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   Abstract—Unsignalized  intersections  pose  a  challenge  for
autonomous  vehicles  that  must  decide  how  to  navigate  them
safely and efficiently. This paper proposes a reinforcement learn-
ing  (RL)  method  for  autonomous  vehicles  to  navigate  unsignal-
ized  intersections  safely  and  efficiently.  The  method  uses  a
semantic  scene  representation  to  handle  variable  numbers  of
vehicles and a universal reward function to facilitate stable learn-
ing. A collision risk function is designed to penalize unsafe actions
and guide the agent to avoid them. A scalable policy optimization
algorithm is introduced to improve data efficiency and safety for
vehicle  learning  at  intersections.  The  algorithm  employs  experi-
ence replay to overcome the on-policy limitation of proximal pol-
icy optimization and incorporates the collision risk constraint into
the  policy  optimization  problem.  The  proposed  safe  RL  algo-
rithm can balance the trade-off between vehicle traffic safety and
policy  learning  efficiency.  Simulated  intersection  scenarios  with
different  traffic  situations  are  used  to  test  the  algorithm  and
demonstrate  its  high  success  rates  and  low  collision  rates  under
different  traffic  conditions.  The algorithm shows the  potential  of
RL for  enhancing  the  safety  and  reliability  of  autonomous  driv-
ing systems at unsignalized intersections.
    Index Terms—Autonomous  driving, decision-making, reinforce-
ment learning (RL), unsignalized intersection.
  

I.  Introduction

UNSIGNALIZED  intersections  represent  a  challenging
road  scenario  where  autonomous  vehicles  (AVs)  face

complex  decision-making  and  coordination  tasks  due  to  the
absence of regulatory signals or signs. AVs must navigate and
communicate with other vehicles that exhibit varying levels of

autonomy  and  communication  capabilities,  which  compli-
cates  the  control  and  decision-making  processes [1], [2].  To
tackle  these  challenges,  researchers  have  proposed  several
methods,  including  rule-based  approaches  that  follow  prede-
fined  behavior  patterns [3], [4],  game-theoretic  approaches
that  model  strategic  interactions  among  agents [5], [6],  and
reinforcement  learning  (RL)  approaches  that  learn  optimal
policies from data or simulation [7], [8].

Vehicle behavior at unsignalized intersections can be guided
by predefined rules or constraints, such as priority rules based
on  arrival  order  or  lane  position  or  collision  avoidance  rules
based  on  distance  or  speed  thresholds [4], [9].  These  rule-
based  methods  are  simple  and  easy  to  implement,  but  may
lack  optimality  or  adaptability  to  dynamic  traffic  situations.
Alternatively,  the  game-theoretic  framework  can  be  used  to
model the interaction among vehicles at unsignalized intersec-
tions, where each vehicle seeks to optimize its own payoff or
utility  function  that  reflects  safety,  efficiency,  comfort,  and
social  preferences [10], [11].  However,  this  framework  may
face challenges in finding a solution for complex or uncertain
games at unsignalized intersections.

In  particular,  RL  methods  offer  a  promising  approach  to
addressing the decision and control  problems associated with
unsignalized  intersections,  as  they  can  learn  optimal  policies
for  vehicle  actions  (e.g.,  acceleration  or  braking)  based  on
environmental states (e.g., traffic conditions) without the need
for  explicit  rules  or  models  of  other  vehicles’ behavior [12].
RL  aims  to  maximize  a  long-term  reward  function [13] that
captures  safety  and  efficiency  objectives,  providing  advan-
tages  such  as  flexibility,  scalability,  generalization,  and  self-
improvement  compared  to  rule-based  and  game-theoretic
methods [14], [15].

However,  applying  RL to  urban  autonomous  driving  poses
several challenges: a suitable representation of the state space
that  captures  the  relevant  information  is  required;  and  high-
dimensional action spaces and partial observability have to be
handled.  Bird’s  eye  view or  image  as  input  representation  to
capture the low-dimensional latent states at unsignalized inter-
sections  has  been  used  by  some  researchers [16]−[18].  Such
representation can facilitate complex driving behaviors learn-
ing  but  entail  high  computation  resource.  Moreover,  these
studies rely on deep Q-learning method and are limited to dis-
crete actions [19].

Policy gradient or actor-critic methods have been utilized to
tackle  the  challenge  of  high-dimensional  continuous  actions.
In  the  context  of  intersection  control,  a  partially  observable
Markov decision process (POMDP) based on deep determinis-
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tic policy gradient (DDPG) was developed [20]. However, this
approach  required  significant  computational  and  memory
resources.  Reference [21] proposed  a  minimax  distributional
soft  actor-critic  algorithm to  improve  the  generalization  abil-
ity  of  RL  algorithms  in  uncertain  intersection  environments.
Unfortunately,  this  approach  struggled  with  a  dynamic  num-
ber  of  vehicles,  which did  not  match the  real  road condition.
Reference [22] designed  a  soft  actor-critic  framework  with
double  Q-learning  to  handle  multiple  intersection  scenarios,
but  the  results  indicated  that  the  final  converged  strategies
were  not  always  safe  for  completing  the  tasks.  Additionally,
[23] evaluated the performance of twin delayed DDPG using
visual multi-frame image as input. The results showed that the
algorithm had  difficulty  in  policy  convergence  and  data  effi-
ciency.

The safety of vehicles at unsignalized intersections is a cru-
cial issue that has received some attention in the existing liter-
ature.  RL  methods  have  been  applied  to  this,  but  they  face
several  challenges  such  as  uncertainty  and  scalability.  Refer-
ence [24] proposed  a  two-level  decision  algorithm that  com-
bines  RL  with  model  predictive  control  (MPC)  to  balance
safety and efficiency at  intersections.  The algorithm used RL
to learn a high-level policy that decided when to yield or pro-
ceed, and MPC to generate low-level trajectories that satisfied
kinematic  and  comfort  constraints.  Reference [25] extended
this  approach  by  incorporating  risk-awareness  into  the  RL
agent, using uncertainty estimation to guide action selection in
novel situations. However, applying RL algorithms on safety-
critical  systems  still  requires  careful  justification  due  to  the
exploration  nature  of  many  RL  algorithms,  especially  when
the model of the robot and the environment are unknown. Ref-

erence [26] addressed  this  challenge  by  proposing  a  data-
driven safety layer that filters out unsafe actions based on his-
torical  data.  The  security  of  the  exploration  strategy  and  its
generalizability are not directly considered by these methods.

Unsignalized  intersections  pose  several  challenges  for  RL
applications  in  traffic.  First,  most  RL  methods  use  discrete
actions,  while  continuous  actions  are  underexplored.  Second,
using images  as  state  inputs  makes  it  hard to  capture  vehicle
correlations,  leading  to  slow  convergence  and  low  data  effi-
ciency.  Third,  using  state  vector  representations  cannot  han-
dle  variable  vehicle  counts,  large-scale  scenarios,  or  realistic
environments.  Fourth,  most  RL  methods  focus  on  learning
efficiency and optimality, but neglect safety issues. Therefore,
RL  needs  to  address  data  efficiency,  safety  assurance,  scala-
bility, and coordination at unsignalized intersections.

This paper proposes a decision-making framework with pol-
icy  optimization  for  safe  and  efficient  passing  of  AV  at
unsignalized  intersections,  where  this  control  problem is  for-
mulated  as  an  RL  problem.  The  framework  is  shown  in  the
Fig.  1.  A  semantic  scene  graph  is  proposed  to  represent  the
intersection  environment  and  handle  scenarios  with  varying
numbers  of  vehicles.  The  policy  optimization  algorithm  is
inspired  by  proximal  policy  optimization  (PPO) [27],  an  on-
policy RL algorithm that can handle both discrete and contin-
uous actions and scale up to large-scale training. To improve
the  sampling  efficiency  of  PPO’s  on-policy  feature,  we  pro-
pose an algorithm that utilizes experience replay. Moreover, to
address  the problem of  vehicle  collisions at  intersections and
to  draw  inspiration  from  stability  guarantees  suggested  in
[28],  we  propose  a  risk  assessment  function  to  be  applied
within  the  deep  RL  (DRL)  framework.  The  framework  pro-
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Fig. 1.     The proposed DRL framework for unsignalized intersection scene.
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poses scalable RL algorithms with a focus on enhancing effi-
ciency  and  ensuring  safety.  The  main  contributions  of  this
paper are summarized as follows:

1)  A better  state  representation method that  can be applied
to  intersection  scenarios  is  proposed,  which  can  cope  with
dynamic vehicle numbers and learn potential states more eas-
ily for DRL.

2) A reward function for the intersection scene is proposed,
comprising  a  main  line  reward  and  an  auxiliary  reward.  The
reward function is applicable to various scenes and serves as a
criterion for evaluating different algorithms.

