
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015 1323

Error Bounds of Adaptive Dynamic Programming
Algorithms for Solving Undiscounted

Optimal Control Problems
Derong Liu, Fellow, IEEE, Hongliang Li, and Ding Wang

Abstract— In this paper, we establish error bounds of adaptive
dynamic programming algorithms for solving undiscounted
infinite-horizon optimal control problems of discrete-time deter-
ministic nonlinear systems. We consider approximation errors
in the update equations of both value function and control
policy. We utilize a new assumption instead of the contraction
assumption in discounted optimal control problems. We establish
the error bounds for approximate value iteration based on a new
error condition. Furthermore, we also establish the error bounds
for approximate policy iteration and approximate optimistic
policy iteration algorithms. It is shown that the iterative approx-
imate value function can converge to a finite neighborhood of
the optimal value function under some conditions. To implement
the developed algorithms, critic and action neural networks
are used to approximate the value function and control policy,
respectively. Finally, a simulation example is given to demonstrate
the effectiveness of the developed algorithms.

Index Terms— Adaptive critic designs, adaptive dynamic
programming (ADP), approximate dynamic programming,
neural networks, neurodynamic programming, nonlinear
systems, optimal control.

I. INTRODUCTION

DYNAMIC programming [1] is a very effective tool
in solving the optimal control problem of nonlinear

systems, which relies on solving the Hamilton–Jacobi–
Bellman (HJB) equation. However, it is often computationally
untenable to run dynamic programming to obtain optimal solu-
tions due to the curse of dimensionality [2]. Adaptive dynamic
programming (ADP) [3], also known as approximate dynamic
programming [4]–[6] or neurodynamic programming [7],
has received significantly increasing attention as a learning
method for optimizing the policy when interacting with the
environment. The ADP techniques have been applied in many
practical areas, such as call admission control [8], engine
control [9], energy system control [10], temperature control

Manuscript received September 12, 2014; revised December 3, 2014
and February 3, 2015; accepted February 5, 2015. Date of publication
March 3, 2015; date of current version May 15, 2015. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61034002, Grant 61233001, Grant 61273140, Grant 61304086, and
Grant 61374105, and in part by the Beijing Natural Science Foundation
under Grant 4132078. The acting Editor-in-Chief who handled the review
of this paper was Professor Haibo He.

The authors are with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: derong.liu@ia.ac.cn;
hongliang.li@ia.ac.cn; ding.wang@ia.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2402203

of water gas shift reaction [11], differential games [12]–[14],
interconnected systems [15], and multiagent systems [16].
Some comprehensive surveys are given in [3], [17], and [18].
Value iteration and policy iteration are two classes of
ADP algorithms to solve optimal control problems of
nonlinear systems with continuous state and action spaces.
Optimistic policy iteration represents a spectrum of iterative
algorithms, which contains the value iteration and policy
iteration, and it is also known as generalized policy
iteration [19] or modified policy iteration [20].

Value iteration algorithms can solve the optimal control
problem of the nonlinear systems without requiring an initial
stabilizing control policy. It iterates between value function
update and policy improvement until the iterative value func-
tion converges to the optimal one. Al-Tamimi et al. [21]
proved the convergence of the value-iteration-based heuristic
dynamic programming algorithm for solving the discrete-time
HJB equation. Dierks et al. [22] relaxed the need of partial
knowledge of the system dynamics by online system identi-
fication, and demonstrated the convergence of neural network
implementation using Lyapunov theory. In [23] and [24],
an iterative ADP algorithm was derived to solve the near-
optimal control for discrete-time affine nonlinear systems with
control constraints. Wang et al. [25] solved the finite-horizon
optimal control problem for discrete-time nonlinear systems
with unspecified terminal time. Heydari and Balakrishnan [26]
derived a value-iteration-based ADP algorithm to solve
the fixed-final-time finite-horizon optimal control problem.
In [27] and [28], a greedy heuristic dynamic programming
algorithm was presented to solve the optimal tracking control
problem for a class of discrete-time nonlinear systems.
Zhang et al. [29] proposed an iterative heuristic dynamic
programming algorithm to solve the optimal tracking control
problem for a class of nonlinear discrete-time systems with
time delays. Liu et al. [30] and Wang et al. [31] presented
an iterative ADP algorithm to solve the optimal control for
unknown nonaffine nonlinear discrete-time systems with dis-
count factor in the cost function. The book written by Zhang
et al. [32] gave a good summary on value-iteration-based
iterative ADP methods for solving the optimal control of non-
linear systems. For all the value iteration algorithms mentioned
above, it is assumed that the value function and control policy
update equations can be exactly solved at each iteration.

In contrast to value iteration, the policy iteration
algorithm [33] requires an initial stabilizing control policy.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1324 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

The policy iteration is built to iterate between policy evaluation
and policy improvement until it converges to the opti-
mal control. The convergence of policy iteration algorithm
for continuous-time nonlinear systems was given in [34].
In [35], the policy iteration algorithm was applied to optimal
robust guaranteed cost control of continuous-time uncertain
nonlinear systems. Chen and Jagannathan [36] analyzed the
convergence of policy iteration algorithm for solving the
generalized HJB equation of discrete-time affine nonlinear
systems offline. In [37], a policy iteration ADP approach
was developed to obtain the optimal control of discrete-time
nonlinear systems. Optimistic policy iteration generalizes the
value iteration and policy iteration algorithms. Tsitsiklis [38]
established the convergence of optimistic policy itera-
tion for discounted finite-state Markov decision problems.
Bertsekas [39] gave the convergence of optimistic policy
iteration within weighted sup-norm contraction framework.
However, it is still an open problem if the convergence results
of optimistic policy iteration can be extended to undiscounted
optimal control of discrete-time nonlinear systems.

Since most realistic systems have a large or continuous
state space, the value function needs to be approximated.
Bertsekas [40] and Busoniu et al. [41] provided good
surveys on approximate value iteration and approximate policy
iteration methods with value function approximation. Error
bounds of some ADP methods have been established for
discounted infinite-horizon optimal control problems formal-
ized by Markov decision processes. Roy [42] established
performance loss bounds for approximate value iteration with
state aggregation. Munos [43], [44] gave bounds on the error
between the performance of policies induced by the approx-
imate value iteration algorithm and the optimal policy as a
function of weighted L p-norms of the approximation errors.
Munos [45] also provided error bounds for approximate policy
iteration using quadratic norm. Bertsekas [39] established error
bounds for approximate policy iteration based on weighted
sup-norm contractions. Perkins and Precup [46] studied a
model-free form of approximate policy iteration, and proved
that the approximate policy iteration algorithm can converge
to a unique solution from any initial policy. Li and Si [47] pro-
posed an approximate robust policy iteration using a multilayer
perceptron neural network and analyzed the error bounds
for approximate value function. Thiery and Scherrer [48]
and Scherrer et al. [49] proposed three implementations of
approximate modified policy iteration and provided error prop-
agation analysis. Bertsekas [39] established error bounds for
approximate optimistic policy iteration and extended the result
of Thiery and Scherrer [48] and Scherrer et al. [49].
In this paper, we will show what will happen for the undis-
counted optimal control problem with continuous state and
action spaces in the presence of function approximation errors.

