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Abstract
The aim of the study is to assess the staging value of the tumor heterogeneity 
characterized by texture features and other commonly used semi-quantitative 
indices extracted from 18F-FDG PET images of cervical cancer (CC) patients. 
Forty-two patients suffering CC at different stages were enrolled in this study. 
Firstly, we proposed a new tumor segmentation method by combining the 
intensity and gradient field information in a level set framework. Secondly, 
fifty-four 3D texture features were studied besides of SUVs (SUVmax, 
SUVmean, SUVpeak) and metabolic tumor volume (MTV). Through 
correlation analysis, receiver-operating-characteristic (ROC) curves analysis, 
some independent indices showed statistically significant differences between 
the early stage (ES, stages I and II) and the advanced stage (AS, stages III 
and IV). Then the tumors represented by those independent indices could be 
automatically classified into ES and AS, and the most discriminative feature 
could be chosen. Finally, the robustness of the optimal index with respect to 
sampling schemes and the quality of the PET images were validated. Using the 
proposed segmentation method, the dice similarity coefficient and Hausdorff 
distance were 91.78   ±   1.66% and 7.94   ±   1.99 mm, respectively. According 
to the correlation analysis, all the fifty-eight indices could be divided into 20 
groups. Six independent indices were selected for their highest areas under the 
ROC curves (AUROC), and showed significant differences between ES and AS 
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(P  <  0.05). Through automatic classification with the support vector machine 
(SVM) Classifier, run percentage (RP) was the most discriminative index 
with the higher accuracy (88.10%) and larger AUROC (0.88). The Pearson 
correlation of RP under different sampling schemes is 0.9991   ±   0.0011. RP 
is a highly stable feature and well correlated with tumor stage in CC, which 
suggests it could differentiate ES and AS with high accuracy.

Keywords: cervical cancer, PET/CT images, tumor segmentation, texture 
analysis, cancer staging

S  Online supplementary data available from stacks.iop.org/PMB/60/135123/
mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

According to the world cancer report 2014, cervical cancer (CC) is the third most common 
cancer with high incidence rate (14.0 per 100 000) and the fourth most common cause of cancer 
death with high mortality rate (6.8 per 100 000) among women in worldwide in 2012 (Stewart 
and Wild 2014), and it seriously affects life quality of women and threatens their lives. Therefore 
the accurate diagnosis and individualized treatment for the CC victims are intensely important.

The type of treatment for CC, which mainly includes surgery, radiation therapy and chemo-
therapy, is largely dependent on tumor stage. In addition, tumor stage is also a reliable prognos-
tic indicator for CC victims (Waggoner 2003). Therefore, accurate staging plays an important 
role in treatment planning and prognosis evaluation. The current staging system for cervix 
cancer is the International Federation of Gynecology and Obstetrics (FIGO) classification 
(Creasman 1990), which is usually based on findings from physical examination and multiple 
imaging techniques such as chest radiography, excretory urography, cystoscopy, and proctos-
copy. However, the clinical FIGO grading system was found to be subjective (Nordström et al 
1996), and was dependent on too many inspection methods. Thus, it is desirable to develop an 
objective criteria to aid cancer staging automatically.

As a functional imaging technique, 18F-FDG PET is widely used in oncology for its ability to 
reflect the metabolic characteristics of the tumors at the molecular level, especially its quantita-
tive analysis in assisting the prognosis and outcome of cancer patients. So far, the staging value of 
PET images is reflected in its ability of detecting the lymph-node metastasis, but the quantitative 
information is still not used in the staging (Waggoner 2003, Hansen et al 2014). One of the most 
widely used indices for uptake quantification in PET images is the standardized uptake value 
(SUV), which serves as the baseline values to support diagnosis and prognosis prediction. Another 
important index is the metabolic tumor volume (MTV), which has been proved to be an independ-
ent prognostic factor for tumor recurrence in patients with CC (Kim et al 2011). Recently, tumor 
heterogeneity attracts much attention since it often corresponds to cellular and molecular char-
acteristics such as high cellular proliferation, necrosis, fibrosis, regions with angiogenesis, and 
the presence of specific receptor (Chicklore et al 2013), which could reflect the aggressiveness 
of tumors. Therefore, PET image texture analysis was proposed to evaluate the heterogeneity of 
tumors, and many studies have proved their abilities in predicting therapy response (Vaidya et al 
2012, Yang et al 2013) and patient outcome (Eary et al 2008, Renier et al 2014). However, the 
correlation between these quantitative indices of the primary tumor and tumor stage has not been 
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clearly stated for CC. Moreover, the relationship among these indices is still unclear and which 
texture indices should be evaluated for CC staging remains an open problem.

