com-
pared  to  Lemma  3,  the  conditions  in  Theorem  2  involve  to
analyze  a  low  dimensional  matrix  and  are  easier  to  apply  in
practical large-scale networks.

DK1 (K = 2, . . . ,M)

2)  Target  Controllability  of  Multi-Layer  Networks  With
Directed  Star  Inter-Couplings: Consider M-layer  networks,
where  the  inter-layer  couplings  are  directed  stars  and  each
layer  has N identical  nodes,  as  shown  in Fig.  2(b).  In  the
multi-layer networks, there are only coupling effects from the
first  layer to the other layers,  i.e.,  all  the inter-layer topology
matrices  are  zero  except  for .  The  system
matrix Φ of the networked system (3) has the following form:
 

Φ =



Φ11

Φ21 Φ22

...
. . .

... ΦM−1,M−1

ΦM1 ΦMM


(10)

ΦKK = IN ⊗AK +WK ⊗HK K = 1, . . . ,M ΦL1 = DL1⊗
HL1 K = 2, . . . ,M
where , ; 

, .
The input matrix Ψ of the networked system (3) has the fol-

lowing form:
 

Ψ =



Ψ1

Ψ2

. . .
. . .

ΨM


(11)

ΨK = ∆K ⊗BK K = 1, . . . ,Mwhere , .

For  multi-layer  networks  that  inter-layer  couplings  are
directed  stars,  a  sufficient  condition  is  provided to  verify  the
target controllability.

σ(WK) = {µK
1 , . . . ,µ

K
N} K =

1, . . . ,M (Φ,Ψ,Ξ)

Theorem 3: Consider the multi-layer networks described in
networked  system  (3).  Assume  the  inter-layer  couplings  are
directed stars (i.e., the state matrix and input matrix are shown
in  (10)  and  (11),  respectively).  The  topology  matrix  of  each
layer is  diagonalizable.  Let ,  for  all 

.  The  networked  system  is  target  control-
lable if the following conditions are satisfied simultaneously:

T K ∩ ⟨WK |∆K⟩⊥ {0N} K = 1, . . . ,M1) span( )  = , .
(AK +µK

i HK ,BK) K = 1, . . . ,M i = 1, . . . ,
N

2)  is  controllable, , 
.

(WK ,∆K)
K = 1, . . . ,M

3) The quantitaty of uncontrollable LEs of  are the
same, .

dL
i ∈ C hL

i j ∈ C pL
i DL1 =

dL
i p1

i ϕL
i j(k)HL1 = hL

i jϕ
1
i j(k) λ1

i j+d2
i h2

i j+ · · ·+dM
i hM

i j =

λ2
i j = · · · = λM

i j = λi j θ1i j = · · · = θM
i j = θi j 1 ≤ k ≤ θi j

K = 1, . . . ,M L = 2, . . . ,M i = 1, . . . ,N j = 1, . . . ,rK
i

4)  There  exist  and  satisfying  both 
,  and 

,  where  and ,
, , , .

pK
i µK

i
WK λK

i j
AK +µK

i HK ϕK
i j(k)

λK
i j AK +µK

i HK

Proof:  denotes  LE  corresponding  to  eigenvalue  of
the topology matrix  in layer K.  denotes the eigenvalue
of ,  and  is  the  element  of  the  LJC  corre-
sponding to the eigenvalue  of . Due to the fact
that  the  state  matrix  of  the  multi-layer  network with  directed
star inner-couplings is a lower triangular matrix, the eigenval-
ues  of  the  state  matrix  of  the  entire  networked  system  are
equal  to  the  union of  the  eigenvalues  of  each  diagonal  block
matrix, i.e.,
 

σ(Φ) = σ(Φ11)
∪
σ(Φ22)

∪
· · ·
∪
σ(ΦMM)

η1
i j(1) = p1

i ⊗ϕ1
i j(1), . . . ,η1

i j(θi j) = p1
i ⊗ϕ1

i j(θi j)
· · ·

ηM
i j (1) = pM

i ⊗ϕM
i j (1), . . . ,ηM

i j (θi j) = pM
i ⊗ϕM

i j (θi j)

λ1
i j

λM
i j

represent the LJCs corresponding to the eigenvalues from 
to . Let
 

ξi j(1) = (η1
i j(1),η2

i j(1), . . . ,ηM
i j (1))

...