In [50], an inequality version of the HJB equation was
used to derive bounds on the optimal cost function. For
undiscounted discrete-time nonlinear systems, Rantzer [51]
introduced a relaxed value iteration scheme to simplify
computation based on upper and lower bounds of the optimal
cost function, where the distance from optimal values can be
kept within prespecified bounds. In [52], the relaxed value

iteration scheme was used to solve the optimal switching
between linear systems, the optimal control of a linear
system with piecewise linear cost, and a partially observable
Markov decision problem. In [53], the relaxed value iteration
scheme was applied to receding horizon control schemes
for discrete-time nonlinear systems. Compared with [51],
Liu and Wei [54] and Wei et al. [55] presented a convergence
analysis for the approximate value iteration algorithm using a
new expression of approximation errors at each iteration.

For the optimal control problems with continuous state and
action spaces, ADP methods use a critic neural network to
approximate the value function and an action neural network to
approximate the control policy. Iterating on these approximate
models will inevitably give rise to approximation errors.
However, the research on ADP methods considering the
approximation errors of neural networks is quite sparse
for undiscounted infinite-horizon optimal control problems.
The main topic of this paper is to understand how the
approximation errors at each iteration influence the
ADP algorithms for solving undiscounted infinite-horizon
optimal control problems of discrete-time deterministic
nonlinear systems. Discrete-time deterministic optimal control
problem is a major part in the field of optimal control [1],
and covers a large class of systems [21]–[32]. We consider
approximation errors in both value function and control
policy update equations. First, we utilize a new assumption
instead of the contraction assumption in discounted optimal
control problems. We establish the error bounds for the
approximate value iteration algorithm based on a new error
condition, which extends a result of Liu and Wei [54].
Then, we establish the error bounds for approximate policy
iteration. Furthermore, we prove the convergence of exact
optimistic policy iteration by a novel method, and establish
the error bounds for approximate optimistic policy iteration.
It is shown that the iterative approximate value function
can converge to a finite neighborhood of the optimal value
function under some conditions. To implement the developed
algorithms, two multilayer feedforward neural networks are
used to approximate the value function and control policy.
Finally, a simulation example is given to demonstrate the
effectiveness of the developed algorithms.

The remainder of this paper is organized as follows.
Section II provides the problem formulation of undiscounted
infinite-horizon optimal control problems of discrete-time
nonlinear systems. We establish the error bounds for approx-
imate value iteration, approximate policy iteration, and
approximate optimistic policy iteration in Sections III–V,
respectively. In Section VI, we propose the neural network
implementation of the developed approach. Section VII
presents a simulation example to demonstrate the effectiveness
of the developed algorithms. Finally, the conclusions are drawn
in Section VIII.

The following notations will be used throughout this paper.
R denotes the set of real numbers and R

n is the n-dimensional
Euclidean space. A function V : � ⊆ R

n → R is positive
definite if: 1) it is continuous and 2) V (0) = 0 and V (x) > 0
∀x ∈ � − {0}. The notation κ1 ≥ κ2 means κ1(s) ≥ κ2(s),
∀s ∈ R

n .

LIU et al.: ERROR BOUNDS OF ADP ALGORITHMS 1325

II. PROBLEM FORMULATION

Consider a discrete-time deterministic nonlinear dynamical
system described by

xk+1 = f (xk, uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the system state at time k and uk ∈ R

m

is the control input. Let x0 be the initial state. The system
function f (xk, uk) is Lipschitz continuous on a compact set
� ⊆ R

n containing the origin, and f (0, 0) = 0. Hence, x = 0
is an equilibrium state of (1) under the control u = 0. Assume
that (1) is stabilizable on the compact set � [21].

Definition 1: A nonlinear dynamical system is defined to be
stabilizable on a compact set � ⊆ R

n if there exists a control
input u ∈ R

m such that, for all initial conditions x0 ∈ �, the
state xk → 0 as k →∞.

Define the undiscounted infinite-horizon cost function as

J (x0, u) =
∞∑

k=0

U(xk, uk) (2)

where U is a positive definite utility function. In this
paper, the utility function is chosen as the quadratic form
U(xk, uk) = x T

k Qxk + uT
k Ruk , where Q and R are positive

definite matrices with suitable dimensions. Our goal is to find
a control policy uk = u(xk), which can minimize the cost
function (2) for every initial state x0 ∈ �. For the optimal
control problem, the designed feedback control must not only
stabilize (1) on � but also guarantee that the cost function (2)
is finite, i.e., the control must be admissible [21].

Definition 2: A control μ(x) is said to be admissible with
respect to the cost function (2) on � if μ(x) is continuous on
a compact set � ⊆ R

n , μ(0) = 0, μ(x) stabilizes (1) on �,
and, ∀x0 ∈ �, J (x0, μ) is finite.

For any admissible control policy μ(x), the map from any
state x to the value of (2) is called a value function V μ(x).
Then, we define the optimal value function as

V ∗(x) = inf
μ
{V μ(x)}. (3)

According to Bellman’s principle of optimality [2], the optimal
value function V ∗(x) satisfies the discrete-time HJB equation

V ∗(x) = min
μ
{U(x, μ)+ V ∗(f (x, μ))}. (4)

If it can be solved for V ∗, the optimal control policy μ∗(x)
can be obtained by

μ∗(x) = arg min
μ
{U(x, μ)+ V ∗(f (x, μ))}. (5)

Similar to [56], we define the Hamiltonian function as

H (x, u, V) = U(x, u)+ V (f (x, u)). (6)

Then, we define the mapping Tμ as

(TμV)(x) = H (x, μ(x), V) (7)

and define the mapping T as

(T V)(x) = min
μ

H (x, μ(x), V). (8)

For convenience, T k
μ denotes the composition of mapping Tμ

k times
(
T k

μ V
)
(x) = (

Tμ

(
T k−1

μ V
))

(x). (9)

Similarly, the mapping T k is defined by

(T k V)(x) = (
T

(
T k−1V

))
(x). (10)

Therefore, the discrete-time HJB equation (4) can be written
compactly as

V ∗ = T V ∗ (11)

i.e., V ∗ is the fixed point of T .
In this paper, we assume the following monotonicity

property holds, which was used in [56].
Assumption 1: If V ≤ V ′, then H (x, u, V) ≤ H (x, u, V ′),
∀x , u.

Besides the above monotonicity assumption, the contrac-
tion assumption in [39] is often required for the discounted
optimal control problem. However, for the undiscounted
optimal control problem, we utilize the following assumption
in [52] instead of the contraction assumption.

Assumption 2: Suppose the condition 0 ≤ V ∗(f (x, u)) ≤
λU(x, u) holds uniformly for some 0 < λ <∞.

The positive constant λ gives a measure on how contractive
the optimally controlled system is, i.e., how close the total
value function is to the cost of a single step [52].

Equation (4) reduces to the Riccati equation in the linear
quadratic regulator case, which can be efficiently solved. In the
general nonlinear case, the HJB equation cannot be solved
exactly. Some ADP methods using function approximation
structures are derived to learn the near-optimal control policy
and value function associated with the HJB equation. Because
of the approximation errors, the control policy and value
function are generally impossible to obtain accurately at each
iteration. Therefore, it is necessary to analyze the convergence
and to establish the error bounds for ADP algorithms
considering function approximation errors.

III. APPROXIMATE VALUE ITERATION

Section III-A presents the exact value iteration and is
followed by an approximate value iteration algorithm with an
analysis of error bounds in Section III-B.