3) To assess the potential collision conflict, this study devel-
ops a two-vehicle conflict detection method based on time-to-
intersection crossing and vehicle-to-vehicle  (V2V) communi-
cation  information  for  intersection  navigation,  which  is  inte-
grated to the constrained Markov decision process.

4) A novel safety RL algorithm is proposed that aims to bal-
ance  the  trade-off  between  vehicle  traffic  safety  and  policy
learning  efficiency.  The  algorithm  demonstrates  its  potential
to  improve  autonomous  driving  systems  in  complex  and
dynamic environments.

The paper is structured as follows. Section II formulates the
vehicles  traveling  problem.  Section  III  designs  the  con-
strained  Markov  decision  process.  Section  IV  proposes  and
derives the RL algorithms. Section V verifies the algorithms at
different tasks. Finally, Section VI draws the conclusions and
outlines the future works.  

II.  Vehicles Traveling in Intersection Environment

A  traffic  environment  is  constructed  where  a  self-driving
vehicle  and  other  vehicles  interact  at  a  four-way  intersection
without traffic signals. A behavior controller is developed for
the surrounding vehicles, with their speeds and positions ran-
domly  assigned.  The  decision-making  elements  for  the  self-
driving vehicle are also defined, including state variables, con-
trol actions, reward function and transition model.  

A.  Traffic Navigation at Intersection
When a vehicle approaches an unsignalized intersection, its

primary decision is whether to proceed along its planned route
or  to  stop before  the intersection.  This  decision is  contingent
on the established right-of-way rules. In urban settings, unsig-
nalized intersections  are  typically  governed by priority-based
control or right-hand priority [29]. In this study, we adopt the
scenario  from [19],  focusing  on  priority-based  controlled
intersections.  Here,  we  designate  the  east-west  road  as  the
main  thoroughfare  and  the  north-south  road  as  the  subordi-
nate  route.  Each  lane  leading  to  the  intersection  is  defined
with a length of 100 meters.  At these priority-based intersec-
tions,  vehicles  on  the  secondary  (north-south)  road  are
required to yield to traffic on the primary (east-west) road.

This  paper  explores  the  decision-making  process  of  a  self-
driving  vehicle  (referred  to  as  the “ego  vehicle”)  as  it
approaches an intersection from a secondary road, encounter-
ing crossing traffic  from the primary road.  It  begins with the
ego vehicle at the stop line, ready to perform various tasks like
turning left, going straight, or turning right. The vehicle must
assess  the  situation  and  avoid  collisions  with  other  vehicles,

whose  intentions  are  uncertain.  Given  the  complexity  and
dynamic nature of this scenario, we frame the vehicle naviga-
tion  task  as  a  problem  in  reinforcement  learning,  where  the
ego vehicle must learn to optimally balance safety considera-
tions and driving objectives.

The intersection scenario and all vehicles are modeled using
the  simulation  of  urban  mobility  (SUMO)  simulator [30].
Repeated  vehicles  named  flows  are  inserted  randomly  from
the east and west ends of the road network, as shown in Fig. 1,
and  move  according  to  a  modification  of  the  Krauss  car  fol-
lowing driver model [31]. The learning policy controls the ego
vehicle, while other vehicles can respond to its behavior, such
as  braking  or  accelerating.  However,  these  responses  cannot
prevent collisions entirely, which depend on the ego vehicle’s
actions.  Each vehicle’s position is updated at  each tick based
on its current state. A collision removes the ego vehicle from
the network. The ego vehicle must reach its destination within
a given time limit. Otherwise, it is removed from the network
along with the episode.  

B.  Partially Observable Markov Decision Process

⟨S,A,O,T ,R,Ω,γ⟩ S A O

T R Ω
γ

As  described  above,  we  define  the  reinforcement  learning
issue for intersection decision making as a POMDP to model
system dynamics with a hidden Markov model that probabilis-
tically relates unobservable system states to observations. As a
formal  description  of  a  discrete-time  POMDP,  it  can  be
referred  to  as  a  7-tuple ,  where , , 
are  the  state  space,  action  space,  observation  space  accord-
ingly,  and , ,  are  the  state  transition  function,  reward
function  and  observation  model,  respectively,  while 
presents  the  discount  rate.  The  ego  vehicle  tries  to  select
actions  so  that  the  sum of  the  discounted  rewards  it  receives
over the future is maximized, defined as
 

Gt =

∞∑
k=0

γkRt+k (1)

Rt+k t+ kwhere  is the reward at time step .

T (s′|s,a) Ω (o|s,a, s′)

R (s,a, s′)

π : S 7→ P(A)

Πθ ⊂ Π
θ π(θ)

θ

π(θ)

The POMDP generalizes a Markov decision process (MDP)
by allowing for partial observations of the environment state.
An  ego  vehicle  in  a  POMDP chooses  an  action  at  each  time
step  based  on  its  current  observation,  receives  a  reward  and
transitions  to  a  new  state.  The  state  transition  probability

 and  the  observation  probability  are
often  unknown  in  real-world  problems,  but  can  be  approxi-
mated  by  learning  methods.  The  reward  function 
defines  the  immediate  reward  for  each  state-action  pair.  The
goal of the ego vehicle is to maximize its expected future dis-
counted reward by following a policy  that maps
states to action probabilities. Policies are searched in a param-
eterized  class  (for  example,  a  neural  network  class
with  weight ).  A  policy  in  this  class  is  denoted  as  to
indicate its  dependence on .  The expected future discounted
reward  of  an  ego  vehicle  that  interacts  with  the  environment
under policy  is
 

R(π) = Eτ∼π

 ∞∑
t=0

γtR (st,at, st+1)

 (2)
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τ = (s0,a0, s1,a1, . . .) τ ∼ π

π s0 ∼ p0, at ∼ π (·|st) , st+1 ∼ P (·|st,at)

where  represents  the  trajectory, 
indicates  that  the  distribution  on  the  trajectory  is  determined
by the policy , namely .

1)  State  Space  and  Observation  Space: The  state  space  of
the  environment  is  a  collection  of  the  dominant  and  implicit
states of all participating vehicles. Dominant states consist of
immediately  observable  information,  and  implicit  states  can-
not be directly observed but continue to influence the ongoing
states,  mostly  referring  to  the  intent  of  other  vehicles.  The
whole state space of the environment is described as follows:
 

s =
(
sterm, scoll, s

p
0 , s

p
1 , . . . , s

p
nveh , s

m
0 , s

m
1 , . . . , s

m
nveh

)
(3)

scoll sterm

sp
i

sm
i

nveh

which consists of the environmental indicator states including
collision detector  and terminal  state .  These two are
Boolean  states,  which  take  the  value  1  when  a  collision
occurs,  or  a  terminal  state  is  reached,  and  otherwise  0.  The
other  two terms  are  the  physical  state  and  the  driver  state

 (driver model parameters) of the ego vehicle with index 0
and the  surrounding vehicles in a traffic scene. The physi-
cal state describes a vehicle driving on the road by its continu-
ous position, velocity, and heading
 

sp
i =

(
xi,yi,vi,ψi

)
. (4)

sm
iThe driver state  is described by the model parameters

 

sm
i =

(
vset

i ,ϑi,amax
i ,bi,be

i , κi,σi, τi
)

(5)

vset
i ϑi

amax
i

bi be
i

κi
σi
τi

where  is the departing speed,  is the minimum gap dis-
tance  when standing,  is  the  acceleration  ability  of  vehi-
cles of this type,  is the desired deceleration,  describes the
maximum deceleration ability of vehicles of this type in case
of  emergency,  denotes  the  additional  delay  time  before
starting to drive after having had to stop,  defines the driver
imperfection (0 denotes perfect driving), and  is the driver’s
desired and minimum time headway.

Ω

o

d0

The observation model  assumes no sensor noise and full
state  awareness  for  the  ego  vehicle.  The  future  paths  of  the
surrounding  vehicles  are  unknown.  The  observation  space  is
relative to the ego vehicle. When departing from the lane and
approaching the intersection, it can receive the global localiza-
tion, speed, and heading of the oncoming vehicle in each time
frame.  The  observation  includes  the  physical  states  of  the
surrounding vehicles and the ego vehicle’s physical and driver
states.  Geometric  representations  have  semantics  such  as
object  classes and spatial  relationships,  which semantic mod-
els emphasize [32], [33]. Therefore, a semantic representation
is used for the observation space in this paper. The ego vehi-
cle departs from a stop line at a distance  from the intersec-
tion. The number of surrounding vehicles is dynamic, making
it  hard  to  describe  a  state  with  varying dimensions.  To solve
this problem and use a neural network input, a semantic scene
graph is constructed for the ego vehicle, which is a fixed-size
relational grid with only relevant relations.

