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Multicluster Spatial–Spectral Unsupervised Feature
Selection for Hyperspectral Image Classification

Haichang Li, Shiming Xiang, Zisha Zhong, Kun Ding, and Chunhong Pan

Abstract—A new unsupervised spatial–spectral feature selec-
tion method for hyperspectral images has been proposed in this
letter. The key idea is to select the features that better preserve
the multicluster structure of the multiple spatial–spectral features.
Specifically, the multicluster structure information is obtained
through spectral clustering utilizing a weighted combination of the
multiple features. Then, such information is preserved in a group-
sparsity-based robust linear regression model. The features that
contribute more in preserving the multicluster structure informa-
tion are selected. Comparative experiments on two popular real
hyperspectral images validate the effectiveness of the proposed
method, showing higher classification accuracy.

Index Terms—Clustering, feature selection, hyperspectral,
spatial–spectral.

I. INTRODUCTION

R ECENTLY developed hyperspectral imaging technolo-
gies simultaneously acquire an image in enormous narrow

continuous spectral bands while covering a wide spectrum.
Thus, the obtained hyperspectral image is a cubic datum, i.e.,
two dimensions for the spatial domain and one dimension for
the spectral domain. This cubic datum has advantages in object
detection [1], change detection [2], classification [3], [4], etc.
However, the huge data also bring new challenges in applica-
tions, such as the Hughes effect, more computation, information
redundancy, and noise. Therefore, feature selection and feature
extraction [5] become necessary and important for hyperspec-
tral images. Compared with feature extraction, feature selection
preserves the original physical meaning of features. Meanwhile,
it provides convenience in the following test stage, where only
the selected features are involved. In the context of hyperspec-
tral images, if the features to be selected are restricted to the
spectral bands, the feature selection process is also called band
selection.

According to whether the class label information is previ-
ously available, feature selection methods are mainly divided
into two categories: supervised and unsupervised. The class
label information is known for the supervised methods while
missing for the unsupervised methods. Many supervised feature
selection methods have been proposed, such as [6] and [7]. As
the supervised information is a good guidance for feature subset
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searching, this type of methods can obtain better classifica-
tion or detection performances than the unsupervised methods.
However, sometimes, the required class labels are previously
unavailable. In this case, unsupervised feature selection meth-
ods are required.

Many unsupervised feature selection methods have been also
proposed for hyperspectral images. Some are criterion based,
such as [8] and [9]. In [8], by defining band correlation, the
bands that are most correlated to the entire hyperspectral images
are selected. Based on band similarity measurement, Du and
Yang [9] selected the bands that are most dissimilar to the
already selected bands. This strategy can conserve the most dis-
tinctive and informative bands. Clustering-based methods are
also proposed. Usó et al. [10] first partitioned the bands into
groups utilizing the minimum variance clustering. Then, the re-
presentative bands are selected from each group by the correla-
tion or the divergence criterion.

Recently, multiple features, e.g., spectral, shape, and texture,
have been introduced into hyperspectral image classification
to further improve the classification accuracies [11], [12]. In
general, the multiple features are utilized by concatenating dif-
ferent kinds of features into a long vector. On one hand, the
multiple features provide more detailed and complementary
information, such as texture and shape. This is helpful in im-
proving the classification accuracy. On the other hand, such
high dimensionality of the multiple features brings new chal-
lenges, i.e., more computation, redundancy, and noise. Feature
selection for multiple features becomes a new problem for hy-
perspectral images. Fortunately, the progresses of feature selec-
tion in machine learning have shed light on this problem, i.e.,
the group-sparsity-based feature selection methods [13]– [16]
have been proved effective.