In this study, we mainly assess the staging value of the tumor heterogeneity characterized 
by texture features extracted from 18F-FDG PET images of CC patients. In addition, the stag-
ing abilities of these features were also compared with the commonly used SUVs (SUVmax, 
SUVmean and SUVpeak) and MTV to investigate whether the texture features could provide 
additional prognostic information for CC staging. The framework diagram of the study was 
shown in figure 1.

2. Materials and methods

2.1. Dataset

This retrospective study enrolled forty-two patients with newly diagnosed squamous cell car-
cinoma of the uterine cervix at different stages between 2012 and 2014. Twenty-seven of them 
have the ground truth tumors constructed by averaging two segmentation results delineated 
by two experienced physicians. The staging procedures for all the patients included physical 
examination, computed tomography (CT) scan, magnetic resonance imaging (MRI), positron-
emission tomography/computed tomography (PET/CT) and ultrasound before initiating treat-
ment. The clinical stages of patients are summarized in table 1.

The 18F-FDG PET/CT scans were performed with a hybrid PET/CT scanner (GE Discovery 
ST16 PET-CT®, GE Healthcare, Milwaukee WI, USA). All patients were fasted for at least 
6 h, and injected with 200–400 MBq of 18F-FDG depending on body weight at 66   ±   10 min 
before data acquisition. The CT scans were performed first (at 120 kVp, 150 mA) with a slice 
thickness of 3.27 mm and reconstructed to a 512   ×   512 matrix (voxel size, 0.98   ×   0.98   ×   3.2
7 mm3). Each PET acquisition measured 128   ×   128   ×   207 voxels with anisotropic resolution 
of 5.47   ×   5.47   ×   3.27 mm3 by a 3D row-action maximization likelihood algorithm (Browne 
et al 1996). The PET images were converted into SUV units by normalizing the activity con-
centration to the dosage of injected 18F-FDG and the patient body weight.

In this study, only the primary tumors were considered since small lesions could not reflect 
the heterogeneity because of the limited resolution of PET images.

2.2. Automatic tumor delineation

Since the quantitative indices are calculated based on the primary tumor of the CC patients, 
accurate delineation of the primary tumor is extremely important. Besides of the heterogene-
ity and multicentricity, the segmentation of the cervical tumors faces more challenges. For 

Figure 1. The framework diagram of our proposed CC staging.
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example, the tumors are difficult to isolate from the urine in the adjacent bladder, since they 
have similar signal intensities on PET images (Wong et al 2013). In order to exclude the 
subjectivity of manual delineation and increase the accuracy of the segmentation results, we 
proposed a new automatic method for CC tumor segmentation.

Given the fact that the centers of the bladder lumen and the tumor have a higher inten-
sity than the peripheries on the Gaussian filtered PET images, the gradient fields (GF) of 
the boundary of the bladder and tumor should be opposite. Through combining the intensity 
information and gradient field information into a level set framework, we constructed a new 
evolution equation as (1) to delineate the tumor accurately.

⎛
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⎜

⎞
⎠
⎟ϕ ϕ δ ϕ∂ ( )
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= ∇

( ∇ )
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where Iσ represents the normalized Gaussian filtered PET images using a Gaussian kernel with 
a standard deviation σ, ϕ is the level set function (LSF), <  *  >  stands for the angle between 
the two vectors (within the range 0–π), and │*│ stands for the magnitude of the vector. The 
Dirac delta function δ is approximated by the following smooth function δε (Li et al 2010):
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where ε is usually set to 1.5. In order to regularize the LSF, Gaussian filtering is applied after 
each iteration according to (Zhang et al 2010)

ϕ ϕ= ⊗σG , (3)

where Gσ is a Gaussian kernel with σ (same with the aforementioned σ used in the Gaussian 
filtered PET images), and ⊗ stands for the convolution operation. The initial function ϕ0 is a 
binary step function, and defined by:

⎧
⎨
⎩ϕ ( ) = ∈

−x
c x R
c

, if
, otherwise

,0
0 0

0
 (4)

where c0 is a positive constant (we set c0 to 2 in this work), and R0 is a region in the PET images.
The above evolution equation can be implemented with a iterative finite difference scheme. 