ξi j(θi j) = (η1
i j(θi j),η2

i j(θi j), . . . ,ηM
i j (θi j)).

ξi j(1)Φ = λi j(p1
i ⊗ϕ1

i j(1), . . . , pM
i ⊗ϕM

i j (1)) = λi jξi j(1)
ξi j(1) ξi j(k)Φ = λi jξi j(k)+ ξi j(k−1)
2 ≤ k ≤ θi j ξi j(1), . . . , ξi j(θi j)
λi j

Since ,
 is  the LE of Φ. Since ,  for

,  is  the  LJC  about  the  eigenvalue
 of Φ.
λi j

λi j (Φ,Ψ)
{0MNn} λi j

1 ≤ l ≤ θi j

[ξi j(1)T · · ·ξi j(l)T ]TΨ = 0 ξi j(l+1)Ψ , 0
λi j (Φ,Ψ)

Ui j = {ξi j(1), . . . , ξi j(l)} σ = λi1 j1 = · · · = λiq jq

β1 ∈ C1×q

If  is  a  controllable  eigenvalue,  then  the  uncontrollable
subspace  corresponding  to  the  eigenvalue  of  is

.  If  is  an uncontrollable  eigenvalue with  geometric
multiplicity  1,  then  there  exists  satisfying  both

 and .  The  uncontrol-
lable subspace corresponding to the eigenvalue  of  is

 span .  If  is  an
uncontrollable  eigenvalue  with  geometric  multiplicity  more
than  1,  then  there  exists  non-zero  vector  satisfying
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β1[ξi1 j1 (1)T · · ·ξiq jq (1)T ]TΨ = 0.
Let

 

v1(β1) = β1[ξi1 j1 (1)T · · ·ξiq jq (1)T ]
T

...

vθ(βθ) = β1[ξi1 j1 (θ)T · · ·ξiq jq (θ)T ]
T
+ · · ·

+βθ[ξi1 j1 (1)T · · ·ξiq jq (1)T ]
T

v1(β1) β2, . . . , βθ
1 ≤ l ≤ θ

[v1(β1)T · · ·vl(βl)T ]TΨ = 0 vl+1(βl+1)Ψ , 0
v1(β1)

{v1(β1), . . . ,vl(βl)}
(Φ,Ψ) U(σ) =

{v1, . . . ,vl} U(σ) = Ui1 j1 = · · · = Uiq jq
(Φ,Ψ) ⟨Φ|Ψ⟩⊥ =

⊕N
i=1⊕

ri
j=1 Ui j

denote the LJC with the top vector is , where 
are  arbitrary  vectors.  There  exists  satisfying  both

 and .  So  the  uncon-
trollable  subspace  corresponding  to  the  top  vector  is
span .  Then  the  uncontrollable  subspace  of
the  system  about  the  eigenvalue σ is 
span , where . In summary,
the uncontrollable subspace of the system  is 

.