Inspired from the combination of multiple features [11] and
group-sparsity-based feature selection [13], [14], we propose
a new unsupervised spatial–spectral feature selection scheme
for multiple features of hyperspectral images. In general, dif-
ferent categories have different clusters. Thus, preserving the
multiclusters provides us a feasible way to keep the clustering/
discriminant information in unsupervised feature selection. Our
scheme selects the features that better preserve the multicluster
information of the data via group sparsity in a linear regression
model. Specifically, the multiple features of the hyperspectral
images are first extracted separately, which are then concate-
nated into a long vector. Then, the separately extracted multiple
features are combined together via a weighting scheme [11]
to explore the multicluster structure information by spectral
clustering [17]. The obtained compact data by spectral analysis,
i.e., the multicluster representation of the original multiple
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features, are employed as the regression targets of the con-
catenated multiple features in a group-sparsity-based robust
linear regression model. The features that contribute more in
the regression are selected.

The main properties of this work are as follows.
• Group-sparsity-based robust linear regression for feature

selection model is extended to the unsupervised case. The
label vectors are replaced by the multiclusters that are
provided by spectral analysis. Thus, the selected features
can better preserve the multicluster structure of the data.

• The group-sparsity-based unsupervised feature selection
model is extended to multiple features of hyperspectral
images. Each category of features is adaptively weighted
by a combination scheme in clustering. Therefore, the
complementary information of the multiple features is
preserved well in clustering and feature selection. Sound
experimental results validate the effectiveness of the pro-
posed method.

II. MODEL

An unsupervised feature selection model for multiple fea-
tures of hyperspectral images is explored here. The mul-
tiple features include spectral features and spatial features:
the extended multiattribute profile (EMAP) and Gabor. Thus,
the problem is called spatial–spectral feature selection. The
features that better preserve the multicluster structure of the
multiple features are selected in a group-sparsity-based linear
regression model. Concretely, we first review the group-
sparsity-based feature selection model and extend it to the
unsupervised case. Then, the unsupervised model is extended
to the multiple features of hyperspectral images.

A. Multiple Features

Different kinds of features have been proved to cooperate
with each other in identifying objects [11]. In this paper, we uti-
lize three types of features: the spectral features, the geometric
and texture features (EMAP), and the texture features (Gabor).
The details are as follows.

1) Spectral features: the original spectral features of each
pixel. Suppose the hyperspectral images have n1 spectral
bands, the digital numbers for a pixel in all bands are
denoted by x(1) = [v1, . . . , vn1

]T . Then, the spectral fea-

tures for N samples are denoted by X1 = [x
(1)
1 , . . . ,

x
(1)
N ] ∈ R

n1×N .
2) Geometric features: the EMAP features [18], [19]. The

EMAP models the spatial information by morphological
attribute filters (area, diagonal of the box bounding the
region, etc.) using a multilevel analysis. Suppose the
dimension of this category of features is n2, and this type
of features for the N samples is denoted by X2 ∈ R

n2×N .
3) Texture features: the Gabor features [20], [21]. The 2-D

Gabor features on the first principal component (PC) of
the hypserspectral images are extracted in this letter. This
type of features for the N samples is denoted by X3 ∈
R

n3×N .

The multiple features for each sample can be concatenated
into a long vector. Then, the multiple features for all the m

type of features are denoted as follows: X = [XT
1 ,X

T
2 , . . . ,

XT
m]T ∈ R

(
∑m

t=1
nt)×N . Our task is to select the important

features for classification from the multiple features when there
is no class label.

B. Group-Sparsity-Based Feature Selection

Here, the group-sparsity-based robust linear regression
model for feature selection is reviewed, and then, the model is
extended to the unsupervised case.

1) Review: Supervised Form of Group-Sparsity-Based Fea-
ture Selection: The group-sparsity-based feature selection
method [13], [14] has been proved to have excellent perfor-
mances. The model can be described as follows:

argmin
W,b

‖Y −WX− b1T ‖2,1 + λ‖W‖2,1 (1)

where X ∈ R
d×N is the data matrix of N samples with d di-

mensions, 1 is a vector of all ones, Y ∈ R
c×N is the class label

matrix that consists of 0 and 1, λ is a parameter that controls
the degree of sparsity, b ∈ R

c is a bias term, W ∈ R
c×d is

the regression coefficients, and its �2,1-norm is ‖W‖2,1 =∑d
j=1

√∑c
i=1W

2
ij=

∑d
j=1‖wj‖2. Here, ‖wj‖2=

√∑c
i=1W

2
ij

is the l2-norm of the jth column of W. The �2,1-norm, instead
of the F -norm, for the regression term can alleviate the negative
effect of outlier samples. Thus, the model is robust to outliers.
As each column of W corresponds to a feature and the ‖W‖2,1
term penalizes each column as a whole, W is a feature selection
matrix. The features that have larger ‖wj‖2 are selected. The
reason that the method can select the discriminative features
lies in the incorporation of the discriminative regression term.