At the beginning of the iteration, the gradient fields of the LSF and the Iσ around the ZLS are 

coincident, so ϕ∂ ( )
∂

x

t
 is positive and the LSF is increased, the ZLS could expand. When the ZLS 

reaches the boundary of the tumor and the bladder, ϕ∂ ( )
∂

x

t
 is negative since the gradient fields of 

Table 1. Clinical stages of the patients.

Tumor stage Quantity

IA 1 (2.38%)
IB 4 (9.52%)
IIA 2 (4.76%)
IIB 9 (21.43%)
IIIA 1 (2.38%)
IIIB 18 (42.86%)
IVA 3 (7.14%)
IVB 4 (9.52%)
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LSF and Iσ around the ZLS are opposite. Therefore the expansion of the ZLS will be stopped. 
The definition of R0 is based on the tissue specificity, which refers to the fact that the cervical 
tumor and the bladder content have similar degrees of FDG uptake compared with other sur-
rounding tissues on PET, but different structural information due to different levels of attenu-
ation on CT. We constructed a new hyper-image utilizing both the metabolic and anatomic 
information, which means each voxel is represented by the SUV normalized to the SUVmax on 
PET images, the Hounsfield unit (HU) density values normalized to the maximum HU values 
on CT images, and the product of them. Then the constructed hyper-image can be divided into 
four regions using a fuzzy c-means (FCM) algorithm (Zaidi et al 2002, Belhassen et al 2010). 
The region with high SUV and moderate HU corresponds to the rough tumor region (RTR), 
while the regions with high SUV and low HU, low SUV and moderate HU and low SUV and 
low HU correspond to the bladder contents, the other soft tissues and the background, respec-
tively. Then the voxels with SUV larger than 40% of the SUVmax (Nestle et al 2006) (or other 
thresholds commonly used in clinical practice, such as 2.5) in the RTR were regarded as the 
R0. Additionally, the proposed method was performed only in the small region including all the 
positive areas around the tumor rather than the whole body images for convenient.

The primary tumors were segmented by the proposed method (hereafter referred to as the 
‘FCM-LSGF method’), and all of the patients that have a MTV larger than 6.26 cm3 (64 vox-
els) were included in the subsequent analysis. This is because the calculation of some texture 
features requires a number of neighboring voxels in each direction, and only the number larger 
than 4 voxels would make this meaningful (Orlhac et al 2014).

2.3. Tumor characterization

In addition to commonly used SUV and MTV analysis, we investigated 3D texture features. In 
current study, fifty eight features were extracted from the delineated primary tumor.

2.3.1. SUV and MTV analysis. We extracted the following SUV parameters from the pri-
mary tumor of each patient’s baseline PET images: SUVmax, SUVmean, SUVpeak. SUVmax 
stands for the maximum uptake in the delineated tumor, SUVmean is the average uptake in 
the tumor, and SUVpeak refers to the local average within a small region (26 neighbors in 3D 
were used in this work) centered on the voxel with SUVmax.

MTV is the volume of the primary tumor.

2.3.2. Texture analysis. The texture features are derived from statistics-based methods, which 
consist of first-order, second-order and higher order statistics.

First-order parameters describe global texture features according to the grey level fre-
quency distribution within the tumor. In this work, five representative indices were computed 
based on the histogram analysis: SUVmin, SUVvariance, SUVskewness, SUVkurtosis and 
SUVentropy. Second-order parameters describe local texture features and are often calcu-
lated using co-occurrence matrix (CM), and eighteen texture indices were calculated from 
this matrix (Haralick et al 1973). Thirty one high-order parameters in total can be calcu-
lated from grey level size zone matrix (GLSZM) (Thibault et al 2009), grey level run length 
matrix (GLRLM) (Galloway 1975, Xiaoou 1998) and neighborhood gray level difference 
matrix (NGLDM) (Amadasun et al 1989) and texture spectrum (TS) (Dong-Chen et al 1990a, 
1990b), which could reflect the regional intensity variations. Both CM and the GLRLM were 
calculated from 26 different directions with 1-voxel distance relationship between consecu-
tive voxels. The related index value was the average of the index over the 26 directions. The 
specific indices are listed in table 2.

W Mu et alPhys. Med. Biol. 60 (2015) 5123
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The definitions of all indices are described in detail in supplemental material 1 (stacks.iop.
org/PMB/60/135123/mmedia).

To calculate the above texture indices, the value (i.e. SUV) of each voxel within the seg-
mented tumors was first resampled in a finite range of discrete values with:

( ) = ⋅ ( ) − ( )
( ) − ( )

R x
I x I

I I
2

min

max min
D (5)

Table 2. Specific indices calculated from the related texture matrices.