(WK ,∆K) pK
k1
, . . . , pK

kS
(p1

i ⊗
ϕ1

i j(1), . . . , pM
i ⊗ϕM

i j (1)) (AK +µK
i HK ,BK)

ϕK
i j(1)BK , 0 (Φ,

Ψ) {[p1
k1
⊗ In, . . . , pM

k1
⊗ In], . . . , [p1

kS
⊗ In, . . . , pM

kS
⊗ In]}

T K)
∩ ⟨WK |∆K⟩⊥ = {0N}

∩ ⟨Φ|Ψ⟩⊥ =
{0MNn}

Suppose  the  uncontrollable  eigenvectors  of  the  system
 are .  The  form  of  the  LE  of  Φ  is 

.  Since  is  control-
lable  and ,  the  uncontrollable  subspace  of 

 is  span .
span(   ,  so  span(Ξ)  

. If the system is not target controllable, then
In other words, there exists non-zero vector α satisfying that

 

α[ΞΨ,ΞΦΨ, . . . ,ΞΦMNn−1Ψ]

= αΞ[Ψ,ΦΨ, . . . ,ΦMNn−1Ψ]
= 0

β = αΞ ∈ ⟨Φ|Ψ⟩⊥∩ ⟨Φ|Ψ⟩⊥ , {0MNn}
that is, there exists vector  satisfying span (Ξ)

. ■

(WK ,∆K ,T K)
WK , ∆K , T K

Remark 7: The Condition 1) in Theorems 2 and 3 verify the
target  controllability  of  the  system .  The  matri-
ces  describe the topology matrix, input and out-
put  channels,  respectively  in  layer K of  the  networks,  which
are independent of the inter-couplings. Conditions 2) and 3) in
Theorems  2  and  3  ensure  the  target  controllability  of  the
whole multi-layer network through the verification of the low-
dimensional local matrix. These conditions verify the control-
lability of subsystems, and consider the situations in each sin-
gle-layer  network,  which  are  independent  of  the  inter-cou-
pling modes. Condition 4) in Theorems 2 and 3 are prerequi-
sites  for  verifying  the  target  controllability  of  the  entire  sys-
tems  by  lower-dimensional  matrices.  Since  Condition  4)
involves the eigenvalues and LJCs of the state matrix Φ, it is
necessary  to  consider  the  impact  of  differences  between  the
directed chains and the directed stars.

Remark  8: Theorem  4  in [32] provides  a  sufficient  condi-
tion for verifying the target controllability of single-layer net-
works. For multi-layer networks, each layer has different node
dynamics, but Condition 2) of Theorem 4 in [32] is only suit-
able for the networked systems with the same node dynamics,
but  not  for  multi-layer  networks.  Theorems  2  and  3  derived
here extend the condition of Theorem 4 in [32] to two typical

multi-layer networks.  

V.  Simulated Examples
  

A.  A Numerical Example
In  this  subsection,  an  example  is  presented  for  illustrating

Theorems 2 and 3.
Example 2: Consider a two-layer networked system, where

each layer has N = 3 nodes, as shown in Fig. 3.
 
 

Layer 1

Layer 2

1 2 3

1 2 3

u1

u2

 
Fig. 3.     A two-layer network with three identical nodes in each layer.
 

W1 =

0 0 0
1 0 1
0 1 0


∆1 =

0 0
1


A1 =

[
2 0
0 1

]
B1 =

[
1 1
1 1

]
H1 =

[
3 0
0 3

]
T 1 = [0 1 0 ]

W1 =

0 0 0
2 0 2
0 2 0


∆2 =

0 1
0


A2 =

[
4 0
0 2

]
B2 =

[
1 2
0 3

]
H2 =

[
3 0
0 3

]
T 2 = [0 0 1]

D21 =

1 0 0
0 1 0
0 0 1


H21 =

[
1 0
0 1

]

In Layer 1, the topology matrix is . Node 3

is  selected  as  the  controlled  node  (i.e., ). The

state  matrix  is , the  input  matrix  is ,

and  the  inner-coupling  matrix  is .  Node  2  is

selected as the target node (i.e., ). In Layer 2, the

topology matrix is . Node 2 is selected as the-

controlled  node  (i.e., ). The  state  matrix  is

,  the  input  matrix  is  and  the  inner-

coupling matrix is . Node 3 is selected as the tar-

get node (i.e., ). The topology matrix from Layer

1 to Layer 2 is , and the inter-coupling matrix

is .