A. Value Iteration

For the value iteration algorithm, it starts with any initial
positive definite value function V0(x) or V0(·) = 0. Then, the
control policy π1(x) can be obtained by

π1(x) = arg min
u
{U(x, u)+ V0(f (x, u))}. (12)

For i = 1, 2, . . . , the value iteration algorithm iterates between
the value function update

Vi (x) = T Vi−1(x)

= min
u
{U(x, u)+ Vi−1(f (x, u))}

= U(x, πi (x))+ Vi−1(f (x, πi (x))) (13)

1326 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

and the policy improvement

πi+1(x) = arg min
u
{U(x, u)+ Vi (f (x, u))}. (14)

It should satisfy that Vi (0) = 0 and πi (0) = 0, ∀i ≥ 1. The
value iteration algorithm does not require an initial stabilizing
control policy.

According to Assumption 1, it is easy to give the following
lemma.

Lemma 1: If V0 ≥ T V0, the value function sequence {Vi}
is a monotonically nonincreasing sequence, i.e., Vi ≥ Vi+1,
∀i ≥ 0. If V0 ≤ T V0, the value function sequence {Vi}
is a monotonically nondecreasing sequence, i.e., Vi ≤ Vi+1,
∀i ≥ 0.

For undiscounted optimal control problems, the convergence
of value iteration algorithm has been given in the following
theorem [51].

Theorem 1: Let Assumptions 1 and 2 hold. Suppose that
0 ≤ αV ∗ ≤ V0 ≤ βV ∗, 0 ≤ α ≤ 1, and 1 ≤ β < ∞. The
value function Vi and the control policy πi+1 are iteratively
updated by (13) and (14). Then, the value function sequence
{Vi } approaches V ∗ according to the inequalities
[

1− 1− α

(1+ λ−1)i

]
V ∗ ≤ Vi ≤

[
1+ β − 1

(1+ λ−1)i

]
V ∗ i ≥ 1.

(15)

Moreover, the value function Vi converges to V ∗ uniformly
on � as i →∞.

B. Error Bounds for Approximate Value Iteration

For the approximate value iteration algorithm, function
approximation structures like neural networks are usually
used to approximate the value function Vi and the control
policy πi . In general, the value function and control policy
update equations (13) and (14) cannot be solved accurately,
because we only have some samples from the state space and
there exist approximation errors for function approximation
structures. Here, we use V̂i and π̂i to stand for the approximate
expressions of Vi and πi , respectively. We assume that there
exist finite positive constants δ ≤ 1 and δ ≥ 1 that make

δTπ̂i V̂i−1 ≤ V̂i ≤ δTπ̂i V̂i−1 (16)

hold uniformly, ∀i = 1, 2, . . . Similarly, we also assume that
there exist finite positive constants σ ≤ 1 and σ ≥ 1 that make

σT V̂i−1 ≤ Tπ̂i V̂i−1 ≤ σT V̂i−1 (17)

hold uniformly, ∀i = 1, 2, . . . Combining (16) and (17), we
obtain

σ δT V̂i−1 ≤ V̂i ≤ σ δT V̂i−1. (18)

For simplicity, (18) can be written as

εT V̂i−1 ≤ V̂i ≤ εT V̂i−1 (19)

by denoting

σ δ � ε, σ δ � ε. (20)

Based on Assumptions 1 and 2, we can establish the error
bounds for the approximate value iteration by the following
theorem.

Theorem 2: Let Assumptions 1 and 2 hold. Suppose that
0 ≤ αV ∗ ≤ V0 ≤ βV ∗, 0 ≤ α ≤ 1 and 1 ≤ β < ∞.
The approximate value function V̂i satisfy the iterative
error condition (19). Then, the value function sequence {V̂i }
approaches V ∗ according to the following inequalities:

ε

⎡

⎣1−
i∑

j=1

λ j ε j−1(1− ε)

(λ+ 1) j
− λiεi (1− α)

(λ+ 1)i

⎤

⎦ V ∗≤ V̂i+1

≤ ε

⎡

⎣1+
i∑

j=1

λ j ε j−1(ε − 1)

(λ+ 1) j
+ λiεi (β − 1)

(λ+ 1)i

⎤

⎦ V ∗ ∀i ≥ 0.

(21)

Moreover, the value function sequence {V̂i } converges to a
finite neighborhood of V ∗ uniformly on � as i →∞

ε

1+ λ− ελ
V ∗ ≤ lim

i→∞ V̂i ≤ ε

1+ λ− ελ
V ∗ (22)

under the condition ε < 1/λ+ 1.
Proof: First, we prove the lower bound of the approximate

value function V̂i+1 by mathematical induction. Letting i = 1
in (19), we obtain

V̂1 ≥ εT V̂0 = εT V0. (23)

Considering αV ∗ ≤ V0 and Assumption 1, we obtain

V̂1 ≥ εT V0 ≥ αεT V ∗ = αεV ∗. (24)

Thus, the lower bound of V̂i+1 holds for i = 0. According
to (19), Assumptions 1 and 2, we obtain

V̂2 ≥ εT V̂1 = ε min
u
{U(x, u)+ V̂1(f (x, u))}

≥ ε min
u
{U(x, u)+ αεV ∗(f (x, u))}

≥ ε min
u

{(
1+ λ

αε − 1

λ+ 1

)
U(x, u)

+
(
αε − αε − 1

λ+ 1

)
V ∗(f (x, u))

}

= ε

(
1+ λ

αε − 1

λ+ 1

)
min

u
{U(x, u)+ V ∗(f (x, u))}

= ε

(
1− λ(1− ε)

λ+ 1
− λε(1− α)

λ+ 1

)
V ∗. (25)

Hence, the lower bound of V̂i+1 holds for i = 1. The lower
bound of V̂i+1 in (21) can be proved by repeating the argument
i + 1 times.

In addition, the upper bound can be proved similarly.
Therefore, the lower and upper bounds of V̂i+1 in (21) have
been proved.

Finally, we prove that the value function sequence {V̂i }
converges to a finite neighborhood of V ∗ uniformly on
� as i → ∞. Since the sequence {λ jε j−1(1 − ε)/(λ + 1) j }
is a geometric series, we have

i∑

j=1

λ j ε j−1(1− ε)

(λ+ 1) j
=

λ(1−ε)
λ+1

(
1−

(
λε

λ+1

)i
)

1− λε
λ+1

. (26)

LIU et al.: ERROR BOUNDS OF ADP ALGORITHMS 1327

Considering λε/(λ+ 1) < 1, we have

lim
i→∞ V̂i ≥ ε

1+ λ− ελ
V ∗. (27)

For the other part, if λε/(λ + 1) < 1, i.e., ε < 1/λ + 1, we
can show that

lim
i→∞ V̂i ≤ ε

1+ λ− ελ
V ∗. (28)

Thus, we complete the proof.
Remark 1: We can find that the lower and upper bounds

in (22) are both monotonically increasing functions of ε and ε,
respectively. The condition ε < 1/λ + 1 should satisfy to
make the upper bound in (22) be finite and positive. Since
ε ≤ 1, the lower bound in (22) is always positive. The values
of ε and ε may gradually refine during the iterative process
similar to [57], in which a crude initial operator approximation
is gradually refined with new iterations. We can also derive
that a larger λ will lead to a slower convergence rate and
a larger error bound. In addition, a larger λ also requires
more accurate iteration to converge. When ε = ε = 1, the
value function sequence {V̂i } converges to V ∗ uniformly on
� as i →∞.

IV. APPROXIMATE POLICY ITERATION

In Section IV-A, we present and analyze the exact policy
iteration and establish the error bounds for approximate policy
iteration in Section IV-B.

