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Reinforcement-Learning-Based Robust Controller
Design for Continuous-Time Uncertain Nonlinear

Systems Subject to Input Constraints
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Abstract—The design of stabilizing controller for uncertain
nonlinear systems with control constraints is a challenging prob-
lem. The constrained-input coupled with the inability to identify
accurately the uncertainties motivates the design of stabilizing
controller based on reinforcement-learning (RL) methods. In this
paper, a novel RL-based robust adaptive control algorithm is
developed for a class of continuous-time uncertain nonlinear sys-
tems subject to input constraints. The robust control problem
is converted to the constrained optimal control problem with
appropriately selecting value functions for the nominal system.
Distinct from typical action-critic dual networks employed in RL,
only one critic neural network (NN) is constructed to derive the
approximate optimal control. Meanwhile, unlike initial stabilizing
control often indispensable in RL, there is no special requirement
imposed on the initial control. By utilizing Lyapunov’s direct
method, the closed-loop optimal control system and the estimated
weights of the critic NN are proved to be uniformly ultimately
bounded. In addition, the derived approximate optimal control
is verified to guarantee the uncertain nonlinear system to be
stable in the sense of uniform ultimate boundedness. Two sim-
ulation examples are provided to illustrate the effectiveness and
applicability of the present approach.

Index Terms—Approximate dynamic programming (ADP),
neural networks (NNs), neuro-dynamic programming, nonlin-
ear systems, optimal control, reinforcement learning (RL), robust
control.

I. INTRODUCTION

THE DESIGN of stabilizing controller for constrained-
input uncertain nonlinear systems has always been a chal-

lenging issue. During the past several decades, considerable
efforts have been made to enhance the control performance of
uncertain nonlinear systems with control constraints [1]–[4].
Various methods were developed and successfully applied to
this type of robust control problems. Nevertheless, most of the
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proposed approaches focused on designing the direct adap-
tive controller and tackling control constraints by employing
compensator schemes [1]–[3]. It is often a rather challenging
task to construct compensator schemes and Lyapunov func-
tions for guaranteeing the stability of this kind of nonlinear
systems.

In order to overcome the above difficulty, in this paper,
we transform the robust control problem to a class of opti-
mal control problems by properly selecting value functions
for the nominal system. The optimal control theory has made
significant progress in the past half century. The impor-
tant and valuable insights into the optimal control theory
were presented in [5] and [6]. Up to now, optimal con-
trol problems for nonlinear systems have attracted extensive
attentions. A core challenge of obtaining the solution of non-
linear optimal control problems is that it often falls to solve
the Hamilton–Jacobi–Bellman (HJB) equation. Because the
HJB equation is actually a nonlinear partial differential equa-
tion (PDE), it is usually intractable to solve by analytical
methods. To cope with the problem, Bellman [7] developed
dynamic programming (DP) theory. Though DP is successfully
applied to solve optimal control problems, it is implemented
backward-in-time which often makes the computation unten-
able to be run with increasing dimension of nonlinear systems.
Consequently, approximate DP (ADP) algorithms were intro-
duced by Werbos [8]. The ADP methods can give approximate
solutions of the HJB equation forward-in-time by employing
neural networks (NNs). After that, various ADP approaches
were developed [9]–[20]. Nevertheless, most of ADP algo-
rithms are either implemented offline by utilizing iterative
schemes or they require a priori knowledge of system dynam-
ics. Since the exact knowledge of nonlinear dynamic systems
is often unavailable, these ADP algorithms are intractable to
real-time control applications.

To address the above issues, reinforcement learning (RL)
is introduced. RL is a class of methods employed in
machine learning to revise the actions of an agent based
on responses from its environment [21], [22]. A general
structure used to implement RL algorithm is the actor-critic
architecture, where the actor performs actions by interact-
ing with its environment, and the critic evaluates actions
and offers feedback information to the actor, leading to the
improvement in performance of the subsequent actor [23].
RL differs significantly from typical ADP methods in that
there is no prescribed behavior or training model proposed.

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU et al.: RL-BASED ROBUST CONTROLLER DESIGN FOR CT UNCERTAIN NONLINEAR SYSTEMS 1373

Consequently, RL is often applied to adaptive optimal con-
troller designs [24]–[37].

During the past several years, many researchers have
paid their attentions to the applications of RL methods to
constrained nonlinear optimal control problems [38]–[41].
Abu-Khalaf and Lewis [38] developed an offline RL-based
algorithm to solve the HJB equation of optimal control of
continuous-time (CT) nonlinear systems with saturating actu-
ators. By using the algorithm, the actor and the critic were
sequentially tuned and the solution of the HJB equation was
successively approximated. After that, Modares et al. [39]
proposed a novel algorithm based on integral RL methods
to synchronously tune the critic and the actor. Thereafter,
Modares and Lewis [40] applied the proposed algorithm to
study the constrained-input optimal tracking control problems.
It should be mentioned that the knowledge of internal dynam-
ics is not required in [39] and [40] [that is, the knowledge of
f (x) presented in (2) is unknown]. Different from the algo-
rithms proposed in [39] and [40], Yang et al. [41] employed
identifier NNs to remove the requirement of the knowledge of
internal dynamics and developed a new RL-based algorithm to
obtain the optimal control for nonlinear systems with unknown
structures. From [39]–[41], one shall find that the uncertainties
of nonlinear systems can be conquered by using integral RL
algorithms or introducing identifier NNs.

A question to be asked: based on the above two approaches,
could the robust control for uncertain nonlinear systems be
derived from the optimal control solution with appropriate
value functions for the original uncertain nonlinear systems,
rather than for the nominal system? In fact, the above two
methods cannot be used for the former case. By using inte-
gral RL algorithms, the system state needs to be reset at each
iteration step and it gives rise to difficulties for stability anal-
ysis [42]. On the other hand, the identifier NNs might not
accurately obtain the information of the uncertainties, when the
uncertainty terms contain noise or immeasurable perturbation.
For these reasons, Adhyaru et al. [43] transformed the robust
control problem to the constrained optimal control problem
by selecting a suitable value function for the nominal system.
The algorithm developed in [43] is constructed by utilizing the
least squares method and performed offline. Meanwhile, the
stability analysis of the closed-loop optimal control system is
not addressed.

More recently, Jiang and Jiang [44] developed a robust ADP
algorithm to derive the robust control for a class of uncer-
tain nonlinear systems. Based on the algorithm in [44], the
robust control is obtained by getting the optimal control solu-
tion with the infinite horizon cost for the original uncertain
nonlinear systems, which is an advantage over the algorithm
given in [43]. Nevertheless, similar to the algorithms pre-
sented in [38]–[41] and [43], the algorithm developed in [44]
also requires the initial stabilizing control. To the best of our
knowledge, there is no general method proposed to derive
such a control law. From a mathematical point of view,
the initial stabilizing control is actually a suboptimal con-
trol. The suboptimal control is intractable to obtain, since
it is often impossible to solve the nonlinear PDEs analyti-
cally. Accordingly, the initial stabilizing control is a rather

restrictive condition. Recently, Dierks and Jagannathan [45]
provided a way to relax the requirement of initial stabilizing
control under a single online approximator-based framework.
However, the control constraints are not taken into considera-
tion. In real engineering applications, ignoring the actuators’
limitation may give rise to undesirable transient response, and
cause system instability. In addition, the developed algorithm
is not utilized to derive robust control for CT nonlinear systems
with unknown perturbation.

