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a b s t r a c t

In this paper, we establish a neural-network-based decentralized control law to stabilize a class of
continuous-time nonlinear interconnected large-scale systems using an online model-free integral
policy iteration (PI) algorithm. The model-free PI approach can solve the decentralized control problem
for the interconnected systemwhich has unknown dynamics. The stabilizing decentralized control law is
derived based on the optimal control policies of the isolated subsystems. The online model-free integral
PI algorithm is developed to solve the optimal control problems for the isolated subsystems with
unknown system dynamics. We use the actor-critic technique based on the neural network and the least
squares implementation method to obtain the optimal control policies. Two simulation examples are
given to verify the applicability of the decentralized control law.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Decentralized control method using local information of each
subsystem is an efficient and effective way in the control of
interconnected systems. This overcomes the limitations of the
traditional control method that requires sufficient information
between subsystems. Unlike a centralized controller, a decentralized
controller can be designed independently for local subsystems and
make full use of the local available signals for feedback. Therefore,
the decentralized controllers have simpler architecture, and are more
practical than the traditional centralized controllers. Various decen-
tralized controllers have been established for large-scale intercon-
nected systems in the presence of uncertainties and information
structure constraints [1–7]. Generally speaking, a decentralized
control law is composed of some noninteracting local controllers
corresponding to the isolated subsystems, not the overall system. In
many situations, the design of the isolated subsystems is very
important. In [8], the decentralized controller was derived for the
large-scale system using the optimal control policies of the isolated
subsystems. Therefore, the optimal control method can be applied to
facilitate the design process of the decentralized control law.

The optimal control problem of nonlinear systems has been
widely studied in the past few decades. The optimal control policy

can be obtained by solving Hamilton–Jacobi–Bellman (HJB) equation
which is a partial differential equation. Because of the curse of
dimensionality [9], this is a difficult task even in the case of
completely known dynamics. Among the methods of solving the
HJB equation, adaptive dynamic programming (ADP) has received
increasing attention owing to its learning and optimal capacities
[10–20]. Reinforcement learning (RL) is another computational
method and it can interactively find an optimal policy [21–24]. Al-
Tamimi et al. [25] proposed a greedy iterative ADP to solve the
optimal control problem for nonlinear discrete-time systems. Park
et al. [26] used multilayer neural networks (NNs) to design a finite-
horizon optimal tracking neuro-controller for discrete-time nonlinear
systems with quadratic cost function. Abu-Khalaf and Lewis [27]
established an offline optimal control law for nonlinear systems with
saturating actuators. Vamvoudakis and Lewis [28] derived a synchro-
nous policy iteration (PI) algorithm to learn online continuous-time
optimal control with known dynamics. Vrabie and Lewis [29] derived
an integral RL method to obtain direct adaptive optimal control for
nonlinear input-affine continuous-time systems with partially
unknown dynamics. Jiang and Jiang [30] presented a novel PI
approach for continuous-time linear systems with complete
unknown dynamics. Liu et al. [31] extended the PI algorithm to
nonlinear optimal control problem with unknown dynamics and
discounted cost function. Lee et al. [32,33] presented an integral Q-
learning algorithm for continuous-time systems without the exact
knowledge of the system dynamics.

It is difficult to obtain the exact knowledge of the system dynamics
for large-scale systems, such as transportation systems and power
systems. The novelty of this paper is that we relax the assumptions of
exact knowledge of the system dynamics required in the optimal
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controller design presented in [8]. In this paper, we use an online
model-free integral PI to solve the decentralized control of a class of
continuous-time nonlinear interconnected systems. We establish the
stabilizing decentralized control law by adding feedback gains to the
local optimal polices of the isolated subsystems. The optimal control
problems for the isolated subsystems with unknown dynamics are
related to develop the decentralized control law. To implement this
algorithm, a critic NN and an action NN are used to approximate the
value function and control policy of the isolated subsystem, respec-
tively. The effectiveness of the decentralized control law established in
this paper is demonstrated by two simulation examples.

The rest of this paper is organized as follows. In Section 2, we
present the decentralized control problem of the continuous-time
nonlinear large-scale interconnected system. Section 3 presents
the decentralized stabilization control law for the continuous-time
interconnected system by adding appropriate feedback gains to
the local optimal polices of the isolated subsystems. In Section 4,
we derive a model-free PI algorithm using NN implementation to
obtain the decentralized control law. Two simulation examples are
provided in Section 5 to illustrate the effectiveness of the derived
decentralized control law. In Section 6, we conclude the paper
with a few remarks.

2. Problem formulation

We consider a continuous-time nonlinear large-scale system Σ
composed of N interconnected subsystems described by

Σ : _xiðtÞ ¼ f iðxiðtÞÞþgiðxiðtÞÞðuiðxiðtÞÞþZiðxðtÞÞÞ
i¼ 1;2;…;N ð1Þ
where xiðtÞARni is the state, uiðxiðtÞÞARmi is the control input
vector of the ith subsystem. The overall state of the large-scale
system Σ is denoted by x¼ ½xT1 xT2 … xTN�TARn, where n¼ PN

i ¼ 1 ni.
The local states are represented by x1, x2, …, xN, whereas u1ðx1Þ,
u2ðx2Þ, …, uNðxNÞ are local controls. For the ith subsystem, fi is a
continuous nonlinear internal dynamics function from Rni into Rni

such that f ið0Þ ¼ 0. giðxiÞ is the input gain function from Rni into
Rni�mi . ZiðxðtÞÞ is the interconnected term for the ith subsystem.