2) Unsupervised Form of Group-Sparsity-Based Feature Se-
lection: When no label information is provided, we introduce
a strategy to extend the aforementioned method to the unsuper-
vised case. Inspired from [22], the multiclusters of the data can
be utilized to replace the class labels, i.e., the label vectors Y in
(1) can be replaced by the multicluster structure representation
Ỹ ∈ R

c×N that is obtained by spectral analysis [22]. Ỹ is the
transpose of the c eigenvectors of L that correspond to small
eigenvalues. It is obtained by solving

arg
Ỹ
minTr(ỸLỸT ), s.t.ỸỸT = Ic (2)

where Ic ∈ R
c×c is an identity matrix, and L = A− S is a

graph Laplacian matrix. Here, S ∈ R
N×N is the affinity matrix,

with the element Sij denoting the similarity between the ith

sample xi and the jth sample xj , i.e., Sij = exp(−‖xi−xj‖2
σ ),

σ is a kernel width parameter. A is a diagonal matrix, and its
ith diagonal element is Aii =

∑N
j=1 Sij .

Through spectral analysis and robust linear regression, the
multicluster structure information is well preserved in the
group-sparsity-based feature selection.

C. Unsupervised Spatial–Spectral Feature Selection

Here, we will extend the preceding unsupervised feature
selection method to multiple features of hyperspectral im-
ages. First, we explore the multicluster structure representa-
tion for multiple features of hyperspectral images. Then, such
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representation is utilized in the group-sparsity-based unsuper-
vised feature selection model.

1) Multicluster Structure Representation for Multiple Fea-
tures: In order to well utilize the complementary information
contained in the multiple features, Zhang et al. [11] combined
the multiple features together to extract the low-dimensional
multicluster structure information by solving the following
optimization problem:

arg min
Ỹ,αt

m∑
t=1

αr
tTr(ỸLtỸ

T ), s.t. ỸỸT =I, αt>0,

m∑
t=1

αt=1

(3)

where m is the number of different categories of features, and
αt is the weight parameter for the tth category of features.
The αr

t with r > 1, instead of αt, is employed in [11]. This
aims at avoiding the problem in optimization that the weights
are all given to the type of features corresponding to the
minimum Tr (ỸLtỸ

T ), which is against the goal of combining
the multiple types of features to improve the classification accu-
racies. Ỹ ∈ R

c×N is the low-dimensional multicluster structure
representation of the original multiple features; Lt is the graph
Laplacian matrix of the tth category of features, and it is defined
as follows:

Lt = At − St (4)

where St is the affinity matrix of the tth type of features Xt.
2) Unsupervised Spatial–Spectral Feature Selection: With

the obtained multicluster representation Ỹ of the multiple fea-
tures, we propose a new unsupervised spatial–spectral feature
selection model via group sparsity, i.e.,

L=arg min
{Wt}mt=1,b

∥∥∥∥∥Ỹ−
m∑
t=1

(WtXt+b1T
t )

∥∥∥∥∥
2,1

+λ
m∑
t=1

‖Wt‖2,1

(5)

where λ is a balance parameter, and b is a bias term. Denote
W = [W1,W2, . . . ,Wm] ∈ R

c×d with d =
∑m

t=1 nt, and de-
note the multiple features as X = [XT

1 ,X
T
2 , . . . ,X

T
m]T ∈

R
d×N , it follows

argmin
W,b

‖Ỹ −WX− b1T ‖2,1 + λ‖W‖2,1. (6)

By utilizing the trace norm, the preceding optimization problem
can be reformulated as follows:

L = argmin
W,b

Tr(UVUT ) + λTr(WDWT ) (7)

where U=Ỹ−WX−b1T . Both V∈R
N×N and D∈R

d×d

are diagonal matrices with the ith diagonal elements Vii = (1)/

(2‖(Ỹ −WX− b1T )i‖2) = (1)/(2‖Ui‖2) and Dii = (1)/
(2‖wi‖2), respectively.