Motivated by the aforementioned work, in this paper, a
novel RL-based robust adaptive control algorithm is developed
for constrained-input CT nonlinear systems in the presence of
unknown perturbation. The robust control problem is trans-
formed to a constrained optimal control problem with properly
selecting value functions for the nominal system. Distinct
from traditional action-critic dual networks employed in RL,
only one critic NN is constructed to derive the approximate
optimal control. Meanwhile, unlike initial stabilizing control
often indispensable in RL, there is no special requirement
imposed on the initial control. By using Lyapunov’s direct
method, the closed-loop optimal control system and the esti-
mated weights of the critic NN are proved to be uniformly
ultimately bounded (UUB). In addition, the derived approx-
imate optimal control is verified to guarantee the uncertain
nonlinear system to be stable in the sense of uniform ultimate
boundedness.

The main contributions of this paper include the following.
1) To the best of authors’ knowledge, it is the first time

that, by using RL methods, a critic NN is constructed to
derive the robust control of constrained-input uncertain
nonlinear CT systems without the requirement of the
initial stabilizing control.

2) Unlike [39] ignoring the higher-order terms of Taylor
series in the stability analysis, in this paper, we take
these terms into consideration. The higher-order terms
often have a close connection with stability analy-
sis (see Fact 1 in subsequent section). It will be
more reasonable to take them into account for stability
analysis.

3) In comparison with [38]–[41] and [44], a clear advantage
of the developed algorithm in this paper is that a simpler
algorithm architecture is constructed, that is, only one
critic NN is employed. In this sense, the complexity of
the computation is reduced.

The rest of this paper is organized as follows. In Section II,
we present the problem statement and preliminaries. In
Section III, we provide the nominal system for uncertain non-
linear systems and show that the robust control problem can
be transformed to a constrained optimal control problem. In
Section IV, we design an online RL-based control scheme
to derive the approximate solution of the HJB equation. In
Section V, we develop the stability analysis. In Section VI,
two examples are given to illustrate the theoretical results.
Finally, in Section VII, we give several concluding remarks.

A. Notations

R represents the set of all real numbers. R
m denotes the

Euclidean space of all real m-vectors. R
n×m denotes the space
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of all n×m real matrices. Im represents m×m identity matrix.
T is the transposition symbol. � is a compact set of R

n,
Cm(�) represents the class of functions having continuous
mth derivative on �. When ξ is a vector, ‖ξ‖ denotes the
Euclidean norm of ξ . When A is a matrix, ‖A‖ denotes the
two-norm of A.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the uncertain nonlinear CT system described by

ẋ(t) = f (x(t))+ g(x(t))u(x(t))+�f (x(t)) (1)

with the state x(t) ∈ � ⊂ R
n and the control u(x) ∈ A, and

A = {u|u ∈ R
m, |ui| ≤ κ, i = 1, . . . ,m}, where κ > 0 is the

saturating bound. f (x) ∈ R
n and g(x) ∈ R

n×m are known func-
tions, and �f (x) ∈ R

n is an unknown perturbation. For conve-
nience of later analysis, we provide the following assumptions,
which have been used in [30], [34], [46], and [47].

Assumption 1: The perturbation term �f (x) satisfies the
matching condition. That is, �f (x) = g(x)d(x), where d(x) ∈
R

m is an unknown function bounded by a known function
dM(x), i.e., ‖d(x)‖ ≤ dM(x). In addition, d(0) = 0 and
dM(0) = 0.

Assumption 2: f (x) + g(x)u is Lipschitz continuous on the
compact set � containing the origin, such that system (1) is
stabilizable on �. Moreover, f (0) = 0.

Assumption 3: The control matrix g(x) is known and
bounded, i.e., there exist constants gm and gM (0 < gm < gM)
such that gm ≤ ‖g(x)‖ ≤ gM , for every x ∈ �.

For system (1), in order to successfully tackle the robust
control problem, one needs to derive a feedback control
u(x) ∈ A, such that the closed-loop system is stable with
the unknown term d(x). It is generally difficult to directly
design such a controller, for the control is constrained and
the uncertainty term d(x) is involved.

In this paper, we shall demonstrate that the robust control
problem can be converted into the constrained optimal con-
trol problem with appropriately selecting value functions for
the nominal system. Then, by solving the constrained optimal
control problem, we can obtain a robust controller to guarantee
system (1) to be stable in the sense of uniform ultimate bound-
edness (as for the definition of uniform ultimate boundedness,
readers can refer to [48]).

III. NOMINAL SYSTEMS AND PROBLEM

TRANSFORMATION

This section consists of two parts. First, the HJB equation
for the constrained nominal system is developed. Then, we
verify that the robust control for system (1) can be obtained
by the optimal control for the constrained nominal system.

A. HJB Equation for Constrained Nominal Systems

The nominal system [i.e., system (1) without uncertainty]
is described by

ẋ(t) = f (x(t))+ g(x(t))u(x(t)) (2)

with u(x) ∈ A ⊂ R
m. It is desired to obtain the control policy

u(x) which minimizes the infinite horizon value function

V(x(t)) =
∞∫

t

[
d2

M

(
x(s)
)+ r

(
x(s), u(s)

)]
ds (s ≥ t) (3)

where r(x, u) = xTQx + W(u), Q is a symmetric positive
definite matrix and W(u) is positive definite. In order to over-
come bounded controls in system (2), inspired by the work
of [38]–[40], we define W(u) as

W(u) = 2κ

u∫

0

(
ψ−1(υ/κ)

)T
Rdυ

= 2κ
m∑

i=1

ui∫

0

ψ−1(υi/κ)ridυi

where ψ−1(υ/κ) = [ψ−1(υ1/κ), . . . , ψ
−1(υm/κ)]T, R =

diag{r1, . . . , rm} with ri > 0, i = 1, . . . ,m, ψ ∈ R
m,

ψ−T denotes (ψ−1)T, and ψ(·) is a bounded one-to-
one function satisfying |ψ(·)| ≤ 1 and belonging to
Cp(p ≥ 1) and L2(�) note that ψ(ν) ∈ L2(�) means
that

(∫
�
ψT(ν)ψ(ν)dν

)1/2
< ∞ and

∫
�
ψT(ν)ψ(ν)dν is the

Lebesgue integral on � [48], [49]. Meanwhile, ψ(·) is a
monotonic odd function with its derivative bounded by a con-
stant ψM , i.e., ‖dψ(ς)/dς‖ ≤ ψM , ∀ς ∈ R. It should be
emphasized that W(u) is positive definite since ψ−1(·) is a
monotonic odd function and R is positive definite. Without
loss of generality, in this paper, we choose ψ(·) = tanh(·)
and R = Im.

Let A (�) be the set of admissible control [50]. Given a
control u(x) ∈ A (�), if the associated value function V(x) ∈
C1(�), then the infinitesimal version of (3) is the so-called
Lyapunov equation

VT
x

(
f (x)+ g(x)u

)+ d2
M(x)+ r(x, u) = 0 (4)

where Vx ∈ R
n denotes the partial derivative of V(x) with

respect to x, and V(0) = 0.
Define the Hamiltonian for the control u(x) ∈ A (�) and

the value function V(x) as

H(x,Vx, u) = VT
x

(
f (x)+ g(x)u

)+ d2
M(x)+ r(x, u). (5)

The optimal value function V∗(x) ∈ C1(�) is given as

V∗(x(t)) = min
u∈A (�)

∞∫

t

[
d2

M

(
x(s)
)+ r

(
x(s), u(s)

)]
ds (6)

with V∗(0) = 0. Then, the optimal cost V∗(x) can be obtained
by solving the HJB equation

min
u∈A (�)

H
(
x,V∗

x , u
) = 0. (7)

Suppose that the minimum value on the left-hand side of (7)
exists and is unique. Then, the closed-form expression for the
optimal control is derived as

u∗(x) = −κ tanh

(
1

2κ
gT(x)V∗

x

)
. (8)
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Substituting (8) into (7), we obtain the HJB equation for the
nonlinear systems as

V∗
x

Tf (x)− 2κ2AT(x) tanh(A(x))+ d2
M(x)+ xTQx

+ 2κ

−κ tanh(A(x))∫

0

tanh−T(υ/κ)dυ = 0 (9)

where A(x) = (1/2κ)gT(x)V∗
x .