The ith isolated subsystem Σi is given by

Σ i : _xiðtÞ ¼ f iðxiðtÞÞþgiðxiðtÞÞuiðxiðtÞÞ: ð2Þ
For the ith isolated subsystem, we assume that the subsystem is
controllable, f iþgiui is Lipschitz continuous on a setΩi in Rni , and
there exists a continuous control policy that asymptotically stabi-
lizes the subsystem. Additionally, we let the following assump-
tions hold through this paper.

Assumption 1. The state vector xi¼0 is the equilibrium of the ith
subsystem, i¼ 1;2;…;N.

Assumption 2. The functions f ið�Þ and gið�Þ are differentiable in
their arguments with f ið0Þ ¼ 0, where i¼ 1;2;…;N.

Assumption 3. The feedback control vector uiðxiÞ ¼ 0 when xi¼0,
where i¼ 1;2;…;N.

In this paper, we aim at finding N feedback control policies u1ðx1Þ,
u2ðx2Þ, …, uNðxNÞ as the decentralized control law to stabilize the
large-scale system (1) when dealing with the decentralized control
problem. In the control pair ðu1ðx1Þ;u2ðx2Þ;…;uNðxNÞÞ, the ith control
policy uiðxiÞ is only a function of the corresponding local state, namely
xi. As shown in [8], the decentralized control law of the intercon-
nected system is related to the optimal controllers of the isolated
subsystems. To deal with the optimal control problem, we need to
find the optimal control policy un

i ðxiÞ of the ith isolated subsystem.
The optimal control policy minimizes the following infinite horizon

cost function:

JiðxiðtÞÞ ¼
Z 1

t
riðxiðτÞ;uiðτÞÞ dτ ð3Þ

where xiðτÞ denotes the solution of the ith subsystem (2) for the
initial condition xiðtÞAΩi and the input fuiðτÞ; τ4tg. riðxi;uiÞ ¼
QiðxiÞþuT

i ðxiÞRiuiðxiÞ, where QiðxiÞ is a positive definite function, i.e.,
8xia0, QiðxiÞ40 and xi ¼ 0 ) QiðxiÞ ¼ 0, and RiARmi�mi is a
positive definite matrix.

3. Decentralized control law

In this section, we present the decentralized controller design.
The optimal control problem of the isolated subsystems is
described under the framework of HJB equations. The decentra-
lized control law is derived by adding some local feedback gains to
the isolated optimal control policies.

3.1. Optimal control

In this paper, to design the decentralized control law, we need
to solve the optimal control problems for the N isolated subsys-
tems. According to the optimal control theory, we know that the
designed feedback control policy must not only stabilize the
subsystem on Ωi, but also guarantee that the cost function (3) is
finite. That is to say, the control policy must be admissible.

Definition 1. Consider the ith isolated subsystem, a control policy
μiðxiÞ is defined as admissible with respect to (3) onΩi, denoted by
μiðxiÞAΨ iðΩiÞ, if μiðxiÞ is continuous on Ωi, μið0Þ ¼ 0, μiðxiÞ stabi-
lizes the ith isolated subsystem (2) on Ωi, and JiðxiðtÞÞ is finite
8xi0AΩi.

We consider the ith isolated subsystem Σi in (2). For any
admissible control policy μiðxiÞAΨ iðΩiÞ, we assume that the
associated value function

ViðxiðtÞÞ ¼
Z 1

t
riðxiðτÞ;μiðτÞÞ dτ

is continuously differentiable. The infinitesimal version of this
value function is the nonlinear Lyapunov equation

riðxi;μiÞþð∇ViðxiÞÞTðf iðxiÞþgiðxiÞμiðxiÞÞ ¼ 0 ð4Þ
with Við0Þ ¼ 0. In (4), the term ∇ViðxiÞ ¼ ∂ViðxiÞ=∂xi denotes the
partial derivative of the local value function ViðxiÞ with respect to
the local state xi.

The optimal value function of the ith isolated subsystem can be
formulated as

Vn

i ðxiðtÞÞ ¼ min
μi AΨ iðΩiÞ

Z 1

t
riðxiðτÞ;μiðτÞÞ dτ; ð5Þ

and it satisfies the so-called HJB equation

0¼ min
μi AΨ iðΩiÞ

Hiðxi;μi;∇V
n

i ðxiÞÞ

where ∇Vn

i ðxiÞ ¼ ∂Vn

i ðxiÞ=∂xi. The Hamiltonian function of the ith
isolated subsystem is defined by

Hiðxi;μi;∇ViðxiÞÞ
¼ riðxi;μiÞþð∇ViðxiÞÞTðf iðxiÞþgiðxiÞμiðxiÞÞ: ð6Þ

By minimizing the Hamiltonian function (6), the optimal control
policy for the ith isolated subsystem can be obtained as

un

i ðxiÞ ¼ arg min
μi AΨ iðΩiÞ

Hiðxi;μi;∇V
n

i ðxiÞÞ

¼ �1
2 R

�1
i gTi ðxiÞ∇Vn

i ðxiÞ: ð7Þ
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Substituting the optimal control policy (7) into the nonlinear
Lyapunov equation (4), we can obtain the formulation of the HJB
equation in terms of ∇Vn

i ðxiÞ as follows:

0¼QiðxiÞþð∇Vn

i ðxiÞÞTf iðxiÞ
�1

4 ð∇Vn

i ðxiÞÞTgiðxiÞR�1
i gTi ðxiÞ∇Vn

i ðxiÞ ð8Þ

with Vn

i ð0Þ ¼ 0.

3.2. Stabilizing decentralized control law

According to [2], we modify the local optimal control laws
un

1ðx1Þ, un

2ðx2Þ, …, un
NðxNÞ by proportionally adding some local

feedback gains to obtain a stabilizing decentralized control law
for the interconnected large-scale system (1). Now, we give the
following theorem to indicate how to add the feedback gains and
how to guarantee the asymptotic stability of the subsystems.