We create a relational grid with the ego vehicle as its center,
as  shown  in Fig.  2.  In  the  real  intersection  scene,  the  global
pose of each vehicle is determined based on the global coordi-
nate  system.  The  ego  vehicle  can  obtain  the  information  of
surrounding  vehicles  via  the  vehicle-to-vehicle  (V2V)  com-

o ∈ RM×N×K M N

K
q

K = 3 q = (∆ψ,∆v,⊙)
∆ψ ∆v

⊙

munication technology. Therefore, the received information is
further processed into relative pose to the ego vehicle,  which
contains relative position, relative angle and relative velocity.
To make it easier to train, we define the semantic scene graph
as  a  three-order  tensor  with  the  discrete  feature,  i.e.,

 as shown in Fig. 3.  and  define the numbers
of  discrete  granularity  of  relative  longitudinal  distance  and
horizontal  distance,  respectively.  is  the  dimension  of  the
vector  that  considers  relative  important  information  and  a
boolean state determining the presence or absence of the sur-
round vehicle.  In  the  study,  and ,  where

 is the heading relative to the ego vehicle,  is the longitu-
dinal velocity relative to the ego vehicle and  is the boolean
indicator state.
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Fig. 2.     Semantic scene graph.
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Fig. 3.     Relative state information tensor.
 

A = [−udecel,uaccel]

2) Action Space: The ego vehicle’s longitudinal and lateral
movements  are  controlled  by  upper  and  lower  commands,
respectively.  The  upper  command  uses  DRL  to  regulate  the
longitudinal  motion,  while  the lower command implements  a
controller that maintains target speed and lane. The ego vehi-
cle’s  route  was  predefined  by  an  XML definition  in  SUMO.
The  steering  angle  is  well  controlled  by  the  lower  command
within  SUMO.  The  DRL  only  influences  the  longitudinal
acceleration of the ego vehicle, which had a continuous action
space .

[−1,1]

To  enhance  the  stability  of  DRL  algorithms,  action  spaces
are normalized, which adjusts the neural network outputs to a
standard  range,  typically .  This  normalization  aids  in
accelerating training and helps prevent divergence. For contin-
uous-action  DRL,  outputs  represent  actions  or  parameters  to
construct  actions,  rather  than  having  a  node  for  each  action.
These  normalized  actions  are  then  transformed  back  into
actual  control  parameters  through  an  inverse  process  applied
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to the policy network’s outputs
 

areal = −udecel+ (aout− (−1))× uaccel− (−udecel)
1− (−1)

(6)

aout arealwhere  is the output action of the policy network and 
is the real action to be taken by the ego vehicle.

3)  Reward  Function  Tuning: In  DRL,  the  agent  refines  its
policy using rewards received from the environment. The neu-
ral  network  processes  the  state  inputs,  guided  by  the  reward
function,  to  estimate  values  for  decision-making.  The reward
function’s design, thus, is crucial. For intersection navigation,
we focus on key objectives — safety, efficiency, and coopera-
tion — split into mainline and auxiliary rewards.

τm

i)  The  mainline  reward  is  based  on  achieving  qualitative
goals, such as successfully navigating a two-dimensional task,
winning a game of chess, or passing a level in a game. In our
specific  task,  the  mainline  reward  depends  on  three  terminal
states: arrival at the predefined destination (the primary goal),
collision with another vehicle (defined conservatively as occu-
pying its safe boundary), or running out of time before reach-
ing  the  destination  within  the  limited  time  frame .  The
mainline reward can be defined as follows:
 

rm =


carr if arrival

− ccol if collision

− cout if timeout, i.e., τe ≥ τm.
(7)

rm = carr1 [s ∈ S arrival]− ccol1 [s ∈ S collision]− cout1 [s ∈ S timeout]
1[·]

The ego vehicle may encounter more than one terminal state
of an episode. Therefore, the mainline reward is calculated by:

,
where  denotes  a  conditional  judgment,  which  takes  the
value 1 if the condition in the parentheses holds, and 0 other-
wise.

ii) Tasks that have high exploration difficulty and only offer
a mainline reward often suffer from sparse reward issues. This
lack  of  feedback  signals  can  make  learning  difficult.  To
address  this  problem,  auxiliary  rewards  or  penalties  can  be
added to  the  mainline  reward to  create  a  more robust  reward
function that guides the agent towards efficient exploration in
the  environment.  Auxiliary  rewards  include  efficiency  and
cooperation  rewards.  The  former  encourages  the  ego  vehicle
to reach its target quickly, usually by increasing speed, while
the latter  promotes collaboration with other agents in achiev-
ing shared goals. The penalty function for efficiency can be
 

re = −ceff
vmax− v0

vmax
(8)

ceff vmax
v0

where  is the absolute value of the penalty factor;  and
 are the maximum limit speed and current speed of the ego

vehicle, respectively.
The  cooperation  reward,  in  our  study,  extends  beyond  the

conventional focus on the autonomous agent’s benefit, taking
into account the broader impact of the ego vehicle’s decisions
on  the  surrounding  traffic.  This  approach  aligns  with  recent
shifts in the field, as highlighted by key studies such as [34],
which  emphasize  the  significance  of  interactive  behaviors  in
traffic  dynamics.  Accordingly,  we  have  identified  three
behavior modes — waiting, braking, and emergency braking —
that  are  typically  exhibited  by  surrounding  vehicles  in

response to the ego vehicle’s actions. Therefore, a multi-con-
dition judgement reward for cooperation can be described as
 

rc = − cwab1
[
s ∈ S traffic_waiting∩S traffic_braking

]
− cwob1

[
s ∈ S traffic_waiting∪S traffic_braking

]
+ cnwb1

[
s < S traffic_waiting∪S traffic_braking

]
− cteb1

[
s ∈ S traffic_emergencybraking

]
(9)

c∗where  is  the absolute  value of  the penalty factor  or  incen-
tive  factor.  When  the  ego  vehicle  causes  waiting,  braking  or
emergency braking behavior to surrounding vehicles, we will
give  the  appropriate  penalty.  Otherwise,  it  does  not  interfere
with  traffic  movement  and  we  will  give  encouragement  as
shown in the third term.  

III.  Constrained Markov Decision Process

m C1, . . . ,Cm
Ci : S×A×S→ R

π JCi (π) =
Eτ∼π[

∑∞
t=0 γ

tCi (st,at, st+1)] di

π
JR(π)

JCi (π) ≤ di,∀i ∈ [m]

One  way  to  ensure  the  safety  of  the  agent  is  to  add  con-
straints  to  the  MDP  framework  and  transform  the  problem
into a  constrained Markov decision process  (CMDP).  At  this
time,  the goal  of  the agent  is  to maximize long-term rewards
under  the  condition  of  meeting  long-term  risk  constraints.
This  method  can  solve  the  above  two  problems  at  the  same
time. CMDP is an MDP with added constraints on long-term
discounted  risk.  Specifically,  the  ordinary  MDP  is  augmen-
ted  with  risk  functions ,  where  each  risk  func-
tion  is  the  mapping from interaction data
pairs  to  risk.  According  to  (2),  the  long-term  discount  risk
under  the  strategy  can  be  defined  accordingly  as 

, corresponding to the restriction .
In the CMDP, the objective is to choose a strategy  that max-
imizes  the  long-term  reward  while  satisfying  the  con-
straint on the long-term risk , i.e.,
 

π∗ = argmax
π∈Πθ

JR(π)

s.t. JCi (π) ≤ di,∀i ∈ [m]. (10)
The following describes the design method for the collision

risk  constraint  for  this  environment  based  on  the  CMDP
framework.  

A.  V2V Conflict Time Based on Motion Relationship

2R

The navigation  of  intersections  requires  assessing  potential
conflicts with surrounding vehicles. This study aims to quan-
tify  the  degree  of  conflict  between  vehicles  using  their  posi-
tion  and  operational  status.  A  two-vehicle  conflict  detection
method  is  developed  to  determine  whether  a  conflict  occurs.
Previous studies have relied on time to collision (TTC) [35] as
a conflict indicator, but TTC treats traffic flow as a scalar and
cannot  anticipate  conflicts  in  advance.  Therefore,  this  study
proposes  a  time-to-intersection  crossing  (TIC)  method  based
on  the  motion  relationship  of  vehicles  in  intersection  scenar-
ios,  using  V2V  communication  information.  The  vehicle  is
modeled  as  a  circle  with  center  of  mass  located  at  (x, y)  and
diameter ,  as  depicted  in Fig.  4,  for  ease  of  computations.
The  corresponding  vehicle  information  in  the  global  coordi-
nate  system  is  then  obtainable.  To  simplify  TIC  calculation,
we  derive  the  relationship  of  relative  movement  between  the
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φ

two vehicles from Vehicle 1’s coordinate view. This approach
parallels  the  process  of  acquiring  the  observation  space.  The
vehicle’s  velocity  is  represented  by v,  while  denotes  its
heading angle. The relative position of Vehicle 2 with respect
to Vehicle 1 is established as follows:
 

 x

y

 =  cosφ1 sinφ1

−sinφ1 cosφ1

  x2− x1

y2− y1


φr = φ2−φ1

vx = v2 cosφr − v1

vy = v2 sinφr

(11)

vr
L12

where  the  relative  velocity  of  Vehicle  2  is  and  its  projec-
tion on  connecting the center points of the two vehicles is
 

L12 =

√
x2+ y2 =

√
(x2− x1)2+ (y2− y1)2

vL = vx cosθ+ vy sinθ

θ = θ2− θ1

(12)

θ1 θ2where  and  are the angles between the speed directions of
Vehicles  1  and  2  and  the  line  connecting  the  two  vehicles,
respectively.