Denote A(x) = [A1(x), . . . ,Am(x)]T ∈ R
m with Ai(x) ∈ R,

i = 1, . . . ,m. By [39] and [40], we know

2κ

−κ tanh(A(x))∫

0

tanh−T(υ/κ)dυ

= 2κ2AT(x) tanh(A(x))+ κ2
m∑

i=1

ln
[
1 − tanh2(Ai(x))

]
.

Then, the HJB equation (9) can be rewritten as

V∗
x

Tf (x)+ d2
M(x)+ xTQx

+ κ2
m∑

i=1

ln
[
1 − tanh2(Ai(x))

]
= 0. (10)

B. Problem Transformation

In this section, we establish a theorem to show that the
robust control for system (1) can be obtained by the optimal
control solution for system (2) with the value function (3).

Theorem 1: Consider the nominal system described by (2)
with the value function (3). Let Assumptions 1–3 hold. Then,
the optimal control u∗(x) developed in (8) ensures system (1)
to be stable in the sense of uniform ultimate boundedness.

Proof: Let V∗(x) and u∗(x) be the optimal value given in (6)
and the optimal control derived in (8), respectively. According
to the definition of V∗(x) given in (6), we can obtain that
V∗(x) > 0 for ∀x �= 0 and V∗(x) = 0 ⇔ x = 0. Taking the
derivative of V∗(x) along the system trajectory ẋ = f (x) +
g(x)u∗ +�f (x), we have

V̇∗(x) = V∗T
x

(
f (x)+ g(x)u∗)+ V∗T

x �f (x). (11)

Using (9), we obtain

V∗T
x

(
f (x)+ g(x)u∗)

= −d2
M(x)− xTQx − 2κ

m∑
i=1

u∗
i∫

0

tanh−1(υi/κ)dυi (12)

where u∗ = [u∗
1, . . . , u∗

m

]T with u∗
i ∈ R, i = 1, . . . ,m. Observe

that (8) yields V∗T
x g(x) = −2κ tanh−T(u∗/κ). Then, based on

Assumption 1, we get

V∗T
x �f (x) = −2κ tanh−T(u∗/κ)d(x). (13)

Substituting (12) and (13) into (11), we derive

V̇∗(x) = −d2
M(x)− xTQx + £1(x)

− 2κ tanh−T(u∗/κ
)
d(x) (14)

with £1(x) = −2κ
∑m

i=1

∫ u∗
i

0 tanh−1(υi/κ)dυi.

Let τi = tanh−1(υi/κ), i = 1, . . . ,m. Then, by applying
variable substitution methods [51] to £1(x), we have

£1(x) = −2κ2
m∑

i=1

tanh−1(u∗
i /κ)∫

0

τi
(
1 − tanh2(τi)

)
dτi

= 2κ2
m∑

i=1

tanh−1(u∗
i /κ)∫

0

τi tanh2(τi)dτi

− κ2
m∑

i=1

(
tanh−1(u∗

i /κ
))2

. (15)

Note that
m∑

i=1

(
tanh−1(u∗

i /κ)
)2 = tanh−T(u∗/κ

)
tanh−1(u∗/κ

)
. (16)

Then, by using (15) and (16), (14) can be represented as

V̇∗(x) = −d2
M(x)− xTQx + dT(x)d(x)

− [
d(x)+ κ tanh−1(u∗/κ)

]T
× [

d(x)+ κ tanh−1(u∗/κ)
]+ £2 (17)

with £2(x) = 2κ2∑m
i=1

∫ tanh−1(u∗
i /κ)

0 τi tanh2(τi)dτi.
Using the integral mean-value theorem [51], we have

£2(x) = 2κ2
m∑

i=1

tanh−1(u∗
i /κ
)
θi tanh2(θi) (18)

where θi ∈ R is selected between 0 and tanh−1(u∗
i /κ),

i = 1, . . . ,m. From the expression of £2(x) given in (18),
one can easily derive that £2(x) > 0.

Because u∗ is an admissible control for nominal system (2)
with the value function (3), by using the definition of admis-
sible control [50], one can derive that V∗(x) is finite for
arbitrary x ∈ �. Moreover, one can conclude that V∗

x is
bounded. Without loss of generality, we denote that V∗

x is
bounded by δM > 0, i.e., ‖V∗

x ‖ ≤ δM . Accordingly, by using
Assumption 3 and (16), and observing that 0 < tanh2(θi) ≤ 1,
we obtain

£2(x) ≤ 2κ2
m∑

i=1

tanh−1(u∗
i /κ)θi

≤ 2κ2 tanh−T(u∗/κ
)

tanh−1(u∗/κ
)

= 1

2
V∗T

x g(x)gT(x)V∗
x ≤ 1

2
g2

Mδ
2
M. (19)

Combining (17) with (19) and using Assumption 1, we derive

V̇∗(x) ≤ −d2
M(x)− xTQx + dT(x)d(x)

− [
d(x)+ κ tanh−1(u∗/κ

)]T
× [

d(x)+ κ tanh−1(u∗/κ
)]+ 1

2
g2

Mδ
2
M

≤ −λmin(Q)‖x‖2 + 1

2
g2

Mδ
2
M

where λmin(Q) denotes the minimum eigenvalue of the
matrix Q. Noting that Q is positive definite, we obtain
λmin(Q) > 0.
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Consequently, V̇∗(x) < 0 as long as the state x(t) is out of
the compact set

�x =
{

x : ‖x‖ ≤ gMδM√
2λmin(Q)

}
.

This shows that V∗(x) is a Lyapunov function for system (1)
with the control u∗, whenever x(t) lies outside the compact
set �x. Therefore, the optimal control u∗ developed in (8)
guarantees the trajectory of system (1) to be UUB.

Remark 1: The optimal value V∗(x) is often considered to
be a smooth function [31]–[41]. It implies that V∗(x) ∈ C1(�).
Therefore, by functional analysis [49], we obtain that V∗

x is
bounded on �. This verifies that there exists a constant δM > 0
such that ‖V∗

x ‖ ≤ δM . In addition, � should be selected large
enough to make max{�x,�x̃} ⊆ �, where �x̃ is given in
subsequent (60). In this sense, x will remain in �.

According to Theorem 1, the robust control for sys-
tem (1) can be obtained by solving the optimal control
problem (2) and (3). In other words, we need to get the solu-
tion of the HJB equation (10). Nevertheless, one shall find
that (10) is actually a nonlinear PDE with respect to V∗(x),
which is difficult to solve by analytical methods. To overcome
the difficulty, an online RL-based optimal control scheme shall
be developed.

IV. RL-BASED OPTIMAL CONTROL SCHEME

Two subsections are embodied in this section, including the
introduction of policy iteration algorithm and the design of
online NN-based optimal control scheme.