A. Policy Iteration

For the policy iteration algorithm, an initial stabilizing
control policy is usually required. In this paper, we start
the policy iteration from an initial value function V0, which
satisfies V0 ≥ T V0. We can see that the obtained control policy
μ1(x) by

μ1(x) = arg min
u
{U(x, u)+ V0(f (x, u))} (29)

is asymptotically stable for (1), because we have

V0(f (x, μ1(x)))− V0(x) ≤ V0(f (x, μ1(x)))− (T V0)(x)

= −U(x, μ1(x)) ≤ 0.

For i = 1, 2, . . ., the policy iteration algorithm iterates
between policy evaluation

Vμi (x) = U(x, μi (x))+ Vμi (f (x, μi (x))) (30)

and policy improvement

μi+1(x) = arg min
u
{U(x, u)+ Vμi (f (x, u))}. (31)

When the policy evaluation equation (30) cannot be solved
directly, the following iterative process can be used to solve
the value function at the policy evaluation step:

V j+1
μi

(x) = U(x, μi (x))+ V j
μi

(f (x, μi (x))), j ≥ 0 (32)

with V 0
μi
= Vμi−1 , ∀i ≥ 1 and V 0

μ1
= Vμ0 = V0. Then, we can

obtain the following lemma.
Lemma 2: Let Assumption 1 hold. Suppose that V0 ≥ T V0.

Let μi+1 and V j
μi be updated by (31) and (32). Then, the

sequence {V j
μi } is a monotonically nonincreasing sequence,

i.e., V j
μi ≥ V j+1

μi , ∀i ≥ 1. Moreover, as j →∞, the limit of
V j

μi denoted by V∞μi
exists, and it is equal to Vμi , ∀i ≥ 1.

Proof: We prove the lemma by mathematical induction.
Letting i = 1 and j = 0 in (32), we obtain

V 1
μ1

(x) = U(x, μ1(x))+ V 0
μ1

(f (x, μ1(x)))

= U(x, μ1(x))+ V0(f (x, μ1(x)))

= T V0 ≤ V0 = V 0
μ1

(x). (33)

According to (32) and Assumption 1, we have

V 2
μ1

(x) = Tμ1 V 1
μ1

(x) ≤ Tμ1 V 0
μ1

(x) = V 1
μ1

(x). (34)

Similarly, we can obtain that V j
μi ≥ V j+1

μi holds for i = 1
by induction. Since the sequence {V j

μ1} is a monotonically
nonincreasing sequence and V j

μ1 ≥ 0, the limit of V j
μ1 exists,

which is denoted by V∞μ1
, and V j

μ1 ≥ V∞μ1
. Considering

V j+1
μ1

(x) = U(x, μ1(x))+ V j
μ1

(f (x, μ1(x))), j ≥ 0 (35)

we have

V j+1
μ1

(x) ≥ U(x, μ1(x))+ V∞μ1
(f (x, μ1(x))), j ≥ 0. (36)

Letting j →∞ in (36), we have

V∞μ1
(x) ≥ U(x, μ1(x))+ V∞μ1

(f (x, μ1(x))). (37)

Similarly, we obtain

V∞μ1
(x) ≤ U(x, μ1(x))+ V j

μ1
(f (x, μ1(x))), j ≥ 0. (38)

Letting j →∞ in (38), we can obtain

V∞μ1
(x) ≤ U(x, μ1(x))+ V∞μ1

(f (x, μ1(x))). (39)

Combining (37) and (39), we have

V∞μ1
(x) = U(x, μ1(x))+ V∞μ1

(f (x, μ1(x))). (40)

Considering (30), we obtain that V∞μi
(x) = Vμi (x) holds

for i = 1.
We assume that it holds for V j

μi ≥ V j+1
μi and

V∞μi
(x) = Vμi (x), ∀i ≥ 1. Then, considering (31) and (32),

we obtain

V 1
μi+1
= Tμi+1 V 0

μi+1
= Tμi+1 Vμi ≤ Vμi = V 0

μi+1
. (41)

According to (32) and Assumption 1, we have

V 2
μi+1
= Tμi+1 V 1

μi+1
≤ Tμi+1 V 0

μi+1
= V 1

μi+1
. (42)

Similarly, we can obtain that V j
μi+1 ≥ V j+1

μi+1 holds for i + 1
by induction, and V∞μi+1

(x) = Vμi+1 (x). Therefore, the proof
is completed.

Lemma 3: Let Assumption 1 hold. Suppose that V0 ≥ T V0.
Let μi+1 and V j

μi be updated by (31) and (32). Then, the
sequence {Vμi } is a monotonically nonincreasing sequence,
i.e., Vui ≥ Vui+1 , ∀i ≥ 0.

Proof: According to Lemma 2, we obtain

V 0
ui+1
≥ V∞ui+1

= Vui+1 . (43)

Then, considering

Vui ≥ T Vui = Tμi+1 Vui = Tμi+1 V 0
ui+1

(44)

1328 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

and Assumption 1, we obtain

Vui ≥ Tμi+1 Vui+1 = Vui+1 . (45)

Therefore, the sequence {Vμi } is a monotonically nonincreas-
ing sequence, ∀i ≥ 0.

Based on the lemmas above, an extended result in
[51, Proposition 5] is given in the following theorem.

Theorem 3: Let Assumptions 1 and 2 hold. Suppose that
V ∗ ≤ V0 ≤ βV ∗, 1 ≤ β <∞, and that V0 ≥ T V0. Let μi+1

and V j
μi be updated by (31) and (32). Then, the value function

sequence {Vμi } approaches V ∗ according to the inequalities

V ∗≤Vμi ≤
[

1+ β − 1

(1+ λ−1)i

]
V ∗ ∀i ≥ 1. (46)

Proof: First, we prove that Vμi ≤ Vi holds by induction,
∀i ≥ 1, where Vi is defined in Section III. According to
Lemma 2, we have Vμ1 ≤ T V0 = V1. Assume it holds for
Vμi ≤ Vi , ∀i ≥ 1. Considering Assumption 1 and Lemma 2,
we have

Vui+1 ≤ T V 0
ui+1
= T Vui ≤ T Vi = Vi+1. (47)

Therefore, considering (3) and Theorem 1, we can obtain the
conclusion.

B. Error Bounds for Approximate Policy Iteration

Similar to Section III, we use function approximation struc-
tures to approximate the value function and control policy.
Here, we use V̂μ̂i and μ̂i to stand for the approximate
expressions of Vμi and μi , respectively. We assume that there
exist finite positive constants δ ≤ 1 and δ ≥ 1 that make

δVμ̂i ≤ V̂μ̂i ≤ δVμ̂i (48)

hold uniformly, ∀i = 1, 2, . . ., where Vμ̂i is the exact value
function associated with μ̂i Considering Lemma 2, we have

V̂μ̂i ≤ δTμ̂i V̂μ̂i−1 . (49)

Similarly, we assume that there exist finite positive constants
σ ≤ 1 and σ ≥ 1 that make

σT V̂μ̂i−1 ≤ Tμ̂i V̂μ̂i−1 ≤ σT V̂μ̂i−1 (50)

hold uniformly, ∀i = 1, 2, . . . Combining (49) and (50), we
obtain

V̂μ̂i ≤ σ δT V̂μ̂i−1 . (51)

On the other hand, considering (48), (50), and Assumption 1,
we obtain

V̂μ̂i ≥ δVμ̂i ≥ σ δV ∗. (52)

Therefore, the whole approximation errors in the value func-
tion and control policy update equations can be expressed by

σ δV ∗ ≤ V̂μ̂i ≤ σ δT V̂μ̂i−1 . (53)

Using the notation in (20), (53) can be written as

εV ∗ ≤ V̂μ̂i ≤ εT V̂μ̂i−1 . (54)

Similar to Section III, we can establish the error bounds for
approximate policy iteration by the following theorem.