θ

β

X
βi

Next,  we  need  to  determine  the  calculation  method  of .
First  of  all,  it  is  specified  that  the  direction  of  the  angle  is
counterclockwise  and  positive.  Secondly,  define  as  the
angle  between  the  global  coordinate  system  and  the  connec-
tion between the two vehicles, specifically from the  axis to
the connection.  is calculated as follows:
 

βi = atan2
(

y j− yi

x j− xi

)
(13)

atan2(·)
β

[0,360◦] β1 ≥ 180◦ β2 = β1−180◦

β1 < 180◦ β2 = β1+180◦

where  is four-quadrant arctangent function. Here if i =
1, then j = 2; if i = 2,  then j = 1.  We map the  value to the
angle  interal .  If ,  then ;  if

, then .
As can be seen from Fig. 4,

 

θi = βi−φi (14)
φiwhere  is the information that vehicle i can obtain.

△L = L12−2R
According  to  the  previous  analysis,  the  actual  relative  dis-

tance  between  the  two  vehicles  is .  Therefore,
the TIC between two vehicles can be obtained as 

TIC =
△L
vL
. (15)

θ1 θ2 θ > 0◦

θ

θ [−180◦,180◦)
θ ≥ 180◦ θ = θ−360◦ θ < −180◦ θ = θ+360◦

There is no need to warn all vehicles during driving. Some
vehicles  do  not  have  conflicts  in  traffic  flow,  so  there  is  no
need to  calculate  TIC.  Next,  consider  and classify  the  poten-
tial  collision  relationship  between  vehicles  according  to  the
relative relationship between  and . Let  indicate that
the driving direction of the vehicle is  on the right side of the
central  coordinate  connection  of  the  two  vehicles;  otherwise,
if  is negative, it means that the driving direction of the vehi-
cle  is  on  the  left  side  of  the  central  coordinate  connection of
the two vehicles. Set the range of  is , and when

, ; when , .
|θ1− θ2| = 0◦1)  indicates  that  the  two  vehicles  are  parallel

and  travelling  in  opposite  directions,  and  there  may  be  a
frontal collision.

|θ1− θ2| = 180◦2)  means  that  the  two  vehicles  are  parallel
and driving in the same direction, and there may be a rear-end
collision.

0◦ < |θ1− θ2| < 180◦ θ1 θ23)  If  and  and  are  with  different
signs, indicating that the two vehicles are on the same side and
driving towards each other, and there may be a side collision.

4) For other cases, the vehicle is not dangerous.

θ2 θ1

θ1

θ
0◦

This study scenario does not involve parallel  and opposite-
direction vehicles, so frontal collisions are excluded. The col-
lision analysis  considers  Vehicle  2 moving from west  to  east
and Vehicle 1 moving from south to north, as shown in Fig. 5.
In the first scenario, Vehicle 2 has not crossed the intersection
yet  and  and  differ,  indicating  that  both  vehicles  are  on
the  same  side  and  move  in  opposite  directions,  which  may
cause  a  side  collision.  In  the  second  scenario,  is  zero  and
reaches the boundary value for a potential collision with Vehi-
cle  2.  In  the  third  scenario,  both  vehicles  have  values  less
than  with  the  same  sign,  indicating  no  conflict  between
their traffic flow directions and no collision risk.
 
 

−90° < θ2 < 0° −180° < θ2 < −90°

0° < θ1 < 90° −90° < θ1 < 0°

 θ2 = −90°

 θ1 = 0°

1
2

3

 
Fig. 5.     Analysis of collision relationship at intersections.  

B.  Collision Risk Function
The collision risk function is  defined based on the severity

of potential collisions, and a quantitative index is designed to
indicate  the  learning  progress  of  the  reinforcement  learning
algorithm. This index can be compared with TIC and time to
avoidance (TTA) to evaluate the degree of collision risk. TTA
is defined as 

TT A = t f +
δv
µg

(16)

 

Vehicle 1

Vehicle 2

(x1, y1, v1, φ1, β1, θ1)

(x2, y2, v2, φ2, β2, θ2)

φ1

φ2

θ1

θ2

L12

β1

β2
v2

v1

Y

X
 
Fig. 4.     Kinematic relationship between two vehicles.
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t f δ

δ ∈ (0,1]
where  is the driver reaction time;  is the deceleration fac-
tor, ; μ is the friction coefficient of the vehicle tires on
the road; and g is the acceleration of gravity.

Define the quantitative index of collision severity as
 

E =
T IC
TT A

. (17)

0 < E ≤ 0.5
cE

When ,  it  is  a  serious conflict,  and the collision
risk is set to ; in other cases, it is set to 0.  

IV.  Reinforcement Learning Algorithms

π Vπ(s) =
Eπ

[∑∞
k=0 γ

kRt+k |S t = s
]The optimization objective of reinforcement learning based

on  static  policy ,  according  to  (2),  combined  with 
, can be expressed as

 

J(π) = Es0∼ρ0 [Vπ (s0)] (18)
s0 ρ0

Vπ (s0) s0 π

πnew πold

where  is  the initial  state,  is  the initial  state distribution,
and  is the state value function of  under policy . In
the learning process, after each policy update, the new policy

 is improved compared with the old policy 
 

J (πnew) = J (πold)+Es0,a0,s1,a1,...

 ∞∑
t=0

γtAπold (st,at)

 (19)

s0 ∼ ρ0 at ∼ πnew(·|st) st+1 ∼ P(st+1|st,at) P(st+1|st,

at) γ

Aπ(st,at)
Aπ(st,at) = Est+1∼P(st+1 |si,at)[r(st) + γVπ(st+1) −

Vπ(st)]

where , , , with 
 being  the  environment  transition  probability,  being  the

discount  factor,  being  the  advantage  function
defined  as 

.
(st,at)

(ot,at)

Remark  1: To  derive  policy,  we  use  the  symbol .
However,  when  dealing  with  POMDP,  the  ego  vehicle  sam-
ples are represented as  instead.

πnew
πnew Aπold (st,at) ≥ 0 πnew
πold

πold πnew

Equation  (19)  intuitively  reveals  that  the  amount  of  policy
improvement  is  equal  to  the  sum  of  expected  discounted
advantage  functions  over  every  state-action  pair  generated
from . The essential of reinforcement learning algorithms
is:  As  long  as  selects  an  action , 
must be better than  (otherwise the policy has already con-
verged to the optimal policy). However, in practical and inter-
active  processes,  the  policy  collected  is  that  of  and 
has a complicated coupling relationship with the policy distri-
bution, making it difficult to optimize directly.

πθParameterizing  the  policy  as ,  the  optimization  problem
can  be  approximated  by  solving  the  following  optimization
problem:
 

arg max
θ
E(s,a)∼τold

[
πθ(a|s)
πθold (a|s)

Aπθold
(s,a)

]
s.t. E(s,a)∼τold

[∣∣∣∣∣∣ πθ(a|s)
πθold (a|s)

−1

∣∣∣∣∣∣
]
≤ ε. (20)

The final question above is transformed into a truncated tar-
get  formula,  which  considers  the  constraints  in  the  objective
function,  expands  the  absolute  value,  rearranges  the  items  to
become an unconstrained optimization problem
 

LCLIP(θ) = E(s,a)∼τold [min(r(θ)A,clip(r(θ),1−ε,1+ε)A)] (21)
r(θ) = πθ(a|s)/πθold (a|s) A = Aπθold

(s,a) clip (x, l,h) =
max(min(x,h), l) x [l,h] ε
where, , , 

,  i.e.,  confine  within .  is  a  hyperpa-

rameter representing the range of clipping.  

A.  Sample Reuse Proximal Policy Optimization

r(θ)
πθold

πθold (at |st)
pt(θ)

at

Vanilla  PPO is  infeasible  for  experience  replay in  continu-
ous action environment. The reason is that, in order to calcu-
late  the  loss  value,  PPO  uses  the  probability  ratio ,  and
assumes  that  the  action  is  taken under .  If  this  is  not  the
case, and the parameter of the action sampling distribution has
automatically  changed  after  being  recorded,  then 
will quickly approach zero making  approach infinity. If
the advantage function related to  is negative, the ratio will
not be clipped and the loss value will be extremely large, thus
resulting in gradient explosion. So here is to solve this short-
coming.  We first  give the total  variance distance relationship
between  the  visiting  distributions  and  the  total  variance  dis-
tance relationship between the policies.