Matrix Index

CM Average
Variance (CM)
Contrast (CM)
Correlation
Energy
Entropy
Homogeneity
Intensity
Dissimilarity
IDM
SA
SV
SE
DV
DE
IC1
IC2
MCC

TS BWS
GS
DD
CS

NGLDM Coarseness
Contrast (NGLDM)
Busyness
Complexity
Strength

GLRLM SRE
LRE
GLNR
RLN
RP
LGRE
HGRE
SRLGE
SRHGE
LRLGE
LRHGE

(Continued )
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where 2D is the number of discrete values, I is the intensity of the original PET images. 
Through this step, the noise and the differences among patients can be reduced. In order to 
investigate the impact of D, the texture features were computed with different resampling 
schemes, i.e. D = 3, 4, 5, 6, 7 and 8.

2.4. CC staging using statistical analysis

Usually, stages I and II are usually regarded as the early stage because of its higher survival 
rate than the advanced stage constituted by stages III and IV. In addition, treatment of the early 
stage CC often includes surgery and radiation therapy while CC patients with the advanced 
stage tumors should be mainly given chemotherapy. Given the above facts and the limited 
amount of the data, we divided the available data into two categories: the early stage (ES) and 
the advanced stage (AS).

2.4.1. Correlation analysis. In order to evaluate the relationships between the different indi-
ces, the Pearson correlation coefficients (hereafter denoted r) between each pair of indices 
(calculated with 128 discrete values, i.e. D = 7) were computed to analyze the linear correla-
tion. Based on these correlation coefficients, we divided all the indices into different groups to 
ensure all pairs of indices in a group had an |r| greater than 0.8 (Orlhac et al 2014).

2.4.2. Receiver-operating-characteristic (ROC) curves analysis. For each feature, the receiver 
operating characteristic (ROC) curve was constructed, and the area under the ROC curve 
(AUROC) was calculated to compare the discriminating ability of each parameter in staging. 
AUROC of 1 indicates perfect discrimination, while AUROC  ≤  0.5 indicates discrimination 

GLSZM SZE
LZE
GLNZ
ZLN
ZP
LGZE
HGZE
SZLGE
SZHGE
LZLGE
LZHGE

IDM, inverse difference moment; SA, sum average; SV, sum variance; SE, sum entropy; DV, 
difference variance; DE, difference entropy; IC, Information measures of correlation; MCC, 
maximal correlation coefficient; SRE, short run emphasis; LRE, long run emphasis; GLNR, 
gray-level nonuniformity for run; RLN, run length nonuniformity; RP, run percentage; LGRE, 
low gray-level run emphasis; HGRE, high gray-level run emphasis; SRLGE, short run low gray-
level emphasis; SRHGE, short run high gray-level emphasis; LRLGE, long run low gray-level 
emphasis; LRHGE, long run high gray-level emphasis; SZE, short zone emphasis; LZE, long 
zone emphasis; GLNZ, gray-level nonuniformity for zone; ZLN, zone length nonuniformity; ZP, 
zone percentage; LGZE, low gray-level zone emphasis; HGZE, high gray-level zone emphasis; 
SZLGE, short zone low gray-level emphasis; SZHGE, short zone high gray-level emphasis; 
LZLGE, long zone low gray-level emphasis; LZHGE, long zone high gray-level emphasis; BWS, 
black white symmetry; GS, geometric symmetry; DD, degree of direction; CS, central symmetry.

Table 2. (Continued )

Matrix Index
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no better than random chance. In our work, only the most discriminative texture feature of 
each index group (with the largest AUROC) was used for further analysis. At the same time, 
the capacity of each feature to stage patients was also investigated using the Student’s t-test, 
and P values less than 0.05 were considered statistically significant. Both the ROC analysis 
and Student’s test are based on SPSS version 20.0 (SPSS Inc., Chicago, IL, USA) statistical 
package for Windows.