Theorem 1. Considering the ith isolated subsystem Σi (2), the
feedback control

uiðxiÞ ¼ πiu
n

i ðxiÞ ¼ �1
2 πiR

�1
i gTi ðxiÞ∇Vn

i ðxiÞ ð9Þ
can ensure that the ith closed-loop isolated subsystem is asymptoti-
cally stable 8πiZ1=2.

Proof. The theorem can be proved by showing Vn

i ðxiÞ is a Lyapu-
nov function. Considering (5), we notice that Vn

i ðxiÞ40 for any
xia0 and Vn

i ðxiÞ ¼ 0 when xi¼0, which implies that Vn

i ðxiÞ is a
positive definite function. Then, the derivative of Vn

i ðxiÞ along the
corresponding trajectory of the closed-loop isolated subsystem is
given by

_V
n

i ðxiÞ ¼ ð∇Vn

i ðxiÞÞT _xi
¼ ð∇Vn

i ðxiÞÞTðf iðxiÞþgiðxiÞuiðxiÞÞ: ð10Þ
Adding and subtracting ð1=2Þð∇Vn

i ðxiÞÞTgiðxiÞun

i ðxiÞ to (10), and
considering (7)–(9), we have

_V
n

i ðxiÞ ¼ ð∇Vn

i ðxiÞÞTf iðxiÞ�1
2 ðπi�1

2 Þ
�ð∇Vn

i ðxiÞÞTgiðxiÞR�1
i gTi ðxiÞ∇Vn

i ðxiÞ
�1

4 ð∇Vn

i ðxiÞÞTgiðxiÞR�1
i gTi ðxiÞ∇Vn

i ðxiÞ
¼ �QiðxiÞ�1

2 ðπi�1
2 Þ‖R

�1=2
i gTi ðxiÞ∇Vn

i ðxiÞ‖2: ð11Þ

In light of (11), we can obtain that _V
n

i ðxiÞo0 for all πiZ1=2 and
xia0. Therefore, the conditions for Lyapunov local stability theory
are satisfied. The proof is completed.□

To demonstrate the theorem related to the stabilizing decen-
tralized control law, we assume that the interconnected term
ZiðxðtÞÞ is characterized by a bound on its magnitude as

JZ iðxÞJr
XN
j ¼ 1

ρijhijðxjÞ; i¼ 1;2;…;N ð12Þ

where Z iðxÞ ¼ R1=2
i ZiðxÞ and Ri is the positive definite matrix

defined in (3). hijðxjÞ is a positive semi-definite function, and ρij

is a non-negative constant with i; j¼ 1;2;…;N. If we define hiðxiÞ ¼
maxfh1iðxiÞ;h2iðxiÞ;…;hNiðxiÞg, the condition (12) can be rewr-
itten as

JZ iðxÞJr
XN
j ¼ 1

λijhjðxjÞ; i¼ 1;2;…;N ð13Þ

where λijZρijhijðxjÞ=hjðxjÞ is also a non-negative constant. We
assume that hiðxiÞ satisfies

h2i ðxiÞrQiðxiÞ; i¼ 1;2;…;N ð14Þ
where QiðxiÞ is the positive definite function in (3).

Next, we provide the modified theorem which can be used to
establish the stabilizing decentralized control law for the large-
scale system (1).

Theorem 2. For interconnected system (1), there exist N positive
numbers πn

i 40, i¼ 1;2;…;N, such that for any πi4πn

i , the feedback
controls developed by (9) ensure that the closed-loop interconnected
system is asymptotically stable. That is to say, the control pair ðu1ðx1Þ,
u2ðx2Þ;…;uNðxNÞÞ is the decentralized control law of the large-scale
interconnected system (1).

Proof. According to Theorem 1, we observe that Vn

i ðxiÞ is Lya-
punov function. Here, we select a composite Lyapunov function
given by

LðxÞ ¼
XN
i ¼ 1

θiV
n

i ðxiÞ ð15Þ

where θi is an arbitrary positive constant. Taking the time
derivative of L(x) along the trajectories of the closed-loop inter-
connected system, we have

_LðxÞ ¼
XN
i ¼ 1

θi
_V
n

i ðxiÞ

¼
XN
i ¼ 1

θifð∇Vn

i ðxiÞÞTðf iðxiÞþgiðxiÞuiðxiÞÞþð∇Vn

i ðxiÞÞTgiðxiÞZiðxÞg:

ð16Þ

Then, considering (11), (13) and (14), and after some basic
manipulations, (16) can be turned into the following form:

_LðxÞr�
XN
i ¼ 1

θi Q iðxiÞþ
1
2

πi�
1
2

� �
‖ð∇Jni ðxiÞÞTgiðxiÞR�1=2

i ‖2
�

� J ð∇Jni ðxiÞÞTgiðxiÞR�1=2
i J

XN
j ¼ 1

λijQ
1=2
j ðxjÞ

9=
;: ð17Þ

Like the result presented in [8], we can transform (17) to the
following compact form:

_LðxÞr�ξT
Θ �1

2Λ
TΘ

�1
2ΘΛ ΘΠ

2
4

3
5ξ

9�ξTAξ ð18Þ

whereΘ, Λ,Π, and ξ are chosen as those denoted in [8]. In light of
(18), we know that sufficiently large πi can be chosen to guarantee
that the matrix A is positive definite. That is to say, there exist πn

i
so that all πiZπn

i are large enough to guarantee the positive
definiteness of A. Then, we have _LðxÞo0. Therefore, the conditions
for Lyapunov stability theory are satisfied, and the closed-loop
interconnected system is asymptotically stable under the action of
control pair ðu1ðx1Þ;u2ðx2Þ;…;uNðxNÞÞ. The proof is completed.□

4. NN-based implementation using online model-free PI
algorithm

In this section, we discuss the implementation of the decen-
tralized control law presented in Section 3. We introduce the
online PI algorithm in the first subsection. A model-free integral PI
algorithm is derived to solve the optimal control problem with
completely unknown dynamics in the second subsection. A NN-
based implementation of the established model-free integral PI
algorithm is discussed at last.