π
πold

dπold dπ

Lemma  1: Consider  any  future  new  policy  and  the  old
policy ,  the  total  variational  distance  between  the  dis-
counted  future  state  visitation  distributions  and  satis-
fies the following inequality:
 

DTV
(
dπ,dπold

) ≤ γ

1−γEs∼dπold [DTV (π,πold) (s)] (22)

dπnew = (1−γ)∑∞t=0 γ
tPr(st = s|πnew)

DTV (dπ,dπold )
DTV(π,

πold)(s) = (1/2)
∑

a |π(a|s)−πold(a|s)|

where  (Pr  as  the  state
probability) is the normalized discounted visitation frequency,

 is the total variational distance between the two
discounted  future  state  visitation  distributions  and 

 is  the  total  variational
distance between the two policies.

dπ

dπ = (1−γ)(I−γPπ)−1ρ0 Pπ
dπ−dπold = (1−γ)[(I−γPπ)−1−

(I−γPπold )−1]ρ0 = γ(I−γPπ)−1(Pπ−Pπold )dπold

Proof: According  to  the  above  definition  of ,  it  can  be
further transformed into , where  is
the  transition  matrix.  Thus 

.
According to the Cauchy-Schwarz inequality, we obtain

 

DTV
(
dπ,dπold

)
=

1
2

∥∥∥dπ−dπold
∥∥∥

1

=
1
2
γ
∥∥∥(I−γPπ)−1(Pπ−Pπold )dπold

∥∥∥
1

≤ 1
2
γ∥(I−γPπ)−1∥1

∥∥∥(Pπ−Pπold )dπold
∥∥∥

1 .

These two bounds are
 ∥∥∥(I−γPπ)−1

∥∥∥
1 ≤

∞∑
t=0

γt ∥Pπ∥t1 = (1−γ)−1

∥∥∥(Pπ−Pπold )dπold
∥∥∥

1 =
∑

s′

∣∣∣∣∣∣∣∑s

(Pπ−Pπold )
(
s′|s)dπold (s)

∣∣∣∣∣∣∣
≤

∑
s,a,s′

P
(
s′|s,a) |π(a|s)−πold(a|s)|dπold (s)

=
∑
s,a

|π(a|s)−πold(a|s)|dπold (s)

= 2 E
s∼dπold

[DTV (π,πold) (s)] .

■
Remark  2: In  Lemma  1,  we  present  a  bound  on  the  total

variation distance between the state visitation distributions of
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π πold

γ

DTV

γ/(1−γ)

any new policy  and the old policy . This metric quanti-
fies  the  dissimilarity  in  behavior  between  two  policies  over
the  long  term,  considering  the  discount  factor .  The  lemma
states  that  the  discrepancy in  visitation distributions,  as  mea-
sured  by  the  total  variation  distance ,  is  bounded  by  the
expected total  variation distance between the policies at  each
state, scaled by the factor . This lemma is pivotal as it
establishes a relationship that allows us to measure the impact
of  policy  updates  in  terms  of  their  influence  on  the  distribu-
tion over future states visited by the agent.

Lemma  2: The  following  relation  between  the  total  varia-
tion  distance  between  different  policy  distributions  and  the
ratio of policies is satisfied:
 

Es∼dπold [DTV (πnew,πold) (s)] =
1
2
Es∼dπold

a∼πold

[∣∣∣∣∣πnew(a|s)
πold(a|s)

−1
∣∣∣∣∣] .
(23)

DTV

Proof: The proof  is  obtained according to  the  definition of
 and the importance sampling. ■

πold−

We  next  propose  the  sample  reuse  proximal  policy  opti-
mization  (SRPPO),  an  off-policy  class  of  experience  reuse
algorithm, which considers the samples collected by the previ-
ous policy  for the current policy:

πold
πold− πnew

πnew πold

Theorem  1: Consider  the  current  policy ,  the  previous
policy  and  any  future  new  policy ,  the  new  policy

 has  the  following  relation  to  the  current  policy  in
terms of cumulative reward:
 

J (πnew)− J (πold) ≥ 1
1−γ

∑
i

κiEs∼dπi
a∼πi

[
πnew(a|s)
πi(a|s)

Aπold (s,a)
]

− γϵ

(1−γ)2

∑
i

κiEs∼dπi
a∼πi

[∣∣∣∣∣πnew(a|s)
πi(a|s)

−∗
∣∣∣∣∣+ |∗−1|

]
(24)

∗ = πold(a|s)/πi(a|s) κi πi
i = 0

πold i = 1 πold−

where ,  is the weight for policy  with
the sum of the values equal to 1; when , the policy refers
to ; when , the policy refers to .

Proof: From (19), we can get
 

J (πnew)− J (πold) = Es0,a0,s1,a1,...

 ∞∑
t=0

γtAπold (st,at)


=

∞∑
t=0

γt
∑

st

Pr(st |πnew)
∑
at

πnew (at |st) Aπold (st,at)

=
∑

s

∞∑
t=0

γtPr(·)
∑

a

πnew(a|s)Aπold (s,a). (25)

∑
s
∑∞

t=0 γ
tPr(·) =∑∞

t=0 γ
t ∑

st Pr(·) =∑∞
t=0 γ

t = 1/(1−
γ) , 1 Pr(·) Pr(st = s|πnew)

s

Because 
 (  refers  to ),  for  (25),  to  write  it  in

the form of expectation, the distribution of  needs to be nor-
malized
 

J (πnew)− J (πold) =
1

1−γ
∑

s

(1−γ)
∞∑

t=0

γtPr(·)

×
∑

a

πnew(a|s)Aπold (s,a) =
1

1−γEs∼dπnew
a∼πnew

[
Aπold (s,a)

]
.

(26)
πold−

πnew πold−

When  considering  the  previous  policy ,  replacing  the
state  action  distribution  from  to  yields  the  follow-
ing result:

δπnew
f ∈ R|S | δπnew

f (s) =

Ea∼πnew[Aπold (s,a)|s] Es∼dπnew
a∼πnew

[Aπold (s,a)] = ⟨dπnew ,

δπnew
f ⟩ = ⟨dπold− , δπnew

f ⟩+ ⟨dπnew −dπold− , δπnew
f ⟩

|⟨dπnew − dπold− , δπnew
f ⟩| ≤ ∥dπnew − dπold− ∥p∥δπnew

f ∥q
p, q ≥ 1 1/p+1/q = 1 Es∼dπnew

a∼πnew
[Aπold (s,

a)] ≥ ⟨dπold− , δπnew
f ⟩− ∥dπnew −dπold− ∥p∥δπnew

f ∥q

Let  denote  a  vector  with  components 
.  Note  that 

. Then  the  Hölder
inequality  of  the  discrete  form is  applied  to  constrain  it,  and
we  have ,
where  and .  Therefore, 

.

δπnew
f

⟨dπold− , δπnew
f ⟩ =

Es∼dπold−

a∼πnew

[Aπold (s,a)] p = 1, q =∞

According  to  the  definition  of ,  the  first  term  on  the
right  side  of  the  above  inequality  is 

.  Let ;  (26)  can  be  further

expressed as
 

J (πnew)− J (πold) ≥ 1
1−γEs∼dπold−

a∼πnew

[
Aπold (s,a)

]
− 1

1−γ
∥∥∥dπnew −dπold−

∥∥∥
1

∥∥∥∥Ea∼πnew

[
Aπold (s,a)

]∥∥∥∥∞ . (27)

∥Ea∼πnew[Aπold (s,a)]∥∞ =maxs∈S |Ea∼πnew [Aπold (s,a)]| = ϵLet .
From Lemma 1, the following inequality can be obtained:

 

∥dπnew −dπold− ∥1 = 2DTV(dπnew ,dπold− )

≤ 2γ
1−γEs∼dπold− [DTV(πnew,πold− )(s)].

Then according to Lemma 2 and the inequality relation, we
have
 

2Es∼dπold−
[
DTV

(
πnew,πold−

)
(s)

]
≤ Es∼dπold−

∑
a

|πnew(a|s)−πold(a|s)|


+Es∼dπold−

∑
a

∣∣∣πold(a|s)−πold− (a|s)
∣∣∣

= Es∼dπold−

a∼πold−

[∣∣∣∣∣∣ πnew(a|s)
πold− (a|s)

− πold(a|s)
πold− (a|s)

∣∣∣∣∣∣+
∣∣∣∣∣∣ πold(a|s)
πold− (a|s)

−1

∣∣∣∣∣∣
]
.