A. Policy Iteration Algorithm

Step 1: Select a computation accuracy ε > 0. Let j = 0
with V(0)(x) = 0. Then, begin with an initial
admissible control policy u(0)(x).

Step 2: Get the value V( j+1)(x) by solving the equation

(
V( j+1)

x

)T(
f (x)+ g(x)u( j))+ d2

M(x)+ xTQx

− 2κ

u( j)∫

0

tanh−T(υ/κ)dυ = 0.

Step 3: Update the control policy using

u( j+1)(x) = −κ tanh

(
1

2κ
gT(x)V( j+1)

x

)
.

Step 4: If ‖V( j+1)(x)− V( j)(x)‖ ≤ ε for every x ∈ �, then
stop and derive the approximate optimal control;
otherwise, let j = j + 1 and go back to step 2.

Based on the present algorithm, one can obtain that, for
i → ∞, there exist V(i)(x) → V∗(x) and u(i)(x) → u∗(x). The
convergence of the algorithm was shown in [38].

Though the present policy iteration algorithm can be applied
to solve (10), it is often implemented offline (see [38]). On
the other hand, it needs the initial admissible control. As men-
tioned before, it is a rather restrictive condition. To handle

the above two problems, a novel online NN-based control
algorithm shall be developed to solve (10).

B. Online NN-Based Control Design

In this section, a critic NN is constructed to approximate
the value function. According to the universal approximation
property of NNs, V∗(x) given in (6) can be represented by a
single-layer NN on a compact set � as

V∗(x) = WT
c σ(x)+ ε(x) (20)

where Wc ∈ R
N0 is the ideal NN weight vector, σ(x) =

[σ1(x), σ2(x), . . . , σN0(x)]
T ∈ R

N0 is the activation function
with σj(x) ∈ C1(�) and σj(0) = 0, the set {σj(x)}N0

1 is often
selected to be linearly independent, N0 is the number of the
neurons, and ε(x) is the NN function reconstruction error.

The derivative of V∗(x) with respect to x is given as

V∗
x = ∇σT(x)Wc + ∇ε (21)

with ∇σ(x) = ∂σ(x)/∂x and ∇σ(0) = 0.
Substituting (21) into (10), we have

d2
M(x)+ xTQx + WT

c ∇σ f (x)+ ∇εTf (x)

+ κ2
m∑

i=1

ln
[
1 − tanh2(�1i(x)+�i(x))

] = 0 (22)

where �1(x) = (1/2κ)gT(x)∇σTWc, �(x) = (1/2κ)gT(x)∇ε,
and �1(x) = [�11(x), . . . , �1m(x)]T with �1i(x) ∈ R, and
�(x) = [�1(x), . . . , �m(x)]T with �i(x) ∈ R, i = 1, . . . ,m.

Using the mean-value theorem [51], (22) is represented as

d2
M(x)+ xTQx + WT

c ∇σ f (x)

+ κ2
m∑

i=1

ln
[
1 − tanh2 (�1i(x)

)]+ εHJB = 0 (23)

where εHJB is the HJB approximation error [38], [39], and the
expression is given as

εHJB = ∇εTf (x)+
m∑

i=1

2κ2

ζ1i
tanh(ζ2i)

(
tanh2(ζ2i)− 1

)
�i(x)

with ζ1i ∈ R selected between 1 − tanh2(Ai(x))) and 1 −
tanh2(�1i(x)), and ζ2i ∈ R chosen between Ai(x) and �1i(x).

Remark 2: It was shown in [38] that εHJB converges to zero
as the number of neurons N0 increases. In other words, for
∀εh > 0, there exists a positive Nh (depending only on εh)
such that N0 > Nh implies ‖εHJB‖ ≤ εh.

Similarly, by using (21) and the mean-value theorem, the
optimal control (8) can be rewritten as

u∗(x) = −κ tanh
(
�1(x)

)+ εu∗ (24)

where εu∗ = −1/2
(
1 − tanh2(ξ)

)
gT∇ε with ξ ∈ R

m selected
between �1(x) and A(x) and 1 = [1, . . . , 1]T ∈ R

m.
Because the ideal NN weight Wc is typically unknown, (24)

cannot be implemented in real-control process. Hence, we use
a critic NN to approximate the value function given in (6) as

V̂(x) = ŴT
c σ(x) (25)
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where Ŵc is the estimate of Wc. Meanwhile, the estimation
error for the weight is defined as

W̃c = Wc − Ŵc. (26)

Utilizing (25), the estimate of (8) is derived as

û(x) = −κ tanh
( 1

2κ
gT(x)∇σTŴc

)
. (27)

Combining (5), (25), and (27), we derive the approximate
Hamiltonian as

H(x, Ŵc) = d2
M(x)+ xTQx + ŴT

c ∇σ f (x)

+ κ2
m∑

i=1

ln
[
1 − tanh2(�2i(x))

]
� e (28)

where �2(x) = (1/2κ)gT(x)∇σTŴc, and �2(x) =
[�21(x), . . . , �2m(x)]T with �2i(x) ∈ R, i = 1, . . . ,m.

From (23) and (28), we have

e = −W̃T
c ∇σ f (x)+

m∑
i=1

κ2[�(�2i)− �(�1i)
]− εHJB (29)

with �(�ιi) = ln
[
1 − tanh2(�ιi(x))

]
, ι = 1, 2. Observe that,

for ∀�ιi(x) ∈ R, �(�ιi) can be represented as [41]

�(�ιi) = −2 ln
[
1 + exp

(−2�ιi(x)sgn(�ιi(x))
)]

− 2�ιi(x)sgn(�ιi(x))+ ln 4

where sgn(�ιi(x)) ∈ R is a sign function [51]. Note that
m∑

i=1

�(�ιi) = −2
m∑

i=1

ln
[
1 + exp

(−2�ιi(x)sgn(�ιi(x))
)]

− 2�T
ι (x)sgn(�ι(x))+ m ln 4. (30)

Therefore, using (29) and (30), we get

e = 2κ2
[
�T

1 (x)sgn(�1(x))−�T
2 (x)sgn(�2(x))

]

− W̃T
c ∇σ f (x)+ κ2�� − εHJB

= κ
[
WT

c ∇σg(x)sgn(�1(x))− ŴT
c ∇σg(x)sgn(�2(x))

]

− W̃T
c ∇σ f (x)+ κ2�� − εHJB

= −W̃T
c

[∇σ f (x)− κ∇σg(x)sgn(�2(x))
]+ ρ(x) (31)

where

�� = 2
m∑

i=1

ln
1 + exp

[−2�1i(x)sgn(�1i(x))
]

1 + exp
[−2�2i(x)sgn(�2i(x))

]
ρ(x) = κWT

c ∇σg(x)
[
sgn(�1(x))− sgn(�2(x))

]
+ κ2�� − εHJB.

To derive the minimum value of e, it is desired to choose Ŵc

to minimize the squared residual error E = (1/2)eTe. By uti-
lizing the gradient descent algorithm, the weight tuning law for
the critic NN is generally given as [31]–[34], [40], and [41]

˙̂Wc = − γ

(1 + φTφ)2

∂E

∂Ŵc
= − γφ

(1 + φTφ)2
e (32)

where φ = ∇σ ( f (x)+g(x)û
)
, γ > 0 is a design constant, and

the term (1 + φTφ)2 is employed for normalization.