D. Liu et al. / Neurocomputing 165 (2015) 90–9892



4.1. Online PI algorithm

The formulation developed in (7) displays an array of closed-
form expression of the optimal control policy for the ith isolated
subsystem, which obviates the need to search for the optimal
control policy via optimization process. The existence of Vn

i ðxiÞ
satisfying (8) is the necessary and sufficient condition for optim-
ality. However, it is generally difficult and impossible to obtain the
solution Vn

i ðxiÞ of the HJB equation.
We make effort to obtain the approximation solution of the HJB

equation related to the optimal control problem. Instead of directly
solving (8), the solution Vn

i ðxiÞ can be obtained by successively
solving the nonlinear Lyapunov equation (4) and updating the
policy based on (7). This successive approximation is known as the
PI algorithm, and it is described in Algorithm 1 as the fundamental
for the model-free PI method. In [29], it was shown that for
Algorithm 1 on the domain Ωi, V

ðpÞ
i ðxiÞ uniformly converges to

Vn

i ðxiÞ with monotonicity 0oV ðpþ1Þ
i ðxiÞoV ðpÞ

i ðxiÞ, and μðpÞ
i ðxiÞ is

admissible and converges to un

i ðxiÞ. The online PI algorithm
consisting of policy evaluation and policy improvement can be
demonstrated as follows.

Algorithm 1. Online PI.

1: Give a small positive real number ϵ. Let p¼0 and start with

an initial admissible control policy μð0Þ
i ðxiÞ.

2: Policy Evaluation: Based on the control policy μðpÞ
i ðxiÞ,solve

the following nonlinear Lyapunov equations for V ðpÞ
i ðxiÞ:

0¼ QiðxiÞþðμðpÞ
i ðxiÞÞTRiμ

ðpÞ
i ðxiÞ

þð∇V ðpÞ
i ðxiÞÞTðf iðxiÞþgiðxiÞμðpÞ

i ðxiÞÞ:
(19)

3: Policy Improvement: Update the control policy by

μðpþ1Þ
i ðxiÞ ¼ �1

2 R
�1
i gTi ðxiÞ∇V ðpÞ

i ðxiÞ: (20)

4: If JV ðpÞ
i ðxiÞ�V ðp�1Þ

i ðxiÞJrϵ, stop and obtain the approximate
optimal control law of the ith isolated subsystem; else, set
p¼ pþ1 and go to Step 2.

4.2. Model-free PI algorithm

We will develop an online model-free integral PI algorithm for
optimal control problems with completely unknown system
dynamics. To deal with exploration which relaxes the assumptions
of exact knowledge on f iðxiÞ and giðxiÞ, we consider the following
nonlinear subsystem explored by a known bounded piecewise
continuous signal ei(t):

_xiðtÞ ¼ f iðxiðtÞÞþgiðxiðtÞÞ½uiðxiðtÞÞþeiðtÞ�: ð21Þ
The derivative of the value function with respect to time along the
trajectory of the subsystem (21) is calculated as

_V iðxiÞ ¼∇VT
i ðxiÞðf iðxiÞþgiðxiÞ½μiðxiÞþei�Þ

¼ �riðxi;μiÞþ∇VT
i ðxiÞgiðxiÞei: ð22Þ

We present a lemma which is essential to prove the conver-
gence of the model-free PI algorithm for the isolated subsystems.

Lemma 1. Solving for ViðxiÞ in the following equation:

ViðxiðtþTÞÞ�ViðxiðtÞÞ ¼
Z tþT

t
∇VT

i ðxiÞgiðxiÞei dτ

�
Z tþT

t
riðxi;μiðxiÞÞ dτ ð23Þ

is equivalent to finding the solution of (22).

Proof. Since μiðxiÞAΨ iðΩiÞ, the value function ViðxiÞ is a Lyapunov
function for the subsystem (21), and it satisfies (22) with

riðxi;μiÞ40, xia0. We integrate (22) over the interval ½t; tþT � to
obtain (23). This means that the unique solution of (22), ViðxiÞ, also
satisfies (23). To complete the proof, we show that (23) has a
unique solution by contradiction.

Thus, we assume that there exists another value function V iðxiÞ
which satisfies (23) with the end condition V i ¼ 0. This value
function also satisfies _V iðxiÞ ¼ �riðxi;μiÞþ∇V

T

i ðxiÞgiðxiÞei. Subtract-
ing this from (22), we obtain

0¼ d½V iðxiÞ�ViðxiÞ�T
dxi

 !
� ð _xi�giðxiÞeiÞ

¼ d½V iðxiÞ�ViðxiÞ�T
dxi

 !
� ðf iðxiÞþgiðxiÞμiðxiÞÞ; ð24Þ

which must hold for any xi on the system trajectories generated by
the stabilizing policy μiðxiÞ. According to (24), we have
V iðxiÞ ¼ ViðxiÞþc. As this relation must hold for xiðtÞ ¼ 0, we know
V ið0Þ ¼ Við0Þþc ) c¼ 0. Thus, V iðxiÞ ¼ ViðxiÞ, i.e., (23) has a unique
solution which is equal to the solution of (22). The proof is
completed. □

Integrating (22) from t to tþT with any time interval T40, and
considering (19) and (20), we have

V ðpÞ
i ðxiðtþTÞÞ�V ðpÞ

i ðxiðtÞÞ

¼ �2
Z tþT

t
ðμðpþ1Þ

i ðxiÞÞT

�Riei dτ�
Z tþT

t
fQiðxiÞþðμðpÞ

i ðxiÞÞTRiμ
ðpÞ
i ðxiÞg dτ: ð25Þ

Eq. (25) which is derived by (20) and (23) plays an important
role in relaxing the assumption of knowing the system dynamics,
since f iðxiÞ and giðxiÞ do not appear in the equation. It means that
the iteration can be done without knowing the system dynamics.
Thus, we obtain the online model-free integral PI algorithm.