Fixing V and D, taking the derivative of L with respect to
W, we obtain

∂L
∂W

= −2(Ỹ −WX− b1T )VXT + 2λWD. (8)

Let (∂L)/(∂W) = 0, it follows

W = (ỸVXT − b1TVXT )(XVXT + λD)−1. (9)

Let (∂L)/(∂b) = 0, we obtain

b = (Ỹ −WX)V1(1TV1)−1. (10)

With the obtained W and b, we can calculate new V and D.
By iteratively updating W,b and V, D, the optimization pro-
cess converges. The problem (5) is a convex optimization prob-
lem; thus, we can get the global optimum value. The scheme is
summarized in Algorithm 1. As this method is based on mul-
tiple feature combination and the �2,1-norm group sparsity, we
call this method MFC-L21.

III. EXPERIMENTS

In order to validate the effectiveness of the selected features
by the MFC-L21 method, we first compare it with other unsu-
pervised feature selection methods on the spectral signatures.
Then, multiple features are employed to evaluate the effective-
ness of the MFC-L21 method. We compare MFC-L21 with the
following methods: 1) Baseline, using all spectral bands or all
multiple features; 2) MaxVar [22], maximum variance feature
selection; 3) LaplacianScore1 [23], which selects the features
that are able to preserve the local manifold structure; and
4) MCFS[22], another sparsity-based feature selection.

The selected features by different methods on the reference
data are then fed into a support vector machine (SVM) classifier
with radial basis function (RBF) kernel to test their classifica-
tion abilities. The features with higher classification accuracies
are considered better, and their corresponding feature selection
method is also better. Experiments are conducted on two popu-
lar real hyperspectral data sets: the University of Pavia and the
Indian Pines. Twenty independent tests are conducted for each

1http://www.cad.zju.edu.cn/home/dengcai/Data/ReproduceExp.html
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Fig. 1. Classification accuracies. (a)–(d) Spectral bands of the University of Pavia data. (e)–(h) Multiple features of the University of Pavia data. (i)–(l) Multiple
features of the Indian Pines data. (d), (h), and (l) OA versus different lambdas and different numbers of features.

data set by randomly selecting the training data to avoid the
biased results.

A. Data Description and Parameter Setting

The University of Pavia image is obtained by the Reflective
Optics System Imaging Spectrometer (ROSIS) during a flight
campaign over University of Pavia, northern Italy. The image
size is 610 × 340 pixels, with the spectrum spanning from
0.43 to 0.86 μm. After discarding the noisy bands, only 103
spectral bands are left. Nine classes of interest are labeled:
asphalt, meadows, gravel, trees, metal-sheets, bare-soil, bitu-
men, bricks, and shadows. The number of training samples for
each class is 30, whereas the numbers of testing samples are
6631, 18 649, 2099, 3064, 1345, 5029, 1330, 3682, and 947,
respectively.

The Indian Pines data are captured by the Airborne Visible/
Infrared Imaging Spectrometer. It has 145 × 145 pixels with
a spatial resolution of 20 m/pixel. After discarding the water
absorption and too noisy bands, only 200 spectral bands are em-
ployed in the experiments. In this data set, 16 classes of interest
are labeled. Details can be found in [5]. The number of training
samples for each class is 50, except alfalfa, grass-pasture-
mowed, and oats. The three classes have very small labeled
samples, and only 15 samples for each class are selected as
training samples. The rest are testing samples.