However, there exist two issues about the tuning rule (32).
1) Based on (32), the initial admissible control for sys-

tems (2) and (3) is required, for guaranteeing the validity
of policy iteration algorithms presented in aforementioned
literature. As stated before, the initial admissible control
is actually a suboptimal control of system (2) with (3).
The suboptimal control is intractable to obtain because
it needs to get the analytical solution of the PDE (10).

2) By utilizing (32), if the initial control is not admissible,
then tuning the critic NN alone might not guarantee the
stability of the closed-loop system during the learning
process of NNs.

To tackle the above two issues, the weight update law for
the critic NN should be redefined. Prior to proceeding, we
provide a assumption as follows. The assumption is a common
technique, which has been used in [15], [25], [45], and [52].

Assumption 4: J(x(t)) is a continuously differentiable radi-
ally unbounded Lyapunov function candidate such that
J̇(x(t)) = JT

x

(
f (x)+ g(x)u∗) < 0 with Jx the partial derivative

of J(x) with respect to x. Moreover, there exists a symmetric
positive definite matrix B(x) ∈ R

n×n defined on � such that

JT
x

(
f (x)+ g(x)u∗) = −JT

x B(x)Jx. (33)

Remark 3: f (x) + g(x)u∗ is often assumed to be bounded
by a positive constant on the compact set � [30]–[34]. That
is, for every x ∈ �, there exists a constant � > 0 such that
‖ f (x) + g(x)u∗‖ ≤ �. To relax the condition, we assume that
f (x) + g(x)u∗ is bounded by a function with respect to x.
Because Jx is a function with respect to x, without loss of
generality, we assume that ‖ f (x) + g(x)u∗‖ ≤ η‖Jx‖(η > 0).
In this sense, we derive that ‖JT

x

(
f (x) + g(x)u∗)‖ ≤ η‖Jx‖2.

Observing that JT
x

(
f (x)+g(x)u∗) < 0, one shall find that (33)

defined as in Assumption 4 is reasonable. In addition, J(x(t))
is usually derived through properly selecting functions, such
as polynomials.

Based on Assumption 4 and aforementioned analyzes, we
develop a novel weight update law for the critic NN as

˙̂Wc = −γ φ̄
(

d2
M(x)+ xTQx + ŴT

c ∇σ f (x)

+ κ2
m∑

i=1

ln
[
1 − tanh2(�2i(x))

])

+ γ

2
�(x, û)∇σg(x)

[
Im − B(�2(x))

]
gT(x)Jx

+ γ

(
κ∇σg(x)

[
tanh(�2(x))− sgn(�2(x))

]ϕT

ms
Ŵc

− (
P2 − P1ϕ

T)Ŵc

)
(34)

where φ̄ = φ/m2
s , ϕ = φ/ms, ms = 1 + φTφ, and

B(�2(x)) = diag
{
tanh2(�2i(x))

}
, i = 1, . . . ,m, Jx is defined

as in Assumption 4, P1 and P2 are tuning parameters with
suitable dimensions, and �(x, û) is a sign function given as

�(x, û) =
{

0, if JT
x

(
f (x))+ g(x)û

)
< 0

1, otherwise.
(35)
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Remark 4: Several notes about (34) are listed as follows.
1) The first term given in (34) shares the same feature

with (32), which is employed to minimize the objective
function E = (1/2)eTe.

2) The second term provided in (34) is used to guar-
antee the stability of the closed-loop system during
the NN learning process. We denote the derivative of
the Lyapunov function candidate for system (2) with the
control (27) as

� = JT
x

(
f (x)− κg(x) tanh(�2(x))

)
.

If the closed-loop system is unstable, then we can obtain
� > 0. In order to keep the closed-loop system stable,
we just need to make � < 0. Using the gradient descent
method, we have

− γ
∂�

∂Ŵc
= −γ ∂

[
JT

x

(
f (x)− κg(x) tanh(�2(x))

)]
∂Ŵc

= γ

(
∂�2

∂Ŵc

)T

· ∂
[
κJT

x g(x) tanh(�2(x))
]

∂�2(x)

= γ

2
∇σg(x)

[
Im − B(�2(x))

]
gT(x)Jx (36)

where B(�2(x)) = diag
{
tanh2(�2i(x))

}
, i = 1, . . . ,m.

Equation (36) indicates the reason that we employ the
second term given in (34). Actually, by the definition
of �(x, û) given in (35), we find that if there exists
� < 0 (that is, the closed-loop system is stable), then
�(x, û) = 0 and the second term in (34) disappears.
If the closed-loop system is unstable, then �(x, û) = 1
and the second term in (34) [that is (36)] works. Based
on (34), it makes no requirement of the initial stabilizing
control for system (2). This property will be illustrated
in numerical simulation.

3) The last term given in (34) is a robust term, which is
used for stability analysis in the subsequent discussion.

4) If selecting proper Pi (i = 1, 2) such that P2 =
P1ϕ

T, then, by (34), we have ˙̂Wc = 0 when
x = 0. In this case, V̂(x) will no longer be updated.
However, the optimal control might not be achieved
at finite time tf which makes x(tf ) = 0. To avoid
this case, persistency of excitation (PE) condition is
required.

Observing the expression of φ given in (32) and using (27),
we obtain that ∇σ f (x) = φ + κ∇σg(x) tanh(�2(x)). Then,
based on (26), (28), (31), and (34), we derive

˙̃Wc = γ
ϕ

ms

[
−W̃T

c φ + κW̃T
c ∇σg(x)F(x)+ ρ(x)

]

− γ

2
�(x, û)∇σg(x)

[
Im − B(�2(x))

]
gT(x)Jx

+ γ
[
κ∇σg(x)F(x)ϕ

T

ms
Ŵc +

(
P2 − P1ϕ

T
)

Ŵc

]
(37)

where F(x) = sgn(�2(x))− tanh(�2(x)).
Traditionally, for utilizing RL approaches, a second

NN called the action NN is introduced to approximate
the control policy [23], [31]–[33], [39], [40]. However,

Fig. 1. Schematic of the developed control algorithm.

in this paper, the action NN is not required. The reasons are as
follows.

1) As pointed out in [23], the action NN is mainly
employed to avoid the need for knowledge of the inter-
nal dynamics f (x). Nevertheless, both the knowledge of
f (x) and g(x) is assumed to be available in our case.

2) From (25) and (27), we can find that the value func-
tion shares the same weight Ŵc with the control policy.
Therefore, if the value function can be approximated by
the critic NN given in (25), then the control policy is
obtained via (27). In other words, the action NN can be
replaced with (27).

Based on the above analyzes, the schematic of the developed
control algorithm is shown in Fig. 1.

V. STABILITY ANALYSIS

In this section, we present our main results via Lyapunov’s
direct method. Before proceeding, we provide the following
two assumptions, which have been used in [30]–[34].

Assumption 5: The ideal NN weight Wc is bounded by a
known constant WM > 0, i.e., ‖Wc‖ ≤ WM . There exist
known constants bε > 0 and bεx > 0 such that ‖ε(x)‖ < bε,
‖∇ε(x)‖ < bεx, for every x ∈ �. In addition, εu∗ given
in (24) is bounded by a known constant bεu∗ > 0 over �,
i.e., ‖εu∗‖ ≤ bεu∗ , for every x ∈ �.

Assumption 6: There exist known constants bσ > 0 and
bσx > 0 such that ‖σ(x)‖ ≤ bσ , ‖∇σ(x)‖ ≤ bσx, for every
x ∈ �.