Algorithm 2. Online Model-free Integral PI.

1: Give a small positive real number ϵ. Let p¼0 and start with

an initial admissible control policy μð0Þ
i ðxiÞ.

2: Policy Evaluation and Improvement: Based on the control

policy μðpÞ
i ðxiÞ, solve the following nonlinear Lyapunov

equations for V ðpÞ
i ðxiÞ and μðpþ1Þ

i ðxiÞ:

V ðpÞ
i ðxiðtÞÞ ¼

Z tþT

t
fQiðxiÞþðμðpÞ

i ðxiÞÞTRiμ
ðpÞ
i ðxiÞg dτ

þ2
Z tþT

t
ðμðpþ1Þ

i ðxiÞÞTRiei dτþV ðpÞ
i ðxiðtþTÞÞ: (26)

3: If JV ðpÞ
i ðxiÞ�V ðp�1Þ

i ðxiÞJrϵ, stop and obtain the approximate
optimal control law of the ith isolated subsystem; else, set
p¼ pþ1 and go to Step 2.

Remark 1. In Algorithms 1 and 2, we let V ðp�1Þ
i ðxiÞ ¼ 0, when p¼0.

Note that N initial admissible control policies are required in
Algorithms 1 and 2.

Theorem 3. Considering the isolated subsystem (2), we give N initial
admissible control policies μð0Þ

1 ðx1Þ, μð0Þ
2 ðx2Þ;…;μð0Þ

N ðxNÞ. Then, using
the policy iteration algorithm established in (26), the value functions
and control policies converge to the optimal ones as p-1, i.e.,

V ðpÞ
i ðxiÞ-Vn

i ðxiÞ; μðpÞ
i ðxiÞ-un

i ðxiÞ:

Proof. In [27], it was shown that during the iteration process in
(20) and (22), if the initial policy μð0Þ

i ðxiÞ is admissible, all the
subsequent control policies will be admissible. Moreover, the
iteration result will converge to the solution of the HJB equation.
Based on the formation process of (25) and the proven equivalence
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between (22) and (23), we can conclude that the proposed online
model-free PI algorithm will converge to the solution of the
optimal control problem for subsystem (21) without using the
knowledge of system dynamics. The proof is completed.□

4.3. Online NN implementation

In this subsection, we discuss the NN-based implementation
method of the established model-free PI algorithm. A critic NN and
an action NN are used to approximate the value function and the
control policy of the subsystem, respectively. We assume that for
the ith subsystem, V ðpÞ

i ðxiÞ and μðpþ1Þ
i ðxiÞ are represented on a

compact set Ωi by single-layer NNs as

V ðpÞ
i ðxiÞ ¼ ðwi

cÞTϕi
cðxiÞþεicðxiÞ

μðpþ1Þ
i ðxiÞ ¼ ðwi

aÞTϕi
aðxiÞþεiaðxiÞ

where wi
cARNi

c and wi
aARNi

a are unknown bounded ideal weight
parameters which will be determined by the established model-
free PI algorithm, ϕi

cðxiÞARNi
c and ϕi

aðxiÞARNi
a are the continuously

differentiable nonlinear activation functions, and εicðxiÞAR and
εiaðxiÞAR are the bounded NN approximation errors. Here, the
subscripts ‘c’ and ‘a’ denote the critic and the action, respectively.
Since the ideal weights are unknown, the outputs of the critic NN
and the action NN are

V̂
ðpÞ
i ðxiÞ ¼ ðŵi

cÞTϕi
cðxiÞ ð27Þ

μ̂ðpþ1Þ
i ðxiÞ ¼ ðŵi

aÞTϕi
aðxiÞ ð28Þ

where ŵi
c and ŵi

a are the current estimated weights.
Using the expressions (27) and (28), (26) can be rewritten as a

general form

½ψ i
k�T

ŵi
c

ŵi
a

2
4

3
5¼ θi

k ð29Þ

with

θi
k ¼

Z tþkT

tþðk�1ÞT
fQiðxiÞþðμðpÞ

i ðxiÞÞTRiμ
ðpÞ
i ðxiÞg dτ

ψ i
k ¼ ðϕi

cðxiðtþðk�1ÞTÞÞ�ϕi
cðxiðtþkTÞÞÞT;

h

�2
Z tþkT

tþðk�1ÞT
Rieiðϕi

aðxiÞÞTdτ
#T

where the measurement time is from tþðk�1ÞT to tþkT . Since (29)
is only a 1-dimensional equation, we cannot guarantee the uniqueness
of the solution. Similar to [32], we use the least squares sense method
to solve the parameter vector over a compact set Ωi. For any positive
integral Ki, we denoteΦi ¼ ½ψ i

1;ψ
i
2;…;ψ i

Ki
� andΘi ¼ ½θi

1;θ
i
2;…;θi

Ki
�T.