W1 µ1
1 = 1

µ1
2 = −1 µ1

3 = 0 p1
1 = (1 1 1)

p1
2 = (1 −1 1) p1

3 = (1 0 0) p1
1∆

1 , 0
p1

2∆
1 , 0 p1

3∆
1 = 0 p1

3
(W1,∆1) p1

3 ∈ ⟨W1|∆1⟩⊥ T 1 ∩
⟨W1|∆1⟩⊥ = {0N}

W2 µ2
1 = 2 µ2

2 = −2 µ2
3 = 0

p2
1 = (1 1 1) p2

2 = (1 −1 1) p2
3 = (1 0 0)

p2
1∆

1 , 0 p2
2∆

1 , 0 p2
3∆

1 = 0 p2
3

It is easy to calculate that the eigenvalues of  are ,
, ,  and  the  corresponding  LEs  are ,

, ,  respectively.  Since ,
 and ,  is  a  uncontrollable  eigenvector  of
,  i.e., .  One  can  get  span(

.  Similarly,  one can easily  calculate  that  the
eigenvalues of  are , , , and the corre-
sponding  LEs  are , , ,
respectively.  Since ,  and ,  is  a
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(W2,∆2) p2
3 ∈ ⟨W2|∆2⟩⊥

T 2 ∩ ⟨W2|∆2⟩⊥ = {0N}
(W1,∆1) (W2,∆2)

T 1 ∩ ⟨W1|∆1⟩⊥ =
{0N} T 2 ∩ ⟨W2|∆2⟩⊥ = {0N}

(A1+µ1
1H1,B1) (A1+µ1

2H1,B1) (A1+

µ1
3H1,B1) (A2+µ2

1H2,B2) (A2+µ2
2H2,B2) (A2+µ2

3H2,

B2)
d2

1 = 1 h2
11 = 5 h2

12 = 4 d2
2 = 1 h2

21 = −1
h2

22 = −2 d2
3 = 1 h2

31 = 2 h2
32 = 1 p2

i D21 = d2
i p1

i
ϕ2

i j(1)H21 = h2
i jϕ

1
i j(1) λ1

i j+d2
i h2

i j = λ
2
i j = λi j i = 1,

2,3 j = 1,2

uncontrollable  LE  of ,  i.e., .  Then,
span( ) .  The  quantitaty  of  the  uncon-
trollable LEs of  and  are the same, so Condi-
tion  3)  of  Theorem  3  is  satisfied.  span( ) 

 and  span( ) ,  so  Condition  1)  of
Theorem 3 is satisfied. , , 

, ,  and 
 are all controllable, so Condition 2) of Theorem 3 is satis-

fied.  There  exist , , , , ,
, ,  and  satisfying ,

 and ,  for  all 
, ,  Condition 4)  of  Theorem 3 is  satisfied.  Accord-

ing to Theorem 3, the networked system is target controllable.
Example  2  is  a  two-layer  network,  which can be  seen as  a

network with directed chain inter-layer couplings and verified
by  Theorem  2,  or  as  a  network  with  directed  star  inter-layer
couplings and verified by Theorem 3. For two-layer networks,
the conditions in Theorems 2 and 3 have the same description.
Therefore, Theorem 2 can also verify the target controllability
of the network in Example 2.

2×2 3×3

12×12 12×12 4×12

Remark  9: Example  2  verifies  the  effectiveness  of  Theo-
rems  2  and  3  and  also  verifies  that  less  computation  is
required to test controllability than Lemma 3. In the example,
only  or  matrices are involved using Theorems 2 or
3. While in the calculation of Lemma 3, the matrix sizes of Φ,
Ψ,  and  Ξ are ,  and ,  respectively,  whose
matrices size are obviously larger.  