2.4.3. CC staging with support vector machine (SVM) classifier. Nonlinear support vector 
machine (SVM) is a widely used technique in solving a variety of classification and regression 
problems (Burges 1998) for its strong ability to transform the learning task to the quadratic 
programming problem in high-dimensional spaces. It can find the global optimal decision 
function by maximizing margin to guarantee a minimum test error. Given a set of training 
dataset belonging to separate classes {(xi,yi),i = 1, … ,N}, where xi ∈ Rn denotes the ith input 
vector and yi ∈ {+1,−1} is the corresponding desired class label. The goal is to find a hyper-
plane w: wx + b = 0, which divides dataset to satisfy all the points with the same label are on 
the same side of the hyperplane and the distances between the two classes and the hyperplane 
are maximum. The problem of finding this hyperplane is equivalent to the maximization of

∑ ∑ ∑α α α α κ α α( ) = − ( ) ≤ ≤ =
= = =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟L y y x x C y

1

2
, subject to 0 and 0

i

N

i

i j

N

i j i j i j i

i

N

i i
1 , 1 1

 

(6)

where C is a constant to allow for mislabeled datasets, αi is the positive Lagrange multi-
plier, κ( )x x,i j  is the kernel function to map the input vectors into a high-dimensional fea-
ture space. In our experiments, the kernel used is Gaussian radial basis function as: 

κ λ( ) = (− − )x x exp x x, .i j i j
2

A series of multi-dimensional feature vectors were constructed with different combination 
of the selected optimal indices, and were automatically classified by a trained SVM classifier, 
which was implemented using LIBSVM (Chang and Lin 2011). The final optimal parameters 
were chosen by leave-one-out cross validation. Given the data (39% versus 61%) are imbal-
anced, accuracy may be misleading, we use the AUROC to evaluate the classification model 
besides the accuracy (Rakotomamonjy 2004).

2.4.4. Robustness evaluation. In order to investigate the effect of different resampling 
schemes, we calculated all the indices using six sampling schemes (D = 3, 4, 5, 6, 7 and 8), 
and analyzed the |r| between D = 7 (used in the above analysis) and D  ≠  7.

3. Results

3.1. Automatic tumor delineation

We compared the proposed method with several traditional methods, the traditional fixed 
thresholding method using 40% of the SUVmax (T40%), the Otsu method (Otsu 1975), ran-
dom walk (RW) (Bagci et al 2013) and the common used level set method based on Chan–Vese 
(CV) model (Chan and Vese 2001). To evaluate the accuracy of the segmentation, two com-
mon quantitative metrics, the Dice similarity coefficient (DSC) (Dice 1945) and the Hausdorff 
distance (HD) (Cignoni et al 1998) were used to perform direct comparison between the 
segmented volume and the ground truth. Since the T40%, Otsu, and RW methods did not 
possess the ability to separate tumor from bladder lumen, we performed a semi-automated 
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skeleton cuts method (Xiang et al 2011), to segment the cervix from the CT images firstly. 
Then the three methods were performed on the masked PET images with their best param-
eters. A qualitative comparison of different methods is provided in figure 2, which shows the 
initial PET images of two typical patients and their corresponding segmentation results. Given 
the segmentation results of the CV model could not separate the tumor from bladder, the quan-
titative comparison was performed between the FCM-LSGF method and the other three meth-
ods. The DSCs between the proposed method, T40%, Otsu, RW, and the gold standard are 
91.78   ±   1.66%, 67.00   ±   12.90%, 80.48   ±   6.78% and 82.10   ±   5.50%, respectively, while 
the HDs are 7.94   ±   1.99 mm, 15.59   ±   10.78 mm, 16.24   ±   9.17 mm and 13.87   ±   7.12 mm, 
respectively. For the proposed method, the σ was set to 0.5 in our experiments. In brief, our 
method gives the more competitive segmentation results.

In order to evaluate the accuracy of the FCM-LSGF method in calculating the features, we 
compared features obtained by the proposed method and the standard references with |r|, the 
relative error and Student’s t-test, which were shown in table 3 (The comparisons between 
the gold standard and the other three methods were shown in supplemental material 2 (stacks.
iop.org/PMB/60/135123/mmedia)). From this table, we could find that most of the features 
obtained by the FCM-LSGF were highly correlated with the standard references and have 
small relative errors except for SRE, SRLGE, SRHGE, SZE, SZLGE and SZHGE. None of 
the features show significant difference using the two different segmentation methods.

3.2. CC staging using statistical analysis

3.2.1. Correlation analysis. Sixty five indices in total were investigated in our work, so 2080 
Pearson correlation coefficients were calculated (65   ×   64/2 = 2080). The indices with an |r| 
greater than 0.8 between them were grouped together, and 20 groups were identified (table 4). 
Table 4 also presents the mean absolute correlation and the corresponding standard deviation 
between the indices, and nine of the indices do not belong to any group. From this table, we 
could find that seven texture indices are highly correlated to MTV, and none is correlated with 
SUVs except for SUVvariance.