Then, we have the following Ki-dimensional equation:

ΦT
i

ŵi
c

ŵi
a

2
4

3
5¼Θi:

If ΦT
i has full column rank, the parameters can be solved by

ŵi
c

ŵi
a

2
4

3
5¼ ðΦiΦ

T
i Þ�1ΦiΘi: ð30Þ

Therefore, we need to guarantee that the number of collected points Ki
satisfies KiZrankðΦiÞ ¼Ni

cþNi
a, which will make ðΦiΦ

T
i Þ�1 exist.

The least squares problem in (30) can be solved in real time by
collecting enough data points generated from the system (21).

Clearly, the problem of designing the decentralized control law
becomes to derive the optimal controllers for the N isolated
subsystems. Based on the online model-free integral PI algorithm
and NN techniques, we obtain the approximation solutions of HJB
equations. We can conclude that the approximate optimal control
policies μ̂ iðxiÞ can be obtained. As shown in [8], we have the
decentralized control law

uiðxiÞ ¼ πiμ̂ iðxiÞ: ð31Þ
Therefore, the stabilizing decentralized control law of the inter-
connected large-scale system is derived.

5. Numerical simulations

Two simulation examples are provided in this section to
demonstrate the effectiveness of the decentralized control law
established in this paper.

5.1. Simulation Example 1

We consider the following nonlinear interconnected system
consisting of two subsystems:

_x1 ¼
�x11þx12

�0:5x11�0:5x12�0:5x12ð cos ð2x11Þþ2Þ2
" #

þ
0

cos ð2x11Þþ2

" #
ðu1ðx1Þþðx11þx12Þ sin x212 cos ð0:5x21ÞÞ

_x2 ¼
x22

�x21�0:5x22þ0:5x221x22

" #

þ
0
x21

" #
ðu2ðx2Þþ0:5ðx12þx22Þ cos ðex221 ÞÞ ð32Þ

where x1 ¼ ½x11 x12�TAR2 and u1ðx1ÞAR are the state and control
variables of subsystem 1, and x2 ¼ ½x21 x22�TAR2 and u2ðx2ÞAR are
the state and control variables of subsystem 2. We deal with the
optimal control problem of this two isolated subsystems. Accord-
ing to [8], the cost functions of the optimal control problem are

J1ðx10Þ ¼
Z 1

0
fx211þx212þuT

1u1g dτ

J2ðx20Þ ¼
Z 1

0
fx222þuT

2u2g dτ:

Assume that the exact knowledge of the dynamics (32) is fully
unknown. We adopt the online model-free PI algorithm to tackle
the optimal control problem.

For the isolated subsystem 1

_x1 ¼
�x11þx12

�0:5x11�0:5x12�0:5x12ð cos ð2x11Þþ2Þ2
" #

þ
0

cos ð2x11Þþ2

" #
u1ðx1Þ;

we denote the weight vectors of the critic and action networks as

ŵ1
c ¼ ½ŵ1

c1 ŵ1
c2 ŵ1

c3�T

ŵ1
a ¼ ½ŵ1

a1 ŵ1
a2�T:

The activation functions are chosen as

ϕ1
c ðx1Þ ¼ ½x211 x11x12 x212�T

ϕ1
aðx1Þ ¼ ½x11ð2þ cos ð2x11ÞÞ x12ð2þ cos ð2x11ÞÞ�T:

From these parameters, we know N1
c ¼ 3 and N1

a ¼ 2, so we conduct
the simulation with K1 ¼ 10. We set the initial state and the initial
weights as x10 ¼ ½1 �1�T, ŵ1

c ¼ ½0 0 0�T and ŵ1
a ¼ ½�0:3 �0:9�T. The

period time T ¼ 0:1 s and the exploration e1ðtÞ ¼ 0:5 sin ð2πtÞ are
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used in the learning process. The least squares problem is solved
after 10 samples are acquired, and thus the weights of the NNs are
updated every 1 s. According to [28], the optimal cost function and
control policy of the isolated subsystem 1 are Jn1ðx1Þ ¼ 0:5x211þx212
and un

1ðx1Þ ¼ �ð cos ð2x11Þþ2Þx12, respectively. The optimal weights
are w1n

c ¼ ½0:5 0 1�T and w1n
a ¼ ½0 �1�T. Figs. 1 and 2 illustrate the

evolutions of the weights of the critic network and the action
network, respectively. It is clear that the weights approximately
converge to the optimal ones. At t ¼ 7 s, ŵ1

c ¼ ½0:5012 0:0003
1:0000�T and ŵ1

a ¼ ½�0:0002 �1:0000�T.
Similarly, for the isolated subsystem 2, the activation functions

are chosen as

ϕ2
c ðx2Þ ¼ ½x221 x21x22 x222�T

ϕ2
aðx2Þ ¼ ½x221 x21x22�T:

As N2
c ¼ 3 and N2

a ¼ 2, we conduct the simulation with K2 ¼ 10. We
set the initial state and the initial weights as x20 ¼ ½1 �1�T,
ŵ2

c ¼ ½0 0 0�T and ŵ2
a ¼ ½0 0�T. The period time T ¼ 0:1 s and the

exploration e2ðtÞ ¼ 0:5 sin ð2πtÞ are used in the learning process. The
optimal cost function and control policy of the isolated subsystem
2 are Jn2ðx2Þ ¼ x221þx222 and un

2ðx2Þ ¼ �x21x22. The optimal weights are
w2n

c ¼ ½1 0 1�T and w2n
a ¼ ½0 �1�T. Figs. 3 and 4 illustrate the evolu-

tions of the weights of the critic network and the action network,
respectively. It is clear that the weights approximately converge to
the optimal ones. At t ¼ 9 s, ŵ2

c ¼ ½1:0000 �0:0000 1:0000�T and
ŵ2

a ¼ ½�0:0000 �1:0000�T.
According to (31), we choose π1 ¼ π2 ¼ 2 to obtain the decen-

tralized control law ðπ1μ̂1ðx1Þ;π2μ̂2ðx2ÞÞ of the interconnected system
(32). By applying the decentralized control law to control the
interconnected system for 60 s, we obtain the evolution process of
the state trajectories shown in Figs. 5 and 6. Obviously, the applic-
ability of the decentralized control law developed in this paper has
been testified by these simulation results.