Let G(�i) = tanh(�i(x)), i = 1, 2. By employing Taylor
series, we have

G(�1)− G(�2) = ∂G(�2)

∂�2

(
�1(x)−�2(x)

)

+ O
(
(�1(x)−�2(x))

2)

= 1

2κ

[
Im − B(�2(x))

]
gT∇σTW̃c

+ O
(
(�1(x)−�2(x))

2) (38)

where B(�2(x)) = diag
{
tanh2(�2i(x))

}
, i = 1, . . . ,m

and O
(
(�1(x) − �2(x))2

)
is the higher-order terms of
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the Taylor series [51]. Then, by using (38), we derive

O
(
(�1(x)−�2(x))

2
)

= G(�1)− G(�2)+ 1

2κ
[B(�2(x))− Im]gT∇σTW̃c.

Observing that ‖tanh(�i)‖ ≤ 1 (i = 1, 2), we can obtain a
fact as follows. It should be noted that a similar fact has been
stated in [53].

Fact 1: For hyperbolic function tanh, the higher-order term
in the Taylor series is bounded by∥∥∥O

(
(�1(x)−�2(x))

2
)∥∥∥ ≤ c1 + c2‖W̃c‖

where ci (i = 1, 2) are computable positive constants.
Theorem 2: Consider the nominal nonlinear CT system

described by (2) with the associated HJB equation (10). Let
Assumptions 2–6 hold and take the control input for system (2)
as given in (27). Meanwhile, let the critic NN weight tuning
law be described by (34). Then, the function Jx and the critic
NN weight estimation error W̃c are guaranteed to be UUB.

Proof: Consider the Lyapunov function candidate

L(t) = L1(x)+ 1

2
W̃T

c γ
−1W̃c (39)

where L1(x) = J(x) with J(x) given in Assumption 4.
Taking the time derivative of (39), we have

L̇(t) = JT
x

(
f (x)+ g(x)û

)+ ˙̃WT
c γ

−1W̃c

= JT
x

[
f (x)− κg(x) tanh(�2(x))

]
+ ˙̃WT

c γ
−1W̃c. (40)

Using (37), the last term of (40) can be represented as

˙̃WT
c γ

−1W̃c =
[
−W̃T

c φ + κW̃T
c ∇σgF(x)+ ρ(x)

]ϕT

ms
W̃c

− 1

2
�
(
x, û
)
JT

x g(x)
[
Im − B(�2(x))

]
gT(x)

× ∇σTW̃c + κW̃T
c ∇σg(x)F(x)ϕ

T

ms
Ŵc

+ W̃T
c

(
P2Ŵc − P1ϕ

TŴc
)

= −W̃T
c ϕϕ

TW̃c + α(x)ϕTW̃c + W̃T
c β(x)

− 1

2
�
(
x, û
)
JT

x g(x)
[
Im − B(�2(x))

]
gT(x)

× ∇σTW̃c + W̃T
c

(
P2Ŵc − P1ϕ

TŴc
)

(41)

where α(x) = ρ(x)/ms and β(x) = κ∇σg(x)F(x) (ϕT/ms)Wc.
By the definition of W̃c given in (26), we derive the last

term in (41) as

W̃T
c

(
P2Ŵc − P1ϕ

TŴc
) = W̃T

c P2Wc − W̃T
c P2W̃c

− W̃T
c P1ϕ

TWc + W̃T
c P1ϕ

TW̃c.

Let YT = [W̃T
c ϕ W̃T

c

]
. Then, (41) can be rewritten as

˙̃WT
c γ

−1W̃c = −YTMY + YTN − 1

2
�(x, û)JT

x g(x)

× [
Im − B(�2(x))

]
gT(x)∇σTW̃c (42)

where

M =
⎡
⎢⎣ I −1

2
PT

1

−1

2
P1 P2

⎤
⎥⎦, N =

[
α(x)

β(x)+ P2Wc − P1ϕ
TWc

]
.

Substituting (42) into (40) and choosing Pi (i = 1, 2) such
that the matrix M is positive definite, we have

L̇(t) ≤ JT
x

(
f (x)+ g(x)û

)− λmin(M)‖Y‖2

− 1

2
�(x, û)JT

x g(x)[Im − B(�2(x))]

× gT(x)∇σTW̃c + ζN‖Y‖ (43)

where λmin(M) denotes the minimum eigenvalue of M, and
ζN is an upper bound of ‖N‖, i.e., ‖N‖ ≤ ζN .

Based on �(x, û) given in (35), we divide (43) into the
following two cases for discussion.

Case I (�(x, û) = 0): In this sense, the first term in (43)
is negative. Since ‖x‖ > 0 is guaranteed by adding the PE
signal, one can obtain that there exists a positive constant μ
such that 0 < μ ≤ ‖ẋ‖ implies JT

x ẋ ≤ −‖Jx‖μ < 0 based on
Archimedean property of R [51]. Then, (43) is developed as

L̇(t) ≤ Jxẋ − λmin(M)‖Y‖2 + ζN‖Y‖
≤ −‖Jx‖μ+ 1

4
ζ 2

N/λmin(M)

− λmin(M)
(
‖Y‖ − 1

2
ζN/λmin(M)

)2
. (44)

Thus, (44) yields L̇(t) < 0 as long as one of the following
conditions holds:

‖Jx‖ > ζ 2
N

4μλmin(M)
� D1, or ‖Y‖ > ζN

λmin(M)
. (45)

Noticing that ‖Y‖ ≤ √1 + ‖ϕ‖2‖W̃c‖ and observing the fact
that ‖ϕ‖ ≤ (1/2), we can derive ‖Y‖ ≤ (

√
5/2)‖W̃c‖. Then,

by using (45), we obtain

‖W̃c‖ > 2ζN√
5λmin(M)

� D2.

Case II (�(x, û) = 1): In this circumstance, the first term
in (43) is nonnegative. It implies that the control (27) might
not stabilize system (2). Then, by using (27), (43) becomes

L̇(t) ≤ JT
x f (x)− κJT

x g(x)
[
tanh(�2(x))

+ 1

2κ

[
Im − B(�2(x))

]
gT(x)∇σTW̃c

]

− λmin(M)‖Y‖2 + ζN‖Y‖. (46)

Utilizing (38), we get

tanh(�2(x))+ 1

2κ

[
Im − B(�2(x))

]
gT(x)∇σTW̃c

= tanh(�1(x))− O
(
(�1(x)−�2(x))

2). (47)

Substituting (47) into (46) and using (24), we have

L̇(t) ≤ JT
x

(
f (x)+ g(x)u∗)− JT

x g(x)εu∗

− κJT
x g(x)O

(
(�1(x)−�2(x))

2)
− λmin(M)‖Y‖2 + ζN‖Y‖. (48)
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Using Assumptions 3–5 and Fact 1, (48) is developed as

L̇(t) ≤ JT
x

(
f (x)+ g(x)u∗)− JT

x g(x)εu∗

− κJT
x g(x)O

(
(�1(x)−�2(x))

2)
− λmin(M)‖Y‖2 + ζN‖Y‖

≤ −λmin(B(x))‖Jx‖2 + gM(κc1 + bεu∗)‖Jx‖
+ gMκc2‖Jx‖‖W̃c‖ − λmin(M)‖Y‖2

+ ζN‖Y‖. (49)

For every !i ∈ (0, 1), i = 1, 2, let !1 + !2 = 1. Then, (49) can
be represented as

L̇(t) ≤ −!1λmin(B(x))‖Jx‖2 + gM(κc1 + bεu∗)‖Jx‖
− !2λmin(B(x))