Theorem 4: Let Assumptions 1 and 2 hold. Suppose that
V ∗ ≤ V0 ≤ βV ∗, 1 ≤ β < ∞, and that V0 ≥ T V0.
The approximate value function V̂μ̂i satisfies the iterative
error condition (54). Then, the value function sequence {V̂μ̂i }
approaches V ∗ according to the following inequalities:

εV ∗≤ V̂μ̂i+1 ≤ ε

⎡

⎣1+
i∑

j=1

λ j ε j−1(ε − 1)

(λ+ 1) j
+ λiεi (β − 1)

(λ+ 1)i

⎤

⎦ V ∗,

i ≥ 0.

Moreover, the approximate value function sequence {V̂μi }
converges to a finite neighborhood of V ∗ uniformly on
� as i →∞

εV ∗ ≤ lim
i→∞ V̂μ̂i ≤

ε

1+ λ− ελ
V ∗ (55)

under the condition ε < 1/λ+ 1.

V. APPROXIMATE OPTIMISTIC POLICY ITERATION

In Section V-A, we prove the convergence of exact
optimistic policy iteration, and establish the error bounds for
approximate optimistic policy iteration in Section V-B.

A. Optimistic Policy Iteration

According to Lemma 2, we can see that the policy
evaluation can be obtained as j →∞ in (32). However, this
process will usually take a long time to converge. To avoid this
problem, the optimistic policy iteration algorithm only makes
finite iterations in (32).

For the optimistic policy iteration algorithm, we start the
iteration from an initial value function V0, which satisfies
V0 ≥ T V0. The initial control policy ν1 = μ1 can be obtained
by (29). For i = 1, 2, . . ., and for any positive integer ni , the
optimistic policy iteration algorithm updates the value function
Vνi (x) = V ni

νi (x) by

V j+1
νi

(x)=U(x, νi (x))+ V j
νi

(f (x, νi (x))), 0 ≤ j ≤ ni − 1

(56)

where V 0
νi
= Vνi−1 , ∀i ≥ 1, and V 0

ν1
= Vν0 = V0. Using the

definition in (9), the value function Vνi (x) can be expressed
by Vνi (x) = T ni

νi Vνi−1(x). The optimistic policy iteration
algorithm updates the control policy by

νi+1(x) = arg min
u
{U(x, u)+ Vνi (f (x, u))}. (57)

The optimistic policy iteration becomes value iteration as
ni = 1, and becomes the policy iteration as ni → ∞.
For policy iteration, it solves the value function associated
with the current control policy at each iteration, while it
takes only one iteration toward that value function for value
iteration. However, the value function update in (56) has to
stop before j → ∞ in practical implementations. Next, we
will show the monotonicity property of value function, which
is given in [56], and then establish the convergence property
of optimistic policy iteration by a novel method.

Lemma 4: Let Assumption 1 hold. Suppose that V0 ≥ T V0.
Let Vνi and νi+1 be updated by (56) and (57). Then, the value

LIU et al.: ERROR BOUNDS OF ADP ALGORITHMS 1329

function sequence {Vνi } is a monotonically nonincreasing
sequence, i.e., Vνi ≥ Vνi+1 , ∀i ≥ 0.

Proof: According to Assumption 1 and Lemma 2, we have

Vν0 = V0 ≥ T V0 = Tν1 V0 ≥ T n1
ν1

V0 = Vν1 . (58)

Thus, it holds for i = 0. Similarly, we obtain

Vν1 ≥ T n1+1
ν1

V0 = Tν1 Vν1 ≥ T Vν1 = Tν2 Vν1 ≥ Vν2 . (59)

Therefore, the conclusion can be proved by induction.
Theorem 5: Let Assumptions 1 and 2 hold. Suppose that

V ∗ ≤ V0 ≤ βV ∗, 1 ≤ β <∞, and that V0 ≥ T V0. The value
function Vνi and the control policy νi+1 are updated by (56)
and (57). Then, the value function sequence {Vνi } approaches
V ∗ according to the inequalities

V ∗ ≤ Vνi ≤
[

1+ β − 1

(1+ λ−1)i

]
V ∗ ∀i ≥ 1. (60)

Moreover, the value function Vνi converges to V ∗ uniformly
on �.

Proof: First, we prove that Vνi ≤ Vi holds by mathe-
matical induction, ∀i ≥ 1, where Vi is defined in Section III.
According to Lemma 2, we have

Vν1 = V n1
ν1
≤ V 1

ν1
= T V0 = V1. (61)

Thus, it holds for i = 1. Assume that it holds for i ≥ 1,
i.e., Vνi ≤ Vi . According to Lemma 2, we have

Vνi+1 = V ni
νi+1
≤ V 1

νi+1
= T Vνi . (62)

Considering Assumption 1, we obtain

T Vνi ≤ T Vi = Vi+1. (63)

Thus, we can obtain Vνi+1 ≤ Vi+1. Then, it can also be proved
that Vνi ≥ V ∗ by mathematical induction, ∀i ≥ 1. Therefore,
considering Theorem 1, we obtain

V ∗ ≤ Vνi ≤ Vi ≤
[

1+ β − 1

(1+ λ−1)i

]
V ∗. (64)

As i →∞, the value function Vνi converges to V ∗ uniformly
on �.

Remark 2: Although it only makes finite iterations in (56),
the convergence of optimistic policy iteration can still be
guaranteed. Moreover, we can find that the convergence rate
of optimistic policy iteration is determined by λ/(λ+1), while
for the discounted optimal control problem, the convergence
rate is determined by the discount factor [39]. The optimistic
policy iteration algorithm has faster convergence rate than the
value iteration and requires less computation in value function
update than policy iteration.

B. Error Bounds for Approximate Optimistic Policy Iteration

Here, we use V̂ν̂i and ν̂i to stand for the approximate expres-
sions of Vνi and νi , respectively. Without loss of generality,
we let ni be a constant integer K for all iteration steps.

We assume that there exist finite positive constants δ ≤ 1
and δ ≥ 1 that make

δT K
ν̂i

V̂ν̂i−1 ≤ V̂ν̂i ≤ δT K
ν̂i

V̂ν̂i−1 (65)

hold uniformly, ∀i = 1, 2, . . . Considering Lemma 2, we have

V̂ν̂i ≤ δT K
ν̂i

V̂ν̂i−1 ≤ δTν̂i V̂ν̂i−1 . (66)

Similarly, we assume that there exist finite positive constants
σ ≤ 1 and σ ≥ 1 that make

σT V̂ν̂i−1 ≤ Tν̂i V̂ν̂i−1 ≤ σT V̂ν̂i−1 (67)

hold uniformly, ∀i = 1, 2, . . . Combining (66) and (67), we
obtain

V̂ν̂i ≤ σ δT V̂ν̂i−1 . (68)

On the other hand, considering (65), (67), and Assumption 1,
we obtain

V̂ν̂i ≥ δT K
ν̂i

V̂ν̂i−1 ≥ σ δT
(
T K−1

ν̂i
V̂ν̂i−1

)

≥ · · · ≥ σ δT K V̂ν̂i−1 . (69)

Therefore, the whole approximation errors in the value func-
tion and control policy update equations can be expressed by

σ δT K V̂ν̂i−1 ≤ V̂ν̂i ≤ σ δT V̂ν̂i−1 . (70)

Using the notation in (20), (70) can be written as

εT K V̂ν̂i−1 ≤ V̂ν̂i ≤ εT V̂ν̂i−1 . (71)

Then, we can establish the error bounds for the approximate
optimistic policy iteration by the following theorem.