πoldThe proof is obtained by considering the current policy 
and then deriving similar results in combination. ■

Based  on  the  aforementioned  lower  bound,  the  following
optimization objective can be obtained:

πold
πold− πθ

Theorem 2: Denote the current policy as  and the previ-
ous  policy  as ,  both  parameterized  by .  The  uncon-
strained  optimization  problem,  considering  the  evolution  of
these policies, can be formulated as follows:
 

LCLIP
SRPPO(θ) =

∑
i

κiE(s,a)∼τi [min(ri(θ)A,clip(ri(θ),

ςi−ε′, ςi+ε′)A)] (28)
ri(θ) = πθ(a|s)/πθi (a|s) A = Aπθold

(s,a) ςi = πθold (a|s)/
πθi (a|s)
where , , 

.
|πold(a|s)/πold− (a|s)−1|
πold−

ςi
(ςi−ε′,

ςi+ε
′)

Proof: Because  is a constant for the
data generated by ,  it  can be ignored in the optimization
problem. According to the form in (20) and (21), with  being
the  center,  limiting  the  policy  ratio  in  the  interval 

 guarantees that the difference between the new and old
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policies  will  not  be  too  large.  This  is  verified  by  combining
(21). ■

θ

πold
πold−

Theorem  2  formulates  an  optimization  problem  to  evolve
the  policy  parameters ,  using  samples  collected  from previ-
ous  policies.  By  comparing  the  current  policy, ,  with  the
previous one, ,  it  ensures informed updates that incorpo-
rate  historical  data,  enabling  a  policy  that  learns  from  past
experiences to enhance future performance.  

B.  Safe Proximal Policy Optimization

Π Πθ
ΠC

Πθ ∩ΠC

Constrained  policy  optimization  (CPO) [36] finds  feasible
policies  within  the  trust  region  and  ensures  monotonic
improvement by solving quadratic optimization problems with
appropriate  approximations,  while  satisfying  the  constraints.
The  policy  update  form  is  derived  from  trust  region  policy
optimization  (TRPO) [37] for  neural  network  policies,  but  it
cannot be solved directly due to the high-dimensional parame-
ter space with high computation cost. Therefore, Fisher infor-
mation matrix and conjugate gradient are used to solve a lin-
ear  objective  optimization  problem  with  linear  and  quadratic
constraints. However, this approach still faces challenges such
as  approximation  errors,  complex  high-dimensional  Hessian
matrix  inversion  and  implementation  difficulties.  To  address
these issues,  safe proximal policy optimization (Safe-PPO) is
proposed.  denotes  the  set  of  all  static  policies,  denotes
feasible static policies in MDP and  denotes feasible static
policies  in  CMDP.  In  the  local  policy  search  in  CMDP,  the
policy  iteration  must  be  feasible  under  CMDP,  so  the  opti-
mization should be performed on .

πθold πθ
θ

Theorem  3: For  parameterized  strategies  and  in
CMDP,  the  optimization  seeks  parameters  that  maximize
expected  returns  within  given  constraints,  ensuring  policy
improvements and adherence to predefined safety margins
 

argmax
θ
E(s,a)∼τold

[
πθ(a|s)
πθold (a|s)

A
πθold
R (s,a)

]
s.t. JCi (πθold )+

1
1−γE(s,a)∼τold

[
πθ(a|s)
πθold (a|s)

A
πθold
Ci

(s,a)
]
≤ di

Es∼d
πθold

[
DTV

(
πθ,πθold

)
(s)

]
≤ ε

2
.

(29)

JCi (π) ≤ di,∀i

di

Proof: In  refining  our  methodology  for  solving  Problem
(10),  we  draw upon  Theorem 1  to  define  the  objective  func-
tion  and  the  constraints  of  the  policy  optimization  within  a
CMDP  framework.  In  addressing  the  CMDP-specific  trust
region  constraints,  we  consider  the  safety  requirements  of
autonomous driving, encapsulated in . Here, the
reward function traditionally used in trust region formulations
is  replaced  with  a  risk  function  to  align  with  these  safety
thresholds.  This  substitution  reflects  a  deliberate  shift  in  the
optimization  objective,  balancing the  pursuit  of  rewards  with
the  imperative  of  risk  aversion.  The  resulting  risk  function
integrates  safety  considerations  directly  into  the  optimization
process, guiding the development of policies that not only aim
for high performance but also conform to essential safety stan-
dards.  In  (19),  by  substituting  the  reward  function  with  the
risk function and considering , we have 

JCi (πnew) = JCi (πold)+
1

1−γEs∼dπnew
a∼πnew

[
Aπold

Ci
(s,a)

]
≤ di, ∀i.

Inspired  by  the  deduction  of  Theorem  1,  we  obtain  the
upper bound
 

JCi (πnew)− γϵ

(1−γ)2Es∼dπold
a∼πold

[∣∣∣∣∣πnew(a|s)
πold(a|s)

−1
∣∣∣∣∣]

≤ JCi (πold)+
1

1−γEs∼dπold
a∼πnew

[
Aπold

Ci
(s,a)

]
, ∀i. (30)

di

πnew
πold

So as long as (30) satisfies less than or equal to , and the
residual  constraint  has been satisfied in the second constraint
of  (29),  the  constraints  can  be  met.  By  applying  importance
sampling to (30), converting the sampling distribution of 
to that of  and parameterizing the policy, we can obtain the
form of (29). ■

Remark 3: Theorem 3 provides a structured approach to pol-
icy  optimization  in  situations  where  safety  and  other  opera-
tional  constraints  are  critical.  The  expected  advantage  guides
the optimization, pushing for policies that yield better perfor-
mance  compared  to  the  past.  Constraints  are  in  place  to  pre-
vent drastic deviations in behavior, ensuring that the new pol-
icy  remains  reliable  and  does  not  introduce  excessive  risk.
This balance is crucial for the practical application of CMDP
in  autonomous  navigation,  where  safety  cannot  be  compro-
mised.

πθ

Unlike  previous  work  that  approximates  the  non-convex
problem  within  the  trust  region  to  the  convex  optimization
problem by the Taylor expansion formula [36], [38], here, by
combining  the  idea  of  proximal  policy,  the  above  constraint
problem  is  converted  to  an  unconstrained  optimization  prob-
lem, and the policy is still parameterized as 
 

LCLIP
Safe−PPO(θ) = LCLIP(θ)−ϱ

m∑
i

Φ(ĴCi (πθ)) (31)

LCLIP(θ) = E(s,a)∼τold [min(r(θ)A
πθold
R (s,a),clip(r(θ),1−ε,

1+ε)A
πθold
R (s,a))] ϱ

ĴCi (πθ) = JCi (πθ)−di

Φ(·)

where 
,  is  a  penalty  factor,  the  surrogate  of  the

constraint  condition  and  the  indicator
function  is expressed as follows:
 

Φ(ĴCi (πθ)) =

0, if ĴCi (πθ) ≤ 0

LCLIP
Ci

(θ), if ĴCi (πθ) > 0

LCLIP
Ci

(θ) = E(s,a)∼τold [max(r(θ)A
πθold
Ci

(s,a),clip(r(θ),1−ε,
1+ε)A

πθold
Ci

(s,a))+ (1−γ)(JCi (πθold )−di)]

where 
.

(1−γ)

LCLIP
Ci

(θ)

Multiplying  both  sides  by  according  to  the  con-
straint in (29), then moving terms leads to a relationship with
0. Therefore, as an indicator function, the penalty term is only
considered when the constraint is not satisfied. This updating
method  simplifies  the  calculation,  since  the  second  item  in

 is  only  used  to  determine  whether  the  constraint
needs to be considered, but in the actual updating process, it is
only related to the first item.  

C.  Safe Sample Reuse Proximal Policy Optimization

πold−

Building upon the idea of reusing samples collected by the
previous policy  in SRPPO, we propose a new off-policy
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algorithm called safe sample reuse proximal policy optimiza-
tion (Safe-SRPPO) that aims to reuse samples safely in an off-
policy manner.

πold
πold− πθ

Corollary 1: Consider the current policy  and the previ-
ous policy , parameterizing the policy by , the off-pol-
icy safety constrained optimization problem can be expressed
as
 

LCLIP
Safe−SRPPO(θ) = LCLIP

SRPPO(θ)−ϱ
∑

i

κi

m∑
j

Φ(Ĵi
C j

(πθ)) (32)

i = 0 πθold i = 1
πθold− ϱ

Ĵi
C j

(πθ) = Ji
C j

(πθ)−d j

Φ(·)

when ,  the  policy  refers  to ;  when ,  the  policy
refers to .  is the safe policy penalty factor. The substi-
tute  function  of  the  constraint  and  the
indicator function  are expressed as follows:
 

Φ(Ĵi
C j

(πθ)) =


0, if Ĵi

C j
(πθ) ≤ 0

LCLIP
i,C j

(θ), if Ĵi
C j

(πθ) > 0

LCLIP
i,C j

(θ) = E(s,a)∼τi [max(ri(θ)A
πθold
C j

(s,a),clip(ri(θ), ςi −
ε′, ςi+ε′)A

πθold
C j

(s,a))+ (1−γ)(JC j (πθi )−d j)]

where 
.

Algorithm 1 shows the pseudocode for Safe-SRPPO.