(
‖Jx‖ − gMκc2‖W̃c‖

2!2λmin(B(x))
)2

+ (gMκc2)
2

4!2λmin(B(x))‖W̃c‖2 − λmin(M)‖Y‖2

+ ζN‖Y‖. (50)

Noticing that ‖W̃c‖2 ≤ ‖Y‖2, we develop (50) as

L̇(t) ≤ −!1λmin(B(x))‖Jx‖2 + gM(κc1 + bεu∗)‖Jx‖
−
(
λmin(M)− (gMκc2)

2

4!2λmin(B(x))
)

‖Y‖2 + ζN‖Y‖

= −!1λmin(B(x))
(

‖Jx‖ − gM(κc1 + bεu∗)

2!1λmin(B(x))
)2

− �

4!2λmin(B(x))
(

‖Y‖ − 2!2λmin(B(x))ζN

�

)2

+ g2
M(κc1 + bεu∗)2

4!1λmin(B(x)) + !2λmin(B(x))ζ 2
N

�
(51)

where � = 4!2λmin(B(x))λmin(M) − g2
Mκ

2c2
2. Observe that

the value of � depends on the parameters !2, B(x), and
Pi (i = 1, 2). Hence, the value of � can be kept positive by
properly selecting these parameters.

For convenience, we denote

N = g2
M(κc1 + bεu∗)2

4!1λmin(B(x)) + !2λmin(B(x))ζ 2
N

�
.

Then, (51) implies L̇(t) < 0 as long as one of the following
conditions holds:

‖Jx‖ > gM(κc1 + bεu∗)

2!1λmin(B(x)) +
√

N

!1λmin(B(x)) � D′
1

or

‖Y‖ > 2!2λmin(B(x))ζN

�
+
√

4!2λmin(B(x))N
�

. (52)

Observe that ‖Y‖ ≤ (
√

5/2)‖W̃c‖. Then, by using (52),
we have

‖W̃c‖ > 4!2λmin(B(x))ζN√
5�

+ 4

√
!2λmin(B(x))N

5�
� D′

2.

Combining cases I and II and using the standard Lyapunov
extension theorem [53], we can obtain that Jx is UUB with
ultimate bound D1 (or D′

1) and the weight estimation error
W̃c is also UUB with ultimate bound D2 (or D′

2).

Remark 5: Note that �� given in (31) satisfies that �� ∈
(−m ln 4,m ln 4). By Assumptions 3, 5, and 6, we derive that
ρ(x) given in (31) is bounded. Meanwhile, by ϕ and ms given
in (34), we can obtain ‖ϕ‖ ≤ 1/2 and 1/ms ≤ 1. Therefore,
N given in (42) is bounded.

Remark 6: Because J(x) given in Assumption 4 is often
obtained by selecting polynomials, one can derive that Jx is
also a polynomial with respect to x. Since Theorem 2 has
verified that Jx is UUB, one can easily obtain that the trajectory
of the closed-loop system is also UUB.

Next, we develop a theorem to show rigorously that the
closed-loop system is stable in the sense of uniform ultimate
boundedness during NN learning process.

Theorem 3: Consider system (2) with associated HJB equa-
tion (9). Let Assumptions 3, 5, and 6 hold and let the control
input be given in (27) for system (2). Meanwhile, the weight
update law for the critic NN is given in (34). Then, the closed-
loop system is guaranteed to be UUB with the ultimate bound
�̃x given in the subsequent (60).

Proof: Consider the Lyapunov function candidate V∗(x)
given in (6). Taking the derivative of V∗(x) along the system
trajectory ẋ = f (x)+ g(x)û, we get

V̇∗(x) = V∗T
x f (x)+ V∗T

x g(x)û. (53)

From (8) and (9), we have

V∗
x

Tf (x) = −V∗T
x g(x)u∗ − d2

M(x)− xTQx

− 2κ

u∗∫

0

tanh−T(υ/κ)dυ. (54)

Substituting (54) into (53), we derive

V̇∗(x) = V∗T
x g(x)

(
û − u∗)− xTQx

− d2
M(x)− 2κ

u∗∫

0

tanh−T(υ/κ)dυ. (55)

Combining (20) with (55) and observing the fact that
2κ
∫ u∗

0 tanh−T(υ/κ)dυ is positive definite, we have

V̇∗(x) ≤ −xTQx + WT
c ∇σg(x)

(
û − u∗)

+ ∇εTg(x)
(
û − u∗). (56)

On the other hand, by using (24), (27), and (38), we get

û − u∗ = κ
[
tanh(�1(x))− tanh(�2(x))

]− εu∗

= 1

2

[
Im − B(�2(x))

]
gT∇σTW̃c

+ κO
(
(�1(x)−�2(x))

2)− εu∗ .

Then, employing Assumptions 5 and 6 and Fact 1, we derive

‖û − u∗‖ ≤ (gMbσx + κc2
)‖W̃c‖ + κc1 + bεu∗ . (57)

By Theorem 2, we know that W̃c is UUB with ultimate bound
D2 (or D′

2). Let M = max{D2,D
′
2}. From (57), we have

‖û − u∗‖ ≤ (gMbσx + κc2
)
M + κc1 + bεu∗ � T1. (58)
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Hence, by using (58) and Assumptions 3, 5, and 6,
(56) becomes

V̇∗(x) ≤ −λmin(Q)‖x‖2 + gM(WMbσx + bεx)T1. (59)

Therefore, (59) yields V̇∗(x) < 0 as long as x is out of

�̃x =
{

x : ‖x‖ ≤
√

gM(WMbσx + bεx)T1

λmin(Q)

}
. (60)

According to the standard Lyapunov extension theorem [53],
this verifies that the trajectory of the closed-loop system is
UUB. That is, the closed-loop system is stable in the sense of
uniform ultimate boundedness during NN learning process.

Corollary 1: The control û given in (27) can approximate
the optimal control u∗ within a finite bound T1 given in (58).
Meanwhile, V̂(x) given in (25) will be close to the optimal
value V∗(x) within a finite bound T2 given in (61).

Proof: The first part of Corollary 1 has been proved in
Theorem 3. The second part of Corollary 1 is derived as
follows. Using (20), (25), and Assumptions 5 and 6, we have

‖V̂ − V∗‖ ≤ bσM + bεu∗ � T2 (61)

where M is given in (58).
Remark 7: Noticing the expressions of D2 and D′

2, we find
that M can be kept small by selecting proper parameters
(e.g., λmin(M) is large enough). In addition, as pointed out
in [54] and [55], if the number of neurons N0 goes to infinity,
there exist ε → 0 and ∇ε → 0. Hence, εu∗ can be arbitrarily
small when N0 is large enough. That is, bεu∗ can be kept suf-
ficiently small. Therefore, T2 given in (61) can be made very
small.

VI. SIMULATION RESULTS

In this section, two examples are provided to illustrate the
effectiveness of the developed theoretical results.

A. Example 1

Consider the uncertain CT linear system given by

ẋ = Ax + B
[
u(x)+ qx1 sin5(x2) cos2(x3)

]
(62)

where

A =
⎡
⎣−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555
0 0 −1

⎤
⎦, B =

⎡
⎣0

0
1

⎤
⎦

with the state x = [x1, x2, x3]T ∈ R
3, the control u ∈ A = {u ∈

R : |u| ≤ 1}, and q is an unknown parameter. The term d(x) =
qx1 sin5(x2) cos2(x3) reflects the uncertainty of system (62).
For simplicity of discussion, we assume that q ∈ [−2, 2] and
dM(x) = 2‖x‖.