Theorem 6: Let Assumptions 1 and 2 hold. Suppose that
V ∗ ≤ V0 ≤ βV ∗, 1 ≤ β < ∞, and that V0 ≥ T V0.
The approximate value function V̂ν̂i satisfies the iterative
error condition (71). Then, the value function sequence {V̂ν̂i }
approaches V ∗ according to the following inequalities:

ε

⎡

⎣1−
i∑

j=1

λ j ε j−1(1− ε)

(λ+ 1) j

⎤

⎦ V ∗≤ V̂ν̂i+1

≤ ε

⎡

⎣1+
i∑

j=1

λ j ε j−1(ε − 1)

(λ+ 1) j
+ λiεi (β − 1)

(λ+ 1)i

⎤

⎦ V ∗, i ≥ 0.

(72)

Moreover, the approximate value function sequence {V̂ν̂i }
converges to a finite neighborhood of V ∗ uniformly on
� as i →∞

ε

1+ λ− ελ
V ∗ ≤ lim

i→∞ V̂ν̂i ≤
ε

1+ λ− ελ
V ∗ (73)

under the condition ε < 1/λ+ 1.
Proof: First, we prove the lower bound in (72). According

to (71) and Assumption 1, we have

V̂ν̂1 ≥ εT K V0 ≥ εT K V ∗ = εV ∗ (74)

1330 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Fig. 1. Structure diagram of approximate optimistic policy iteration.

i.e., it holds for i = 0. Similarly, we obtain

V̂ν̂2 ≥ εT K V̂ν̂1 = ε min
u

{
U(x, u)+ T K−1V̂ν̂1(f (x, u))

}

≥ ε min
u

{
U(x, u)+ εT K−1V ∗(f (x, u))

}

= ε min
u
{U(x, u)+ εV ∗(f (x, u))}

≥ ε min
u

{(
1− λ

1 − ε

λ+ 1

)
U(x, u)

+
(
ε + 1− ε

λ+ 1

)
V ∗(f (x, u))

}

= ε

(
1− λ(1 − ε)

λ+ 1

)
V ∗

i.e., it holds for i = 1. Therefore, we can obtain the lower
bound by induction. Similar to Theorem 2, we can obtain the
upper bound in (72) and the conclusion in (73).

VI. NEURAL NETWORK IMPLEMENTATION

FOR OPTIMAL CONTROL

We have just proved that the approximate value iteration,
approximate policy iteration, and approximate optimistic
policy iteration algorithms can converge to a finite neigh-
borhood of the optimal value function associated with the
HJB equation. It should be mentioned that we consider
approximation errors in both value function and control policy
update equations at each iteration. This makes it feasible to
use neural network approximation for solving undiscounted
optimal control problems of nonlinear systems. It should be
mentioned that kernel methods [58] and linear parametric
architectures with learned basis functions [59]–[61] can also
be applied. Since the optimistic policy iteration contains the
value iteration and policy iteration, we only present a detailed
implementation of the approximate optimistic policy iteration
using neural networks in this section. The neural network
implementation of approximate value iteration can be found
in [54] and [62].

The whole structure diagram of the approximate optimistic
policy iteration is shown in Fig. 1, where two multilayer feed-
forward neural networks are used. The critic neural network is

used to approximate the value function, and the action neural
network is used to approximate the control policy.

A neural network can be used to approximate some smooth
function on a prescribed compact set. The value function
V j+1

νi (xk) in (56) is approximated by the critic neural network

V̂ j+1
ν̂i

(xk) =
(
W j+1

c(i)

)T
φ
((

Y j+1
c(i)

)T
xk

)
(75)

where the activation functions are selected as tanh(·). The
target function of the critic neural network is given by

V j+1
ν̂i

(xk) = U(xk, ν̂i (xk))+ V̂ j
ν̂i

(xk+1) (76)

where xk+1 = f (xk, ν̂i (xk)). Then, the error function for
training critic neural network is defined by

e j+1
c(i) (xk) = V̂ j+1

ν̂i
(xk)− V j+1

ν̂i
(xk) (77)

and the performance function to be minimized is defined by

E j+1
c(i) (xk) = 1

2

(
e j+1

c(i) (xk)
)2

. (78)

The control policy νi+1(xk) in (57) is approximated by the
action neural network

ν̂i+1(xk) = W T
a(i+1)φ

(
Y T

a(i+1)xk
)
. (79)

The target function of the action neural network is defined by

di+1(xk) = arg min
uk

{
U(xk, uk)+ V̂ν̂i (xk+1)

}
. (80)

Then, the error function for training the action neural network
is given by

ea(i+1)(xk) = ν̂i+1(xk)− di+1(xk). (81)

The weights of the action neural network are updated to
minimize the following performance function:

Ea(i+1)(xk) = 1

2
(ea(i+1)(xk))

T ea(i+1)(xk). (82)

We use the gradient descent method to tune the weights of
neural networks on a training set constructed from the compact
set �. The details of this tuning method can be found in [54].
Some other tuning methods can also be used, such as Newton’s
method and the Levenberg–Marquardt method [62], in order
to increase the convergence rate of neural network training.

A detailed process of the approximate optimistic policy
iteration is given in Algorithm 1, where the approximate
value iteration can be regarded as a special case. If we have
an initial stabilizing control policy, the algorithm can iterate
between Step 4 and Step 5 directly. It should be mentioned that
Algorithm 1 runs in an offline manner. Note that it can also be
implemented online but a persistence of excitation condition
is usually required.

VII. SIMULATION STUDY

In this section, we provide a simulation example to
demonstrate the effectiveness of the algorithms developed in

LIU et al.: ERROR BOUNDS OF ADP ALGORITHMS 1331

Algorithm 1 Approximate Optimistic Policy Iteration
Step 1. Initialization:

Initialize critic and action neural networks;
Select an initial value function V0 satisfying V0 ≥ T V0;
Set policy evaluation steps K and maximum number of
iteration steps imax.

Step 2. Set i = 0. Update the control policy ν̂1(xk) by
minimizing (82) on a training set {xk} randomly selected
from the compact set �.

Step 3. Set i = 1.
Step 4. For j = 0, 1, . . . , K − 1, update the value function

V̂ j+1
ν̂i

(xk) by minimizing(78)on a training set {xk} randomly
selected from the compact set �. After convergence,
set V̂ν̂i (xk) = V̂ K

ν̂i
(xk).

Step 5. Update the control policy ν̂i+1(xk) by minimizing
(82) on a training set {xk} randomly selected from the
compact set �.

Step 6. Set i ← i + 1.
Step 7. Repeat Steps 4–6 until the convergence conditions are

met.
Step 8. Obtain the approximate optimal control policy ν̂i (xk).

this paper. Consider the following discrete-time nonlinear
system xk+1 = h(xk)+ g(xk)uk :

h(xk) =
[

0.9x1k + 0.1x2k

−0.05(x1k + x2k(1− (cos(2x1k)+ 2)2))+x2k

]

g(xk) =
[

0
0.1 cos(2x1k)+ 0.2

]
(83)

xk = [x1k x2k]T ∈ R
2, and uk ∈ R, k = 0, 1, . . . Define the

cost function as

J (x0, u) =
∞∑

k=0

(
x T

k Qxk + uT
k Ruk

)
(84)

where Q =
[0.1 0

0 0.1

]
and R = 0.1.