B.  A Practical Example
In  this  subsection,  a  practical  example  is  presented  to

demonstrate the applicability and validity of the Corollary 2.
Example 3: Consider a traffic networked system consisting

of a two-layer network of four unmanned vehicles to perform
adaptive cruise and following tasks in two-lane traffic [25], as
shown in Fig. 4. In Layer 1, the two cruise vehicles maintain
consistency according to the relative position of each other. In
Layer  2,  the  two  following  vehicles  maintain  the  minimum
safe distance according to the position of the vehicle in front.
  

1

2

1

2

Motion direction

Layer 1Layer 2

 
Fig. 4.     An unmanned vehicle system in a two-lane adaptive cruise and fol-
lowing task.
 

∆1 =

[
0 0
0 1

]
∆2 =

[
1 0
0 1

]
W1 =

[
0 1
1 0

]
W2 =

[
0 0
0 0

]

Vehicle  2  in  Layer  1  and  Vehicles  1  and  2  in  Layer  2  are

controlled,  thus , .  The  topology

matrix  of  Layer  1  is , the  topology  matrix  of

Layer 2 is  , and the topology matrix from Layer 1

D21 =

[
1 0
0 1

]
to Layer 2 is .

A1 =


− 1
ϵu

0 − 1
ϵi

1 0 0
0 1 0

 H1 =


0 0 1

ϵi
0 0 0
0 0 0

 B1 =


1
ϵu
0
0

 A2 =−
1
ϵu
+
ϵ2m
2ϵo

ϵm
ϵo
− 1
ϵo

1 0 0
0 1 0

 B2=


1
ϵu
0
0

 H21=

−
ϵ2m
2ϵo

− ϵmϵo
1
ϵo

0 0 0
0 0 0


ϵu, ϵi, ϵo ϵm

T 1 =

[
1 0
0 1

]
T 2 = [1 0]

The  system  can  be  described  as  the  form  of  (2)  and  (3),

where , , , 

, ,  and ,

in which  and  are all time constants. Assume Vehi-
cles 1 and 2 in Layer 1 and Vehicle 1 in Layer 2 are selected

as target nodes, i.e.,  and .

x = [(x1
1)T , (x1

2)T , (x2
1)T , (x2

2)T ]T

x1
1 = [a1

1,v
1
1,z

1
1]T , x1

2 = [a1
2,v

1
2,z

1
2]T , x2

1 = [a2
1,v

2
1,z

2
1]T , x2

2 =

[a2
2,v

2
2,z

2
2]T . a,v,z

In  this  model,  the  state  is ,
where    

  represent  acceleration,  velocity,  and  dis-
placement, respectively.

ϵu = 1 ϵi = 1 ϵo = 0.5 ϵm = 2 H1 =

0 0 1
0 0 0
0 0 0


H21 =

−4 −4 2
0 0 0
0 0 0

 A1 =

−1 0 −1
1 0 0
0 1 0

 A2 =

3 4 −2
1 0 0
0 1 0


B1 = B2 =

100


Let , ,  and , then ,

, , ,

and .

η = (η1,0) = span(Ξ) η1 ∈ C1×Nn\{0}
λ1

11 = −
2362
1393

η1
1 = [ 1213

2079 −
437
1270

180
887 −

1213
2079

437
1270 −

180
887 ] η1

1 ∈
Υ(λ1

11|Φ11) λ1
21 = −1 η1

2 =

[−1 1 −1 −1 1 −1] η1
2 ∈ Υ(λ1

21|Φ11)
η1

1(∆1⊗B1) , 0 η1
2(∆1⊗B1) , 0 η1(∆1⊗B1) , 0

η = (η1,η2) =
span(Ξ) η1,η2 ∈ C1×Nn\{0}

λ2
11 =

470
1183 Φ22

η2
1 ∈ Υ(λ2

11|Φ22) η2
1 = [ 291

2005
2456
6723

811
882 0 0 0]