The nominal system is ẋ = Ax + Bu with A and B given
in (62). The corresponding value function is

V(x) =
∞∫

0

(
4‖x‖2 + xTQx + W(u)

)
dt

where Q = I3 and W(u) = 2κ
∫ u

0 tanh−T(υ/κ)dυ.

Fig. 2. Evolution of nominal system state x(t) for NN learning process.

Fig. 3. Convergence of the critic NN weight Ŵc.

The activation function for the critic NN is chosen with
N0 = 6 neurons as

σ(x) = [x2
1, x2

2, x2
3, x1x2, x1x3, x2x3

]T

and Ŵc = [Wc1,Wc2, . . . ,Wc6]T is the critic NN weight. It
should be emphasized that choosing the proper neurons for
NNs is still an open question [56]. In this example, the number
of neurons is obtained by computer simulations. We find that
selecting six neurons in the hidden layer for the critic NN can
lead to satisfactory simulation results.

The initial weight for the critic NN is chosen to be zero,
and the initial state is set to be x0 = [1,−1, 0.5]T. The param-
eters are designed as κ = 1, γ = 0.95. To guarantee the PE
condition, a small exploratory signal n(t) = sin2(t) cos(t) +
sin2(2t) cos(0.1t)+sin2(1.2t) cos(0.5t)+sin5(t)+sin2(1.12t)+
cos(2.4t) sin3(2.4t) is added to the control u(t) for the first
60 s. The developed control algorithm is implemented by
using (27) and (34).

The computer simulation results are shown in Figs. 2–5.
Fig. 2 illustrates the evolution of the nominal system state x
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Fig. 4. Control input u.

Fig. 5. Trajectories of system (62) under approximate optimal control.

during the critic NN learning process. Fig. 3 indicates
the convergence of the critic NN weights. As shown
in Fig. 3, the critic NN weights converge to Wc =
[0.3871, 0.7402, 2.6356, 0.4915,−1.3225,−1.4737]T. Fig. 4
presents the control input. Fig. 5 shows the trajectories of sys-
tem (62) under approximate optimal control. From Figs. 2–4,
one can find that the developed adaptive control guarantees
that all signals in the closed-loop optimal control system are
UUB. Moreover, from Fig. 3, one can find the PE condition
ensures the critic NN weight to be convergent in approximately
60 s. By Corollary 1, the critic is considered to be convergent
to the approximate optimal value. Then, we apply the derived
approximate optimal control to system (62). Fig. 5 shows the
approximate optimal control can guarantee system (62) to be
stable in the sense of uniform ultimate boundedness.

B. Example 2

Consider the uncertain CT nonlinear system given by [43]

ẋ = f (x)+ g(x)
(
u(x)+ qx1 sin x2

)
(63)

Fig. 6. Trajectories of system (63) with initial control u = 0.

where

f (x) =
[

x1 + x2 − x1
(
x2

1 + x2
2

)
−x1 + x2 − x2

(
x2

1 + x2
2

)
]
, g(x) =

[
0
1

]

with the state x = [x1, x2]T ∈ R
2, the control u ∈ A =

{u ∈ R : |u| ≤ 1}, and q is an unknown parameter. The term
d(x) = qx1 sin x2 gives rise to the uncertainty of system (63).
For simplicity of discussion, in this example, we assume that
q ∈ [−1.4, 1.4] and dM(x) = 1.4‖x‖.

The nominal system is ẋ = f (x)+ g(x)u with f (x) and g(x)
given in (63). The corresponding value function is

V(x) =
∞∫

0

(
2‖x‖2 + xTQx + W(u)

)
dt

where Q = I2 and W(u) = 2κ
∫ u

0 tanh−T(υ/κ)dυ.
The activation function for the critic NN is chosen with

N0 = 24 neurons as

σ(x) =
[
x2

1, x2
2, x1x2, x4

1, x4
2, x3

1x2, x2
1x2

2, x1x3
2, x6

1

x6
2, x5

1x2, x4
1x2

2, x3
1x3

2, x2
1x4

2, x1x5
2, x8

1, x8
2

x7
1x2, x6

1x2
2, x5

1x3
2, x4

1x4
2, x3

1x5
2, x2

1x6
2, x1x7

2

]T

and Ŵc = [Wc1,Wc2, . . . ,Wc24]T is the critic NN weight.
Similar to Example 1, the number of neurons is also obtained
by computer simulations.

The initial weight for the critic NN is selected to be zero
(i.e., the initial control u = 0), and the initial system state
is set to be x0 = [0.5,−0.5]T. It is significant to point out
that, in this circumstance, the initial control cannot stabilize
system (63). To illustrate this fact, we present Fig. 6 (since
the closed-loop system turns out to be periodic oscillation, we
provide the trajectory of the system for the first 50 s). It also
verifies that there is no requirement of the initial stabilizing
control for implementing the new developed algorithm. The
other parameters and the exploratory signal are chosen to be
the same as in Example 1. The exploratory signal is added to
u(t) for the first 600 s.
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Fig. 7. Evolution of nominal system state x(t) for NN learning process.

Fig. 8. Convergence of the critic NN weight Ŵc.

Fig. 9. Control input u.

The computer simulation results are illustrated in
Figs. 7–10. Fig. 7 shows the evolution of the nominal
system state x during the critic NN learning process. Fig. 8
presents the convergence curves of the first eight weights of
the critic NN. In fact, the weights of the critic NN converge to

Fig. 10. Trajectories of system (63) under approximate optimal control.

Wc = [2.5849, 2.0037, 0.6158, 1.1825, 1.5860, −0.1390,
0.6583, −0.5108, 0.6364, 0.6695, −0.1333, 0.3175, −0.1374,
0.3578, −0.2267, 0.3878, 0.2951, −0.0874, 0.1738, −0.0517,
0.1243, −0.0437, 0.1497, −0.0854]T. Fig. 9 shows the
control input. Fig. 10 indicates the trajectories of system (63)
under approximate optimal control. From Figs. 7–9, one can
find that the developed adaptive control guarantees that all
signals in the closed-loop optimal control system are UUB.
In addition, from Fig. 8, one can find that the PE condition
ensures the weight to be convergent in approximately 600 s.
By Corollary 1, the critic is considered to be convergent to
the approximate optimal value. Then, we apply the derived
approximate optimal control to system (63). Fig. 10 shows
that the derived optimal control can keep system (63) stable
in the sense of uniform ultimate boundedness. Furthermore, it
should be emphasized that, the present algorithm for deriving
optimal control differs significantly from the algorithms
proposed in [38], [39], [41], and [43]. In our case, no initial
stabilizing control is required. This feature has been shown
by Fig. 8, where the initial weight for the critic NN can be
zeros. In this situation, the closed-loop system is unstable
(see Fig. 6).

VII. CONCLUSION

In this paper, we have developed a novel RL-based robust
control algorithm for constrained-input uncertain nonlinear
CT systems by solving constrained optimal control prob-
lems. The present algorithm employs a single critic NN to
obtain the approximate optimal control, which guarantees the
uncertain nonlinear CT system to be stable in the sense of
uniform ultimate boundedness. By using the developed algo-
rithm, no initial stabilizing control is required. A limitation of
the present method is that the prior knowledge of f (x) and g(x)
is required to be available. In our future work, we will relax
the restrictive condition. In addition, if system (1) is nonaffine,
then it will be a rather challenging task to design a robust con-
troller. Therefore, we shall also focus on developing RL-based
robust control algorithms for unknown nonaffine nonlinear CT
systems in the presence of input constraints.
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