3.2.2. Receiver-operating-characteristic (ROC) curves analysis. Table 5 lists the eleven indi-
ces with the highest AUC of each group, and the corresponding ROC curves are shown in 

Figure 2. Cervical tumor segmentation results (delineated in black) obtained with 
different methods in two different cases (case a and case b). For each case, the images 
from left to right correspond to the axial slices of the CT images, the segmentation 
results of the PET images obtained with Experts, our LS-GF, T40%, Otsu, RW methods 
and the traditional level set method based on the CV model, respectively. The difference 
between cases a and b is that the slices of a do not inclue the bladder, while the slices of 
case b do include the bladder.

Experts FCM-LSGF T40% Otsu RW CV
(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

CT images
(a0)

(b0)
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Table 3. The quantitative comparisons of the features obtained by the proposed FCM-
LSGF method and the standard references.

Index |r| Error (%) P-value

SUVmax 1.00 0.00 1.00
SUVmean 1.00 3.12 0.86
SUVpeak 1.00 0.00 1.00
MTV 1.00 4.75 0.84
SUVmin 0.85 17.51 0.75
SUVvariance 1.00 5.94 0.93
Skewness 0.99 5.94 0.89
Kurtosis 0.99 2.89 0.80
Entropy 0.99 0.52 0.84
Average 0.97 3.77 0.40
Variance (CM) 0.98 6.30 0.48
Contrast (CM) 0.99 6.00 0.80
Correlation 0.98 2.39 0.81
Energy 1.00 4.71 0.93
Entropy 1.00 0.10 0.96
Homogeneity 0.99 2.84 0.54
Intensity 0.98 5.48 0.50
Dissimilarity 0.99 3.41 0.74
IDM 0.98 4.45 0.45
SA 0.97 3.56 0.43
SV 0.98 6.20 0.45
SE 1.00 0.47 0.76
DV 0.99 4.80 0.87
DE 0.98 0.72 0.67
IC1 0.94 2.51 0.92
IC2 1.00 0.45 0.89
MCC 1.00 3.77 0.93
BWS 1.00 0.00 1.00
GS 0.86 1.12 0.15
DD 0.93 3.17 0.51
CS 0.99 22.86 0.77
Coarseness 0.99 5.24 0.79
Contrast (NGLDM) 1.00 9.41 0.53
Busyness 0.99 5.80 0.72
Complexity 0.99 9.07 0.67
Strength 1.00 2.37 0.99
SRE 0.74 40.54 0.55
LRE 0.98 5.16 0.51
GLNR 1.00 4.83 0.83
RLN 1.00 5.45 0.88
RP 1.00 4.78 0.84
LGRE 0.96 0.076 0.55
HGRE 0.97 0.29 0.56
SRLGE 0.74 40.50 0.55
SRHGE 0.72 40.78 0.54
LRLGE 0.98 5.17 0.51

(Continued )
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figure  3. The indices of other nine groups were not listed, since the AUCs of them were 
smaller than 0.5, which meant none of these indices were discriminative. In addition, Entropy, 
IC2, DD, GS and SUVpeak were not significant predictive factors (P  >  0.05) and were not 
selected for further analysis.

3.2.3. CC staging with support vector machine (SVM) classifier. With the λ ranged from 10−7 
to 0.01and C equaled to 1000, table 6 shows the accuracy and the AUROC of the staging using 
different indices and their combination with SVM classifier. λ is different from the index, 
which could be specified using leave-one-out cross validation. From this table, we could find 
that RP is significantly better than any other indices in CC staging for its higher accuracy and 
larger AUROC value.

3.2.4. Robustness evaluation. The Pearson correlation between RP calculated with D  ≠  7 
and D = 7 is 0.9991   ±   0.0011, which suggests that this index is robust with the respect to the 
number of gray levels used for resampling.

4. Disscussion

The primary objective in this study was to assess the staging capacity of the heterogeneity of 
the primary tumor characterized by texture features extracted from 18F-FDG PET images in 
CC patients. And these texture features were also compared with commonly used SUVs and 
MTV in staging. In order to calculate the accurate quantitative indices, we first proposed a 
new method named FCM-LSGF based on gradient fields of the Gaussian filtered PET images 
and the LSF. Then tumor characterization and statistical analysis were performed based on the 
delineated primary tumor.