B. Experiments on Spectral Bands

We first evaluate the MFC-L21 method on spectral bands of
the University of Pavia data. The classification results with dif-

ferent numbers of selected spectral bands by different methods
are shown in Fig. 1(a)–(c). From Fig. 1(a)–(c), the classifica-
tion accuracies, i.e., OA, AA, and kappa, by MFC-L21 are
higher than that of the other methods in most cases. When the
number of selected features is less than 40, the performance
of MFC-L21 is consistently better than the other three feature
selection methods. When the number of selected features is
small, the classification accuracies of MFC-L21 are signifi-
cantly better, i.e., more than five points higher than that of the
other three feature selection methods. This demonstrates the
effectiveness of the MFC-L21 method on hyperspectral data.
Another interesting phenomenon is that, when the number of
selected spectral bands is between 20 and 40, the selected
features by MFC-L21 perform better than all the spectral bands.
This may be because of the fewer features, which alleviates
the Hughes phenomenon. Another possible reason is that the
features are redundant and noisy, which have negative effect for
object identification. In another sense, this also demonstrates
the effectiveness of the proposed MFC-L21 feature selection
method in excluding the noisy and redundant features of hyper-
spectral data.

C. Experiments on Multiple Features

The experimental settings for extracting multiple features are
as follows. For the EMAP features, four kinds of attributes are
employed, and each attribute is with four scales. The concrete
parameter settings of the attribute filters for the EMAP are the
same as that in [18]. The first three PCs are employed for the
University of Pavia data, whereas for the Indian Pines data,
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five PCs are used due to more spectral bands. For the Gabor
features, the 2-D Gabor features with five scales and eight
directions on the first PC are extracted in this letter.

The multiple features are extracted separately, and the di-
mensions of the multiple features on the University of Pavia
are as follows: the spectral feature vector vspectral ∈ R

103, the
EMAP feature vector vEMAP ∈ R

108, and the Gabor feature
vector vGabor ∈ R

40. The average accuracies (OA, AA, and
kappa) for the 20 tests on the multiple features of University of
Pavia are depicted in Fig. 1(e)–(g). In Fig. 1(e)–(g), the features
selected by MFC-L21 perform best for most cases. The MCFS
method follows. The MaxVar method and the LaplacianScore
method do not perform very well when the number of selected
features is less than 30. The reason behind this phenomenon
may lie in the fact that these two methods are greedy methods
and they do not consider the combination effect of different
features.

As for the Indian Pines data, the dimensions of the multiple
features are as follows: the spectral feature vector vspectral ∈
R

200, the EMAP feature vector vEMAP ∈ R
180, and the Gabor

feature vector vGabor ∈ R
40. The average classification ac-

curacies for the 20 tests on Indian Pines data are shown in
Fig. 1(i)–(k). We can observe that the MFC-L21 feature se-
lection method performs best for most numbers of selected
features. This also illustrates the effectiveness of the MFC-L21
feature selection method on hyperspectral data.

D. Parameter Settings

There are four parameters that are needed to be set in
combination of multiple features, i.e., the r in (3), the number of
neighbors k in constructing the affinity matrices St, the dimen-
sion c of the multicluster structure information, and the kernel
width σ in constructing the graph. According to [11], the first
three parameters are set to r = 10, k = 30, and c = 30. σ is set
to the variance of the distances of all data pairs. There is also a
parameter in the feature selection step, i.e., the parameter λ in
(5). It is set to λ = 0.1 for the experiment on the spectral bands
of the University of Pavia data. For the multiple-feature case,
both the University of Pavia data and the Indian Pines data, λ is
set to λ = 1. The overall classification accuracies with different
values of λ are shown in Fig. 1(d), (h), and (l).

There are two parameters in the SVM classifier with RBF
kernel, i.e., the regularization parameter C and the kernel width
γ. C and γ are selected from {22, 23, . . . , 210} and {2−10,
2−9, . . . , 2−2}, respectively, by fivefold cross-validation.

IV. CONCLUSION

Inspired from the scheme of combining multiple features
for hyperspectral image classification and the group-sparsity-
based feature selection in machine learning, we have presented
a new unsupervised spatial–spectral feature selection method
for hyperspectral image classification. Specifically, the features
that better preserve the multicluster structure of the combined
multiple features are selected via group sparsity. The selected
features are tested by the SVM classifier. Experimental results

on two real hyperspectral data sets demonstrate the effective-
ness of the proposed method.
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