To implement the developed algorithms, we choose three-
layer feedforward neural networks as function approximation
structures. The structures of the critic and action neural
networks are both chosen as 2–8–1. The initial weights of
the critic and action neural networks are chosen randomly
in [−0.1, 0.1]. The maximum number of iteration steps is
selected as imax = 20. The compact set � or the operation
region of the system is selected as −1 ≤ x1 ≤ 1 and
−1 ≤ x2 ≤ 1. The training set {xk} is constructed by
randomly choosing 1000 samples from the compact set � at
each iteration.

The initial value function is selected as V0 = 2x2
1k + 2x2

2k .
According to Fig. 2, it can be observed that V0 ≥ V1 holds for
all states in the compact set �. We implement Algorithm 1
by letting K = 1, K = 3, and K = 10, respectively.
For the initial state x0 = [1,−1]T , the convergence curve
of the value function sequence {V̂ j

ν̂1
} is shown in Fig. 3.

We can see that {V̂ j
ν̂1
} is a monotonically nonincreasing

sequence, and it is basically convergent at K = 10. Thus,

Fig. 2. 3-D plot of V0 − V1 in the compact set �.

Fig. 3. Convergence curve of the value function V̂ j
ν̂1

at x0.

Fig. 4. Convergence curves of the value function V̂ν̂i
at x0 when K = 1,

K = 3, and K = 10.

the algorithm for K = 10 can be regarded as the approximate
policy iteration. The algorithms for K = 1 and K = 3 are the
approximate value iteration and approximate optimistic policy
iteration, respectively. After implementing the algorithms for
imax = 20, the convergence curves of the value functions
V̂ν̂i at x0 are shown in Fig. 4. It can be observed that all

1332 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Fig. 5. State trajectories.

Fig. 6. Control inputs.

the value functions are basically convergent with the iteration
index i > 10, and the obtained approximate optimal value
functions at i = 20 are quite close. Although there exist
approximation errors in both value function and control policy
update steps, the approximate value function can converge to
a finite neighborhood of the optimal value function.

Finally, we apply the obtained approximate optimal control
policies ν̂20 by the algorithms to (83) for 60 time steps. The
corresponding state trajectories are displayed in Fig. 5, and the
control inputs are displayed in Fig. 6. Examining the results,
it is observed that all the control policies obtain very good
performance, and the differences between the three trajectories
are quite small.

VIII. CONCLUSION

In this paper, we established error bounds for value iteration,
policy iteration, and optimistic policy iteration for undis-
counted discrete-time nonlinear systems by defining a new
error condition at each iteration. We considered approximation
errors in both value function and control policy update
equations. It was shown that the iterative approximate value
function converges to a finite neighborhood of the optimal
value function under some mild conditions. The results
provided theoretical guarantees for using neural network

approximation for solving undiscounted optimal control
problems. To implement the developed algorithms, the critic
and action neural networks were used to approximate the
value function and the control policy, respectively. A sim-
ulation example was given to demonstrate the effectiveness
of the developed algorithms. It should be mentioned that the
system model is assumed to be known a priori. It will be
desirable to extend the developed results to unknown nonlinear
systems.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control,
2nd ed. Belmont, MA, USA: Athena Scientific, 2012.

[2] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA:
Princeton Univ. Press, 1957.

[3] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[4] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand, 1992, ch. 13.

[5] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds., Handbook
of Learning and Approximate Dynamic Programming. New York, NY,
USA: IEEE Press, 2004.

[6] F. L. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Hoboken, NJ, USA:
Wiley, 2013.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[8] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission control
scheme for CDMA cellular networks,” IEEE Trans. Neural Netw.,
vol. 16, no. 5, pp. 1219–1228, Sep. 2005.

[9] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic
learning techniques for engine torque and air–fuel ratio control,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 988–993,
Aug. 2008.

[10] T. Huang and D. Liu, “A self-learning scheme for residential energy
system control and management,” Neural Comput. Appl., vol. 22, no. 2,
pp. 259–269, Feb. 2013.

[11] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control
of water–gas shift reaction using stable iterative adaptive dynamic
programming,” IEEE Trans. Ind. Electron., vol. 61, no. 11,
pp. 6399–6408, Nov. 2014.

[12] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game
for discrete-time nonlinear systems via iterative adaptive dynamic
programming algorithm,” Neurocomputing, vol. 110, pp. 92–100,
Jun. 2013.

[13] H. Li, D. Liu, and D. Wang, “Integral reinforcement learning for linear
continuous-time zero-sum games with completely unknown dynamics,”
IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3, pp. 706–714,
Jul. 2014.

[14] D. Liu, H. Li, and D. Wang, “Online synchronous approximate optimal
learning algorithm for multi-player non-zero-sum games with unknown
dynamics,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8,
pp. 1015–1027, Aug. 2014.

[15] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class of
continuous-time nonlinear interconnected systems using online learning
optimal control approach,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 418–428, Feb. 2014.

[16] H. Zhang, J. Zhang, G.-H. Yang, and Y. Luo, “Leader-based optimal
coordination control for the consensus problem of multiagent differential
games via fuzzy adaptive dynamic programming,” IEEE Trans. Fuzzy
Syst., vol. 23, no. 1, pp. 152–163, Feb. 2015.

[17] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, Jul. 2009.

[18] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Circuits Syst. Mag., vol. 32, no. 6,
pp. 76–105, Dec. 2012.

LIU et al.: ERROR BOUNDS OF ADP ALGORITHMS 1333

[19] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[20] M. L. Puterman and M. C. Shin, “Modifed policy iteration algorithms
for discounted Markov decision problems,” Manage. Sci., vol. 24, no. 11,
pp. 1127–1137, 1978.

[21] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[22] T. Dierks, B. T. Thumati, and S. Jagannathan, “Optimal control of
unknown affine nonlinear discrete-time systems using offline-trained
neural networks with proof of convergence,” Neural Netw., vol. 22,
nos. 5–6, pp. 851–860, Jul./Aug. 2009.

[23] H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal
control for a class of discrete-time affine nonlinear systems with control
constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503,
Sep. 2009.

[24] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic program-
ming algorithm for optimal control of unknown discrete-time nonlinear
systems with constrained inputs,” Inf. Sci., vol. 220, pp. 331–342,
Jan. 2013.

[25] F.-Y. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
ε-error bound,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 24–36,
Jan. 2011.

[26] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157,
Jan. 2013.

[27] H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the
greedy HDP iteration algorithm,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 38, no. 4, pp. 937–942, Aug. 2008.

[28] D. Wang, D. Liu, and Q. Wei, “Finite-horizon neuro-optimal tracking
control for a class of discrete-time nonlinear systems using adaptive
dynamic programming approach,” Neurocomputing, vol. 78, no. 1,
pp. 14–22, Feb. 2012.

[29] H. Zhang, R. Song, Q. Wei, and T. Zhang, “Optimal tracking control
for a class of nonlinear discrete-time systems with time delays based on
heuristic dynamic programming,” IEEE Trans. Neural Netw., vol. 22,
no. 12, pp. 1851–1862, Dec. 2011.

[30] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming,” IEEE Trans. Autom. Sci.
Eng., vol. 9, no. 3, pp. 628–634, Jul. 2012.

[31] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
Aug. 2012.

[32] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic Pro-
gramming for Control: Algorithms and Stability. London, U.K.:
Springer-Verlag, 2013.