5.2. Simulation Example 2

Consider the classical multimachine power system with gover-
nor controllers [16]

_δ iðtÞ ¼ωiðtÞ
_ω iðtÞ ¼ � Di

2Hi
ωiðtÞþ

ω0

2Hi
½PmiðtÞ�PeiðtÞ�

_PmiðtÞ ¼
1
Ti
½�PmiðtÞþugiðtÞ�

PeiðtÞ ¼ E0qi
XN
j ¼ 1

E0qj½Bij sin δijðtÞþGij cos δijðtÞ�

where for 1r i and jrN, δiðtÞ represents the angle of the ith
generator; δijðtÞ ¼ δiðtÞ�δjðtÞ is the angular difference between the
ith and jth generators; ωiðtÞ is the relative rotor speed; Pmi(t) and
Pei(t) are the mechanical power and the electrical power, respec-
tively; E0qi is the transient electromotive force in quadrature axis
and is assumed to be constant under high-gain SCR controllers; Di,
Hi, and Ti are the damping constant, the inertia constant, and the
governor time constant, respectively; Bij and Gij are the imaginary
and real parts of the admittance matrix, respectively; and ugi(t) is
the speed governor control signal for the ith generator; ω0 is the
steady state frequency.

A three-machine power system is considered in our numerical
simulation. The parameters of the system are the same as those in [16].
The weighting matrices are set to be QiðxiÞ ¼ xTi � 1000I3 � xi and
Ri¼1, for i¼ 1;2;3. Similarly, as in [16], the multimachine power
system can be rewritten as the following form:

Δ _δ iðtÞ ¼ΔωiðtÞ

Δ _ωiðtÞ ¼ � Di

2Hi
ΔωiðtÞþ

ω0

2Hi
ΔPmiðtÞ

Δ _PmiðtÞ ¼
1
Ti
½�ΔPmiðtÞþuiðtÞ�diðtÞ�:

We define the state xi ¼ ½ΔδiðtÞ ΔωiðtÞ ΔPmiðtÞ�T ¼ ½xi1 xi2 xi3�T,
whereΔδiðtÞ ¼ δiðtÞ�δi0,ΔωiðtÞ ¼ωiðtÞ�ωi0,
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ΔPmiðtÞ ¼ PmiðtÞ�PeiðtÞ, uiðtÞ ¼ ugiðtÞ�PeiðtÞ, and

diðtÞ ¼ E0qi
XN

j ¼ 1;ja i

fE0qj½Bij cos δijðtÞ�Gij sin δijðtÞ�

�½ΔωiðtÞ�ΔωjðtÞ�g:

For each isolated subsystem, we denote the weight vectors of
the critic and action networks as

ŵi
c ¼ ½ŵi

c1 ŵi
c2 ŵi

c3 ŵi
c4 ŵi

c5 ŵi
c6�T

ŵi
a ¼ ½ŵi

a1 ŵi
a2 ŵi

a3�T:

The activation functions are chosen as

ϕi
cðxiÞ ¼ ½x2i1 xi1xi2 xi1xi3 x2i2 xi2xi3 x2i3�T
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Fig. 4. Evolutions of the weight of the action network 2.

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

S
ta

te
 tr

aj
ec

to
ry

 o
f s

ub
sy

st
em

 1

x11 x12

Fig. 5. State trajectory of subsystem 1 under the action of the decentralized
control law.
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Fig. 6. State trajectory of subsystem 2 under the action of the decentralized
control law.
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ϕi
aðxiÞ ¼ ½xi1 xi2 xi3�T:

From these parameters, we know Ni
c ¼ 6 and Ni

a ¼ 3, so we con-
duct the simulation with Ki¼10. We set the initial state and the
initial weights of the critic networks as xi0 ¼ ½1 1 1�T, ŵi

c ¼ 100�
½1 1 1 1 1 1�T, for i¼ 1;2;3. The initial weights of the action net-
works are chosen as ŵ1

a ¼ �½30 30 30�T, ŵ2
a ¼ �½10 20 50�T and

ŵ3
a ¼ �½10 20 30�T. The period time T ¼ 0:1 s and the exploration

eiðtÞ ¼ 0:01ð sin ð2πtÞþ cos ð2πtÞÞ are used in the learning process.
The least squares problem is solved after 10 samples are acquired, and
thus the weights of the NNs are updated every 1 s. Figs. 7, 8, and 9
illustrate the evolutions of the weights of the action network for the
isolated subsystem 1, 2 and 3, respectively. It is clear that the weights
approximately converge after some update steps.

According to (31), we choose π1 ¼ π2 ¼ π3 ¼ 1 to obtain the
control pair ðπ1μ̂1ðx1Þ;π2μ̂2ðx2Þ;π3μ̂3ðx3ÞÞ as the stabilizing decen-
tralized control law of the interconnected system. By applying the
decentralized control law to control the interconnected power system
for 10 s, we obtain the evolution process of the power angle deviations
and frequencies of the generators shown in Figs. 10 and 11, respec-
tively. Obviously, the applicability of the decentralized control law
developed in this paper has been testified by these simulation results.