Accurate image segmentation is one of the most challenging issues in quantitative analysis 
of PET images in oncology due to the low spatial resolution and high noise characteristics of 
PET images. Especially for the segmentation of cervical cancer, more challenges emerge. On 
one hand, commonly used T40% method is often affected by heterogeneous uptake, which 
could be seen from figure 2(a3). On the other hand, T40%, Otsu and RW methods do not pos-
sess the ability to separate tumor from bladder lumen, the cervix should be segmented at first 
to provide a candidate region, which is time consuming and subjective. In addition, due to the 
partial volume effect, the cervix may contain the signal of the bladder urine in PET images, 

LRHGE 0.98 5.16 0.51
SZE 0.75 38.71 0.55
LZE 0.97 5.62 0.42
GLNZ 1.00 6.10 0.78
ZLN 1.00 5.43 0.85
ZP 0.92 8.83 0.91
LGZE 0.95 0.99 0.73
HGZE 0.97 3.41 0.73
SZLGE 0.77 39.00 0.58
SZHGE 0.54 43.97 0.51
LZLGE 0.97 5.84 0.43
LZHGE 0.97 6.81 0.61

Table 3. (Continued )

Index |r| Error (%) P-value
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that is to say these three traditional methods could not obtain the cervical tumor with high 
accuracy even if the cervix is accurately segmented, which could be seen from figures 2(b3)–
(b5). So far, a few authors have studied the related cervical tumor segmentation methods. 
Roman-Jimenez et al proposed a fusion and Gaussian mixture based classification (FGMC) 
method to separate the bladder and tumor semi-automatically on the basis of interactive visual 
interpretation (Roman-Jimenez et al 2012). Arbones et al applied a level set method based on 
Chan–Vese (CV) model (Chan and Vese 2001), which was suitable for the segmentation of the 
heterogeneous region, to delineate heterogeneous PET-positive areas, but post-processing was 
also needed to exclude the bladder (Arbonès et al 2014), which is time consuming and unsuit-
able for the datasets with low resolution. Besides the accurate characteristic (DSC = 91.78%, 
HD = 7.94 mm), the proposed FCM-LSGF could also exclude the effect of bladder since the 
expansion of the zero level set of our proposed model could be stopped at the boundary of 
the tumor and the bladder fully automatically compared to classical CV model (shown in 
figure 2(b5)). Table 3 and supplemental material 2 (stacks.iop.org/PMB/60/135123/mmedia) 
show the quantitative comparisons of the features obtained by the FCM-LSGF, T40%, Otsu, 
RW methods and the standard reference. The features obtained by our methods show a higher 
correlation and smaller relative errors. And none of the features obtained by the FCM-LSGF 
method show significant difference with the gold standard, while some features obtained by 
the other three methods show significant difference with the gold standard, which may affect 
the later statistical analysis to a great extent. Therefore, accurate segmentation is playing an 
important role in quantitative analysis, and the proposed method provides more competi-
tive segmentation results for calculating quantitative parameters compared to the other three 
methods.

Objective and accurate staging of cervical cancer with limited inspection methods is one of 
the most popular research fields. However, few authors have studied the staging value of quanti-
tative analysis of 18F-FDG PET images. Sugawara et al reported SUVs of cervical cancers varied 

Table 4. Groups of correlated indices.

Group Correlated index |r|

G1 Average-intensity-SA-LZE-LZLGE-LRE-LRLGE-LRHGE 0.98   ±   0.01
G2 Contrast-homogeneity-dissimilarity-IDM-DV 0.92   ±   0.06
G3 Energy-entropy-MCC-coarseness-strength 0.90   ±   0.05
G4 Variance (CM)-SV 0.98
G5 SE-SUVkurtosis-SUVentropy 0.90   ±   0.06
G6 SZE-SZLGE-SZHGE-SRE-SRLGE-SRHGE 0.95   ±   0.05
G7 GLNZ-ZLN-GLNR-RLN-RP-Busyness-MTV-CS 0.92   ±   0.05
G8 LGZE-HGZE-LRGE-HGRE 0.95   ±   0.03
G9 LZHGE-SUVskewness 0.86
G10 Contrast (NGLDM)-complexity 0.92
G11 SUVmax-SUVpeak-SUVmean-SUVvariance 0.95   ±   0.03
G12 DE —
G13 IC1 —
G14 IC2 —
G15 ZP
G16 BWS —
G17 DD —
G18 GS —
G19 SUVmin —
G20 Correlation —
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widely and showed no significant correlation to the clinical staging (Sugawara et al 1999), and 
this is consistent with our results. From table 4, we can see that SUVs are highly correlated with 
SUVvariance, and three indices of SUVs are highly correlated with each other, but the t test 
results of these indices suggest that there is no statistically significant difference between the two 
stages (ES and AS). Additionally, table 4 also indicates that MTV is highly correlated with many 
texture features including RP, and all indices of this group show statistically significant difference 
between the two stages. This is inconsistent with (Orlhac et al 2014), which may be because of 
the different types of the cancers and the different purpose to group. However, the SVM model 
trained by RP has a better predicting ability with a higher accuracy and AUROC value, which 
can be seen from table 6. Comprehensive comparison between tables 5 and 6 suggests that the 
indices with the larger AUC and the smaller P-value could obtain the higher accuracy in auto-
matic differentiating ES and AS in general. Additionally, we also inspect the robustness of the 