η1
1(λ2

11INn−Φ11) = η2
1Φ

21 λ2
12 =

557
143 Φ22

η2
2 ∈ Υ(λ2

12|Φ22) η2
2 = [− 695

719
− 439

1769 −
378
5933 0 0 0] η1

2(λ2
12INn−Φ11) = η2

2Φ
21

λ2
13 = −

1905
1474 Φ22

η2
3 ∈ Υ(λ2

13|Φ22) η2
3 = [ 975

1364 −
224
405

395
923 0 0 0]

η1
3(λ2

13INn−Φ11) = η2
3Φ

21 [η1(∆1⊗B1),η2(∆2⊗B2)] ,
0

Since  this  two-layer  networked  system  is  drive-response
mode, the target controllability can be verified by Corollary 2.
For ,  where ,  it  is  easy  to
find there exist eigenvalue  and the corresponding
LE ,  where 

,  and  and  the  corresponding  LE 
, where . It is easy to get

that  and , i.e., .
Condition  1)  in  Corollary  2  is  satisfied.  For 

, where , it is easy to find there exist
eigenvalue  of  and  the  corresponding  LE

,  where  satisfying
, eigenvalue  of  and the

corresponding  LE ,  where 
 satisfying  and

eigenvalue  of  and  the  corresponding  LE
,  where  satisfying

.  Since 
, Condition 2) in Corollary 2 is satisfied. Therefore, it is con-

cluded that the networked system is target controllable.

A
B

A

Remark 10: The example indicates that Corollary 2 is appli-
cable in  practical  systems.  If  the system is  modeled as  a  sin-
gle-layer network with four nodes, attempts that verify the tar-
get controllability of the system by the methods of [32] can be
carried  out.  The  conditions  of  Theorems  3  and  4  in [32]
require that the node dynamics matrix  and the input matrix

 are the same for each vehicle. However, the node dynamics
matrix  is  different  in  each  layer.  For  these  reasons,  the
methods in [32] are not suitable for this practical example. In
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6×6 6×2
3×6

12×12 12×4 9×12

addition, applying Corollary 2 to verify the target controllabil-
ity of the system, the matrix sizes involved are ,  and

, respectively.  If  the system is regarded as a single-layer
network and the target controllability is verified by Lemma 3,
the matrix sizes involved are ,  and , respec-
tively.  Obviously,  applying  Corollary  2  to  verify  target  con-
trollability involves matrix computations more efficiently.  

VI.  Conclusion

This  paper  investigates  the  target  controllability  of  multi-
layer  networks  with  high-dimensional  nodes.  It  is  found  that
the  inter-layer  couplings  play  an  important  role  in  the  target
controllability  of  multi-layer  networks:  even  if  there  exists  a
layer  of  the  multi-layer  network  which  is  not  target  control-
lable, the entire multi-layer network can still be target control-
lable  due  to  the  influence  of  inter-layer  couplings.  A  neces-
sary and sufficient condition for verifying the target controlla-
bility  of  multi-layer  networks  with  general  structure  is  given
by  establishing  the  relationship  between  the  uncontrollable
subspace and the output matrix. It  is easy to find that even if
the multi-layer network is not state controllable, it may still be
target controllable. Then, two corollaries are provided, and the
relationship between target controllability, complete state con-
trollability,  and  output  controllability  has  been  clarified  (tar-
get controllability can be seen as a special case of output con-
trollability; if the system is complete state controllable, it must
be target controllable, but not necessarily output controllable).
For multi-layer networks with directed chain and directed star
inter-layer couplings, sufficient conditions for verifying target
controllability are given.  These conditions are valid and easy
to  calculate.  The  results  can  provide  some  reference  for  the
control of target nodes in real networks.

This  paper  considers  the  problem  of  target  controllability,
and  nodes  in  each  layer  have  the  same  dynamic  characteris-
tics. The impact of node heterogeneity in each layer on target
controllability  of  multi-layer  networks  can  be  further  exp-
lored.
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