6. Conclusion

In this paper, a stabilizing decentralized control law for a class
of nonlinear large-scale systems with unknown dynamics is
established using a NN-based online model-free integral PI algo-
rithm. The decentralized control law is derived by the optimal
controllers of the isolated subsystems. We use an online model-
free integral PI algorithm with an exploration to solve the HJB
equations related to the optimal control problem of the isolated
subsystems. To implement the constructed algorithm, we use the
actor-critic technique and the least squares implementation
method. We demonstrate the effectiveness of the developed
decentralized control law by two simulation examples.

References

[1] L. Bakule, Decentralized control: an overview, Ann. Rev. Control 32 (2008)
87–98.

[2] A. Saberi, On optimality of decentralized control for a class of nonlinear
interconnected systems, Automatica 24 (1988) 101–104.

[3] P. Ioannou, Decentralized adaptive control of interconnected systems, IEEE
Trans. Autom. Control 31 (1986) 291–298.

[4] J.T. Spooner, K.M. Passino, Decentralized adaptive control of nonlinear systems
using radial basis neural networks, IEEE Trans Autom. Control 44 (1999)
2050–2057.

[5] K. Kalsi, J. Lian, S.H. Zak, Decentralized dynamic output feedback control of
nonlinear interconnected systems, IEEE Trans. Autom. Control 55 (2010)
1964–1970.

[6] J. Lavaei, Decentralized implementation of centralized controllers for inter-
connected systems, IEEE Trans. Autom. Control 57 (2012) 1860–1865.

[7] T. Li, R. Li, J. Li, Decentralized adaptive neural control of nonlinear inter-
connected large-scale systems with unknown time delays and input satura-
tion, Neurocomputing 74 (2011) 2277–2283.

[8] D. Liu, D. Wang, H. Li, Decentralized stabilization for a class of continuous-time
nonlinear interconnected systems using online learning optimal control
approach, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014) 418–428.

[9] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

[10] F.-Y. Wang, H. Zhang, D. Liu, Adaptive dynamic programming: an introduction,
IEEE Comput. Intell. Mag. 4 (2009) 39–47.

[11] H. Zhang, Q. Wei, D. Liu, An iterative adaptive dynamic programming method
for solving a class of nonlinear zero-sum differential games, Automatica 47
(2011) 207–214.

[12] D. Wang, D. Liu, Q. Wei, Finite-horizon neuro-optimal tracking control for a
class of discrete-time nonlinear systems using adaptive dynamic program-
ming approach, Neurocomputing 78 (2012) 14–22.

[13] D. Liu, Q. Wei, Finite-approximation-error-based optimal control approach for
discrete-time nonlinear systems, IEEE Trans. Cybern. 43 (2013) 779–789.

[14] D. Liu, Y. Zhang, H. Zhang, A self-learning call admission control scheme for
CDMA cellular networks, IEEE Trans. Neural Netw. 16 (2005) 1219–1228.

[15] D. Liu, H. Javaherian, O. Kovalenko, T. Huang, Adaptive critic learning
techniques for engine torque and air–fuel ratio control, IEEE Trans. Syst.
Man Cybern. Part B: Cybern. 38 (2008) 988–993.

[16] Y. Jiang, Z.-P. Jiang, Robust adaptive dynamic programming for large-scale
systems with an application to multimachine power systems, IEEE Trans.
Circuits Syst. II: Express Briefs 59 (2012) 693–697.

[17] T. Dierks, S. Jagannathan, Online optimal control of affine nonlinear discrete-
time systems with unknown internal dynamics by using time-based policy
update, IEEE Trans. Neural Netw. Learning Syst. 23 (2012) 1118–1129.

[18] T. Huang, D. Liu, A self-learning scheme for residential energy system control
and management, Neural Comput. Appl. 22 (2013) 259–269.

[19] D. Zhao, Z. Zhang, Y. Dai, Self-teaching adaptive dynamic programming for
gomoku, Neurocomputing 78 (2012) 23–29.

[20] Y. Jiang, Z.-P. Jiang, Robust adaptive dynamic programming with an applica-
tion to power systems, IEEE Trans. Neural Netw. Learn. Syst. 24 (2013)
1150–1156.

[21] F.L. Lewis, D. Vrabie, Reinforcement learning and adaptive dynamic program-
ming for feedback control, IEEE Circuits Syst. Mag. 9 (2009) 32–50.

[22] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, vol. 1,
Cambridge University Press, Cambridge, MA, 1998.

[23] J. Si, A.G. Barto, W.B. Powell, D.C. Wunsch, et al., Handbook of Learning and
Approximate Dynamic Programming, IEEE Press, Los Alamitos, 2004.

[24] S.J. Bradtke, B.E. Ydstie, A.G. Barto, Adaptive linear quadratic control using
policy iteration, in: American Control Conference, 1994, vol. 3, IEEE, Baltimore,
MD, 1994, pp. 3475–3479.

[25] A. Al-Tamimi, F.L. Lewis, M. Abu-Khalaf, Discrete-time nonlinear HJB solution
using approximate dynamic programming: convergence proof, IEEE Trans.
Syst. Man Cybern. Part B: Cybern. 38 (2008) 943–949.

[26] Y.-M. Park, M.-S. Choi, K.Y. Lee, An optimal tracking neurocontroller for
nonlinear dynamic systems, IEEE Trans. Neural Netw. 7 (1996) 1099–1110.

0 2 4 6 8 10
108

110

112

Time (s)

Angle of G1 (degree)

0 2 4 6 8 10
97

98

99

Time (s)

Angle of G2 (degree)

0 2 4 6 8 10
57

58

59

Time (s)

Angle of G3 (degree)

Fig. 10. Angle of the generators under the action of the decentralized control law.
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Fig. 11. Frequency of the generators under the action of the decentralized
control law.
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