[33] R. A. Howard, Dynamic Programming and Markov Processes.
Cambridge, MA, USA: MIT Press, 1960.

[34] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[35] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, “Neural-network-
based online HJB solution for optimal robust guaranteed cost control
of continuous-time uncertain nonlinear systems,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2834–2847, Dec. 2014.

[36] Z. Chen and S. Jagannathan, “Generalized Hamilton–Jacobi–Bellman
formulation-based neural network control of affine nonlinear discrete-
time systems,” IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 90–106,
Jan. 2008.

[37] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[38] J. N. Tsitsiklis, “On the convergence of optimistic policy iteration,”
J. Mach. Learn. Res., vol. 3, pp. 59–72, Jul. 2002.

[39] D. P. Bertsekas, “Weighted sup-norm contractions in dynamic pro-
gramming: A review and some new applications,” Dept. Elect. Eng.
Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA,
Tech. Rep. LIDS-P-2884, May 2012.

[40] D. P. Bertsekas, “Approximate policy iteration: A survey and some
new methods,” J. Control Theory Appl., vol. 9, no. 3, pp. 310–335,
2011.

[41] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, “Approximate
reinforcement learning: An overview,” in Proc. IEEE Symp. Adapt.
Dyn. Program. Reinforcement Learn., Paris, France, Apr. 2011,
pp. 1–8.

[42] B. V. Roy, “Performance loss bounds for approximate value iteration
with state aggregation,” Math. Oper. Res., vol. 31 no. 2, pp. 234–244,
2006.

[43] R. Munos, “Error bounds for approximate value iteration,” in
Proc. Nat. Conf. Artif. Intell., Pittsburgh, PA, USA, Jul. 2005,
pp. 1006–1011.

[44] R. Munos, “Performance bounds in L p -norm for approximate value
iteration,” SIAM J. Control Optim., vol. 46, no. 2, pp. 541–561,
2007.

[45] R. Munos, “Error bounds for approximate policy iteration,” in
Proc. 20th Int. Conf. Mach. Learn., Washington, DC, USA, Aug. 2003,
pp. 560–567.

[46] T. J. Perkins and D. Precup, “A convergent form of approximate
policy iteration,” in Advances in Neural Information Processing Systems.
Vancouver, BC, Canada: MIT Press, 2002.

[47] B. Li and J. Si, “Approximate robust policy iteration using
multilayer perceptron neural networks for discounted infinite-horizon
Markov decision processes with uncertain correlated transition matrices,”
IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1270–1280,
Aug. 2010.

[48] C. Thiery and B. Scherrer, “Performance bound for approximate
optimistic policy iteration,” INRIA, Rocquencourt, France, Tech.
Rep. INRIA-00480952, 2010.

[49] B. Scherrer, V. Gabillon, M. Ghavamzadeh, and M. Geist, “Approximate
modified policy iteration,” in Proc. 29th Int. Conf. Mach. Learn.,
Edinburgh, Scotland, Jun./Jul. 2012, pp. 1207–1214.

[50] R. J. Leake and R.-W. Liu, “Construction of suboptimal control
sequences,” SIAM J. Control, vol. 5, no. 1, pp. 54–63, 1967.

[51] A. Rantzer, “Relaxed dynamic programming in switching systems,”
IEE Proc. Control Theory Appl., vol. 153, no. 5, pp. 567–574,
Sep. 2006.

[52] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,”
IEEE Trans. Autom. Control, vol. 51, no. 8, pp. 1249–1260,
Aug. 2006.

[53] L. Grune and A. Rantzer, “On the infinite horizon performance of
receding horizon controllers,” IEEE Trans. Autom. Control, vol. 53,
no. 9, pp. 2100–2111, Oct. 2008.

[54] D. Liu and Q. Wei, “Finite-approximation-error based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[55] Q. Wei, F.-Y. Wang, D. Liu, and X. Yang, “Finite-approximation-
error-based discrete-time iterative adaptive dynamic programming,”
IEEE Trans. Cybern., vol. 44, no. 12, pp. 2820–2833,
Dec. 2014.

[56] D. P. Bertsekas, Abstract Dynamic Programming. Belmont, MA, USA:
Athena Scientific, 2013.

[57] A. Almudevar and E. F. de Arruda, “Optimal approximation schedules
for a class of iterative algorithms, with an application to multigrid value
iteration,” IEEE Trans. Autom. Control, vol. 57, no. 12, pp. 3132–3146,
Dec. 2012.

[58] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[59] S. Mahadevan and M. Maggioni, “Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision
processes,” J. Mach. Learn. Res., vol. 8, no. 10, pp. 2169–2231,
2007.

[60] X. Xu, Z. Huang, D. Graves, and W. Pedrycz, “A clustering-based graph
Laplacian framework for value function approximation in reinforce-
ment learning,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2613–2625,
Dec. 2014.

[61] Z. Huang, X. Xu, and L. Zuo, “Reinforcement learning with auto-
matic basis construction based on isometric feature mapping,” Inf. Sci.,
vol. 286, pp. 209–227, Dec. 2014.

[62] H. Li and D. Liu, “Optimal control for discrete-time affine non-linear
systems using general value iteration,” IET Control Theory Appl., vol. 6,
no. 18, pp. 2725–2736, Dec. 2012.

1334 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 6, JUNE 2015

Derong Liu (S’91–M’94–SM’96–F’05) received
the Ph.D. degree in electrical engineering from the
University of Notre Dame, Notre Dame, IN, USA,
in 1994.

He was a Staff Fellow with the General Motors
Research and Development Center, Warren, MI,
USA, from 1993 to 1995, and an Assistant
Professor with the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA, from 1995 to 1999.
He joined the University of Illinois at Chicago,

Chicago, IL, USA, in 1999, and became a Full Professor of Electrical and
Computer Engineering and of Computer Science, in 2006. He was selected
for the “100 Talents Program” by the Chinese Academy of Sciences in 2008,
and now he serves as the Associate Director of The State Key Laboratory
of Management and Control for Complex Systems at the Institute of
Automation. He has authored 15 books, including six research monographs
and nine edited volumes.

Dr. Liu is a fellow of the International Neural Networks Society. He
received the Michael J. Birck Fellowship from the University of Notre
Dame in 1990, the Harvey N. Davis Distinguished Teaching Award from
the Stevens Institute of Technology in 1997, the Faculty Early Career
Development (CAREER) Award from the National Science Foundation in
1999, the University Scholar Award from the University of Illinois from
2006 to 2009, and the Overseas Outstanding Young Scholar Award from the
National Natural Science Foundation of China in 2008. He is currently the
Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS.

Hongliang Li received the B.S. degree in
mechanical engineering and automation from the
Beijing University of Posts and Telecommuni-
cations, Beijing, China, in 2010. He is currently
pursuing the Ph.D. degree with the State Key
Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing.

He is also with the University of Chinese Academy
of Sciences, Beijing. His current research interests
include machine learning, neural networks,

reinforcement learning, adaptive dynamic programming, and game theory.

Ding Wang received the B.S. degree in mathematics
from the Zhengzhou University of Light Industry,
Zhengzhou, China, in 2007, the M.S. degree in oper-
ational research and cybernetics from Northeastern
University, Shenyang, China, in 2009, and the
Ph.D. degree in control theory and control engi-
neering from the Institute of Automation, Chinese
Academy of Sciences, Beijing, China, in 2012.

He is currently an Associate Professor with the
State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation,

Chinese Academy of Sciences. His current research interests include adaptive
dynamic programming, neural networks and learning systems, and complex
systems and intelligent control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