Figure 3. ROC curves for RP, complexity, correlation, ZP, HGZE, entropy, IC2, IDM, 
DD, GS and SUVpeak for identification of ES and AS.

Table 6. Comparison of the staging capacity of different indices.

Index Accuracy AUROC

RP 88.10 0.880
Complexity 78.57 0.748
Correlation 73.81 0.716
ZP 73.81 0.716
HGZE 69.05 0.666
IDM 61.91 0.608
RP-complexity 78.57 0.767
RP-complexity-correlation 78.57 0.767
RP-complexity-correlation-ZP 78.57 0.767
RP-complexity-correlation-ZP-HGZE 78.57 0.767
RP-complexity-correlation-ZP-HGZE-IDM 78.57 0.767
MTV  80.95 0.810
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significant texture parameter (i.e. RP) by using different resampling schemes, and the Pearson 
correlation of 0.9991   ±   0.0011 indicates the resampling schemes does not affect its capability 
in staging. Simultaneously, we also conducted simulation studies under different noise levels 
and reconstruction methods, which we did not describe in detail owing to space constraints. The 
relative standard deviation (RSD) of RP calculated from the simulated tumor phantom under 35 
different conditions (7 levels of noise and 5 different reconstruction iterations) is 0.44%, which 
is small enough to indicate the strong robustness of RP.

Moreover, we also investigate the potential capacity of the texture features in dividing the 
ES patients into stage I and stage II, and dividing the AS patients into stage III and stage IV. 
Through the similar ROC Curves Analysis and t test, IDM is the best parameter for differen-
tiating stage I and II with the AUC of 0.855 and P-value of 0.029 (<0.05), while LGRE is the 
best parameter for differentiating stage III and IV with the AUC of 0.865 and P-value of 0.004 
(<0.05). Due to the small number of cases in each stage, a further study with accumulation of 
cases is warranted to validate the accuracy of the clustering using these indices with support 
vector regression (SVR).

The ground truth which every metric is compared against is clinical staging in our work, 
though there are discrepancies between clinical and surgical staging and some discrepancies 
have been reported up to 22% and 75% of patients in stage I and III respectively (Kaur et 
al 2003). As is known to all, the treatment for the ES patients is usually the combination of 
radiotherapy, chemoradiotherapy and surgery, while the treatment for the AS patients is usu-
ally the chemoradiotherapy rather than surgery (Waggoner 2003). Therefore, all the patients 
with the advanced stage CC in our work did not receive surgery, and most of the patients at the 
ES received radiotherapy or chemoradiotherapy before surgery, which changed their primary 
staging. In other words, there are very limited cases (only 3 patients in our work) has the surgi-
cal staging. Additionally, the accuracy of the clinical stage is credible, it was provided by very 
experienced physicians, and did not show any abnormality in the following surgery and other 
treatments. Besides that, the accurate staging before the treatment (including the surgery) 
is more important in clinical, since it largely determines whether the patients need surgery, 
which could reduce the suffering and economic burden of the patients. Therefore we regarded 
the clinical staging as the ground truth in the current work. With the accumulation of the 
surgery cases, we will further improve our work using surgical staging as our gold standard.

5. Conclusion

Our results demonstrate that the intratumor tracer uptake heterogeneity characterized by tex-
ture features on baseline 18F-FDG PET is highly associated with tumor stage in CC. Texture 
index derived from GLRLM, which has a strong robustness with respect to the quality of the 
PET images, could differentiate ES and AS automatically with high accuracy, and could pro-
vide valuable prognostic information in CC staging without multi-examination and excessive 
medical care objectively. More importantly, the significant difference of the texture analysis 
between the ES and AS indicates its important value in prognosis. The texture features may be 
another prognostic factors besides clinical staging, which can provide supplementary infor-
mation for developing treatment plan.
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