Algorithm 1 Safe-SRPPO

πθold πθold−

ϕ0

ξ
j
0 ∀ j

Input: Current  policy ;  Previous  policy ;  Initial  critic
value  network  parameters ;  Initial  risk  value  network
parameters  

k = 0,1,2, . . .1  for  do
actor = 1,2, . . . ,N2  　for  do

πθold

Dk = {τi}
3  　　Interact with environment using policy  to collect train-

ing trajectory samples ;
R̂t Vϕk

ÂR
t

4  　　Calculate ,  and based on critic  value function ,  calcu-
late reward-based advantage estimate function ;

Ĉ j
t V

ξ
j
k

Â
C j
t

5  　　Calculate ,  and  based  on  risk  value  function ,  calcu-
late risk-based advantage estimate function ;

6  　end
7  　Optimize the objective function:

l = 1,2, . . . ,L8  　for  do
LCLIP

SRPPO(θ) LCLIP
i,C j

(θ) πθold Dk

πθold− Dk−1 i = 0 πθold i = 1 πθold−

9  　　Calculate ,  for  based  on ,  and  for
 based on , where  for  and  for ;

θ← θ+η∇LCLIP
Safe−SRPPO(θ)10　　Update policy network parameters: ;

1
|Dk |T

∑
τ∈Dk

∑T
t=0 DKL

(
πθ∥πθold

)
[st] > δ11　　if  then

12　　　break
13　　end
14　end

θold− ← θold θold← θ15　 ; ;
16　Fit value functions using MSE regression:

L̂V (ϕ) = 1
|Dk |T

∑
τ∈Dk

∑T
t=0

(
Vϕ (st)− R̂t

)217　 ;

L̂V (ξ j) = 1
|Dk |T

∑
τ∈Dk

∑T
t=0

(
Vξ j (st)− Ĉ j

t

)218　 ;
ϕ ξ j19　Update value network parameters: ; ;

20 end
  

V.  Simulation and Analysis

This section investigates the performance of the algorithms
on an unsignalized intersection scenario  (as  shown in Fig.  1)
using  Gym [39],  a  general  reinforcement  learning  platform.

The  SUMO  simulation  environment  is  built  by  connecting
Gym’s  interface  to  an  XML  configuration  file  that  specifies
the intersection design, vehicle parameters, traffic density and
route  information.  Traci  is  used  to  extract  relevant  state  val-
ues  for  each  vehicle  from  SUMO  and  we  develop  the  algo-
rithms  based  on  PyTorch [40],  a  neural  network  framework.
Fig. 6 shows the overall simulation logic.
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Fig. 6.     Simulation training framework.  

A.  Parameter Settings

10 m/s

h = 0.15

1)  Vehicle  Tracking  Model  Parameters: We  employed  the
Krauss  vehicle  following  model  within  the  SUMO  environ-
ment to simulate dynamic traffic flows. This model was cho-
sen  for  its  capacity  to  produce  smooth  speed  transitions  and
maintain  close  distances  during  deceleration  in  single-lane
traffic  scenarios.  To  add  realism,  vehicles  were  generated  at
the east and west ends of lanes with speeds exceeding ,
and  their  arrival  time  was  randomized  with  a  probability  of

 per  second,  introducing  variability  and  mimicking
real-world traffic conditions. Table I shows the parameters of
the vehicle following model.
 
 

TABLE I
Krauss Model Parameters

Description Symbol Value

Minimal safety distance ϑ 2.5 m

Departing speed vset
i ≥ 10 m/s

Maximum acceleration amax 2.6 m/s2

Expected deceleration b 4.5 m/s2

Maximum deceleration in emergency cases be 9 m/s2

Extra delay time before driving after stopping κ 0.1 s

Imperfection of the driver’s driving behavior σ 0.5

Minimal following time gap τi 1 s
 

M = 18 N = 28
[XS tart,

XEnd] = [−80,80]
[YS tart,YEnd] =

2)  Simulation  Training Parameters: In  this  simulation  sce-
nario, the discrete granularity of relative longitudinal distance
and  relative  transverse  distance  in  the  semantic  scene  graph
are  and ,  respectively.  The  relative  coordinate
range for  the  start  and end transverse  coordinates  is 

,  and  the  relative  coordinate  range  for  the
start  and  end  longitudinal  coordinates  is 
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[−5,40]
A = [−4,4]

. The continuous speed space for the self-driving vehi-
cle is .

γ

0.9550 = 0.08 γ 0.9950 = 0.6

γ

The  specific  values  of  the  reward  function  parameters  are
shown in Table II.  The starting point  of  the specific  numeric
settings  is  to  make the  absolute  value  of  the  reward  function
around  1.  Therefore,  the  relationship  between  the  terminal
state  related  factors  of  the  main-line  reward  is  designed  as
shown in Table II. If the final mainline reward is diluted, the
number  of  episodes  of  running  is  increased,  and  the  vehicle
hardly  moves.  Therefore,  it  is  necessary  to  ensure  that  the
boundary range of the auxiliary reward/0.08 is greater than the
absolute  value  of  the  main-line  reward  (note  that  when  is
0.95, . Similarly, if  is 0.99, then ).
Therefore,  the  numerical  values  of  the  auxiliary  reward  fac-
tors designed in Table II can meet different  values.
  

TABLE II
Reward Function Parameters

Description Symbol Value

Arrival factor of mainline reward carr 1.0

Collision factor of mainline reward ccol 2.0

Timeout factor of mainline reward cout 1.0

Episode limit time length τm 128

Efficiency factor of auxiliary reward ceff 0.01

Wait and brake factor of auxiliary reward cwab 0.01

Wait or brake factor of auxiliary reward cwob 0.005

No wait or brake factor of auxiliary reward cnwb 0.01

Emergency brake factor of auxiliary reward cteb 0.01
 

The number of interactive periods (epochs, corresponding to
the  number  of  policy  updates)  is  250.  The  complete  parame-
ter settings are shown in Table III.

Remark 4: To accelerate the learning process, we use paral-
lel  actors  throughout  the  entire  training process.  Specifically,
16  actors  learn  simultaneously.  During  each  iteration,  every
actor  interacts  with  the  environment  independently  and  col-
lects data for one epoch. The collected data is then used to cal-
culate  a  local  gradient,  which  is  combined  with  other  local
gradients to obtain a global gradient through averaging.  

B.  Tasks Evaluation and Analysis
There  are  six  metrics  to  evaluate  algorithms:  1)  Average

cumulative  return,  which  measures  the  average  reward
obtained by the ego vehicle per episode; 2) Average cumula-
tive risk, which measures the average risk of collision for the
ego vehicle per episode; 3) Success rate, which measures how
often the ego vehicle reaches its destination within an epoch;
4)  Collision  rate,  which  measures  how  often  the  ego  vehicle
collides  with  any  other  vehicles  before  reaching  its  destina-
tion  per  epoch;  5)  Output  action  value,  which  measures  the
value  of  the  action  executed  by  the  policy  network  after
receiving  an  observation  value,  ranging  from [−1,  1] after
applying a  Tanh activation  function;  and 6)  Average  episode
length,  which  measures  how  many  steps  it  took  for  the  ego
vehicle to complete an episode, including both successful and
failed cases.

cE

We train  the  ego  vehicle  with  these  four  RL algorithms  to
complete  three  tasks,  i.e.,  left  turn,  going  straight  and  right
turn.  The  ego  vehicle  starts  at  the  stop  line  and  observes  the
whole  traffic  environment,  interacts  with  surrounding  vehi-
cles, and eventually travels 40 meters to reach the destination
through  different  reinforcement  learning  algorithms  and  per-
forming the corresponding output actions. Taking into account
the safe policy, the collision risk  value is set to 2.0 and the
long-term risk constraint is set to 0.2 for these tasks.

1) Left Turn Task: In our simulation of a self-driving vehi-
cle tasked with navigating an intersection safely, we observed
notable  differences  in  the  convergence  performance  of  vari-
ous  algorithms  (Fig.  7).  All  algorithms  utilized  our  semantic
scene representation to capture traffic  interaction information
and  demonstrated  effective  task  completion,  as  indicated  by
stable average cumulative returns (Fig. 7(a)) and high success
rates  (over  0.95)  (Fig.  7(c)).  PPO,  while  effective,  showed  a
higher  collision  risk  (approximately  1.9)  and  collision  rate
(about  0.03),  highlighting  safety  concerns.  SRPPO,  employ-
ing an experience reuse method, led to more aggressive driv-
ing behavior, reflected in slightly lower returns (around 0.92)
and  success  rates  (0.95).  Safe-PPO  marked  a  significant
advancement  in  safety,  reducing  both  collision  risk  (below
0.5) and collision rate (under 0.01). However, it demonstrated
a  slower  convergence  rate  compared  to  SRPPO,  with
marginally lower cumulative returns (approximately 0.96) and
success  rates  (about  0.97).  Its  cautious  approach,  character-
ized by longer episode durations (about 50 steps or 10 s), sug-
gests  a  trade-off  between safety  and efficiency.  The standout
performer  in  our  simulations  was  Safe-SRPPO,  which
excelled  in  both  safety  metrics  and  convergence  efficiency
(Figs. 7(b) and 7(d)). It achieved the highest average cumula-
tive  return  (1.04)  and  success  rate  (0.99),  while  maintaining

 

TABLE III
Training Hyperparameters

Description/symbol Value

Hidden layer number 2

Hidden units number 128

Numbers of epochs 250

Steps per epoch 214

Number of steps 250×214

εTarget clipping factor 0.2

ε′Sample reuse target clipping factor 0.1
Learning rate of policy optimizer 0.0003

Learning rate of value function optimizer 0.001

γDiscount factor 0.99

λGAE factor 0.97

δKL divergence boundary value 0.012
Maximum number of gradient descent steps 80

Simulation step length 0.2 s

κPolicy weight {0.5, 0.5}

ϱSafe policy penalty factor 10

hRandom vehicle arrival probability per second 0.15
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the  lowest  average  cumulative  risk  value  and  collision  rate
(below  0.2  and  under  0.01,  respectively).  This  algorithm
uniquely  combined  the  safety-oriented  policy  of  Safe-PPO
with  the  experience  reuse  strategy  of  SRPPO,  resulting  in
optimized  policy  adjustments  without  significant  deviations
from  the  original  policy.  This  approach  not  only  enhanced
sample  efficiency  but  also  improved  exploration,  leading  to
more robust and quicker convergence.

2)  Going  Straight  Task: In  this  task,  the  ego  vehicle  only
needs  to  consider  how  to  traverse  the  intersection,  without
considering  the  following  behavior.  As  shown  in Figs.  8(a)
and 8(c), in going straight task, the average cumulative return
curves could converge and have a high success rate under dif-

ferent  algorithms;  as  shown  in Figs.  8(b)  and 8(d),  the  aver-
age cumulative risk value and collision rate are lower than the
corresponding  values  of  turn  left  task,  so  from  the  concrete
execution  behavior,  as  shown in Figs.  8(e)  and 8(f),  the  out-
put  action  values  increase  and  the  average  episode  length
decreases correspondingly.

3) Right Turn Task: When making a right turn, the distance
required for turning is shorter and following behavior needs to
be  implemented  after  successful  turn.  This  task  is  similar  to
high-speed merging scene. As shown in Figs. 9(a) and 9(c), in
the right  turn task,  both average accumulated return and suc-
cess  rate  can  converge  under  different  algorithms. Figs.  9(b)
and 9(d)  show  that  the  average  accumulated  risk  values  are
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Fig. 7.     Training results of left turn task.
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Fig. 8.     Training results of going straight task.
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lower than those of left turn and going straight tasks, and the
collision  rate  is  also  lower  and  close  to  zero  compared  with
those  of  left  turn  and  going  straight  tasks.  Besides,  from the
perspective of concrete action outputs (Figs. 9(e) and 9(f)), the
convergence  trend  of  outputs  of  different  algorithms  in  left
turn and going straight tasks is similar, and the same goes for
the average episode length.

Under different tasks, PPO converges to stable policies but
requires  relatively  high  numbers  of  interactions.  SRPPO
increases sampling efficiency but has higher collision rate and
risk  values,  indicating  a  more  aggressive  policy.  Safe-PPO
reduces collision rate by applying a risk function as constraint,
but  still  requires  high  numbers  of  interactions  for  conver-
gence.  Safe-SRPPO  combines  experience  reuse  and  safety
constraint  policy,  overcoming these weaknesses and enabling
safe and efficient intersection passing. All algorithms achieve
stable  and  good  performance  under  our  MDP  and  training
frameworks,  converging  to  average  cumulative  returns  of  1
with low collision rates.

4) Policy Transfer Effect Among Different Tasks: We evalu-
ate the transfer of policy knowledge by testing a set of 12 poli-
cies.  Each  policy  is  initially  trained  on  one  of  three  distinct
driving tasks. We use neural networks to directly map the out-
put  of  these  policies  to  vehicle  actions.  To  determine  how
effective  each  policy  is  when  faced  with  tasks  it  was  not
trained on, we conduct 1000 test episodes for every combina-
tion of  policy and task.  This  comprehensive testing approach
allows us to thoroughly assess the adaptability and generaliza-
tion  capability  of  the  policies  across  different  task  environ-
ments. Figs.  10 and 11 show  the  success  rate  and  average
episode  return,  respectively.  The  four  algorithms  are  repre-
sented  by  circular  graph  with  three  concentric  circles,  from
outside  to  inside,  representing  that  the  algorithm  is  trained
under  left  turn  task  (LT),  going  straight  (GS)  and  right  turn
(RT)  tasks  respectively;  The  radial  direction  corresponds  to
testing  the  above  polices  under  LT,  GS  and  RT  tasks  in  a

clockwise  direction.  The  success  rates  above  0.98  are  high-
lighted  with  black  frames.  All  four  algorithms  achieved  suc-
cess rates higher than 85%,  demonstrating good policy trans-
ferability  across  different  tasks.  Safe-SRPPO  has  the  best
transfer  performance,  especially  on  the  RT  task,  where  it
achieves  a  near-perfect  success  rate.  The  RT  task  is  also  the
easiest  for  all  algorithms  to  transfer  to,  followed  by  the  GS
task.  Safe-PPO  performs  exceptionally  well  on  these  two
tasks, with a success rate close to 100%. When testing on the
same task as training, all algorithms performed well, with suc-
cess  rates  above  95%. Fig.  11 shows  the  average  episode
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Fig. 9.     Training results of right turn task.
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return over 1000 episodes. The highest average reward (1.09)
was obtained by Safe-SRPPO tested on the RT task. The low-
est average reward (0.691) was obtained by SRPPO trained on
the RT task and tested on the LT task. This is because SRPPO
converged  to  a  large  action  value  that  reflects  an  aggressive
driving style,  which differs  from the optimal  path for  the LT
task and does not consider safety collision warnings.

5)  Parallel  Number  Impact  Analysis: We  train  our  Safe-
SRPPO  algorithm  on  the  left  turn  task  using  different  num-
bers of CPUs and its impact on training time and performance
shown in Fig.  12.  The  algorithm quickly  converged  to  a  sta-
ble  value under  all  parallel  settings (Fig.  12(a)).  The training
time varied from 36 minutes (32 CPUs) to 2 hours 6 minutes
(4  CPUs),  with  a  negative  correlation  with  CPU  number
(Fig.  12(b)).  The exception was 48 CPUs, which took longer
than  expected  due  to  resource  limitations  on  our  server.  The
best performance was achieved with 16 CPUs, which resulted
in  the  fastest  convergence  rate  and  moderate  time  consump-
tion.  

VI.  Conclusion and Future Work

This paper proposes an RL framework for decision-making
at unsignalized intersections with both self-driving and manu-
ally-driven  vehicles.  The  framework  consists  of  three  steps:
1) Building a mixed traffic scenario and setting up three inter-
section tasks (left turn, going straight, right turn); 2) Establish-
ing a POMDP, designing a semantic scene graph based on the
observations of self-driving vehicles, and developing a reward
function that  balances  qualitative  targets  and effective  explo-
ration; and 3) Proposing a CMDP to ensure safe driving of the
self-driving vehicle and a method to calculate the time of V2V
conflict  based  on  motion  relations  for  quantitative  collision
risk.  The  framework  is  evaluated  in  the  SUMO unsignalized
intersection  environment  with  four  RL  algorithms  under  dif-

ferent  intersection  tasks.  The  experimental  results  show  that
all  four  RL  algorithms  can  complete  the  tasks  successfully,
with  the  safe-SRPPO  algorithm  achieving  the  best  perfor-
mance with a success rate close to 100%.  This study focuses
on single-vehicle decision-making in dynamic traffic environ-
ments,  provides  essential  insights  into  RL-based  decision-
making  at  unsignalized  intersections,  underscoring  its  poten-
tial  to  enhance  traffic  safety  and  efficiency.  While  our
research  initially  concentrates  on  the  autonomous  navigation
principles  of  an  individual  vehicle,  it  sets  a  foundation  for
expanding  into  more  complex  scenarios  involving  multiple
agents. Future work will not only explore interactions among
multiple  vehicles  in  traffic  but  also  extend  the  proposed
framework  to  address  intricate  and  lifelike  traffic  situations,
including  environments  with  multiple  intersections,  diverse
pedestrian activities, and varied traffic light systems. This pro-
gression  will  involve  the  application  of  alternative  RL  algo-
rithms and the refinement of semantic scene graph structures,
aiming to significantly improve learning efficiency and gener-
alization capabilities of autonomous vehicles. These advance-
ments  are  essential  for  adapting  to  a  broad  range  of  traffic
conditions  in  urban,  suburban,  and  rural  areas,  and  for  inte-
grating  these  methodologies  into  various  vehicle  types  and
traffic systems, thereby enhancing the comprehensiveness and
applicability  of  our  research  in  the  dynamic  field  of
autonomous driving.
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