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One critical operational decision facing online advertisers when they engage in sponsored search advertising
is concerned with the allocation of a limited advertising budget. In particular, dealing with multi-keyword

search markets over multiple decision periods poses significant decision-making challenges. In this paper, we
develop a novel budget allocation optimization model with multiple search advertising markets and a finite
time horizon. One key element of our modeling work is developing a customized advertising response func-
tion when considering distinctive features of sponsored search, including the quality score and the dynamic
advertising effort. We derive a feasible solution to our budget model and study its properties. Computational
experiments are conducted on real-world data to evaluate our budget model and perform parameter sensitiv-
ity analysis. Experimental results indicate that our budget allocation strategy significantly outperforms several
baseline strategies. In addition, the identified properties derived from the solution process illuminate critical
managerial insights for advertisers in sponsored search.
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1. Introduction
In recent years, sponsored search has evolved into
one of the most prominent online advertising chan-
nels. Search advertisements have also become the pri-
mary revenue source for search engines. For exam-
ple, Google gained 91% of its total revenue from
sponsored search in 2013 (Google Inc. 2014). Because
advertisers are spending increasing amounts of adver-
tising budgets on search engines, there is an urgent
need for analytical frameworks and tools that can
help these advertisers maximize the effectiveness of
their advertising budgets and survive fierce competi-
tion in the search advertising space.

From an operational standpoint, advertising budget
allocation decisions are the first and foremost prob-
lem faced by advertisers when conducting sponsored
search auctions. There are many challenges associ-
ated with budget allocation in sponsored search. First,
advertisers usually do not have sufficient knowledge
and time to make effective budget decisions in spon-
sored search because the underlying mechanism is

quite complex and the bidding process is dynamic
over time. Second, it is becoming increasingly difficult
for an advertiser to deal with budget allocation deci-
sions simultaneously across several search markets.
Third, it is not always the case that spending more in
advertising leads to higher profits.

Although the industry needs have been clear, the
academic literature on search auction-specific adver-
tising budget allocation has been sparse. This paper
aims to help bridge this critical gap by formulating
a fairly general optimization-based budget allocation
model that can tackle multiple search markets simulta-
neously over a finite planning horizon. (Note that we
use search engines and search markets interchange-
ably in the rest of this paper. That is, each search
engine is a search market.) This model is dynamic in
nature and can capture distinctive features of spon-
sored search advertising. First, we extend the advertis-
ing response function, given by Sethi (1983), to better
suit the sponsored search advertising scenario by
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incorporating the dynamic advertising effort and qual-
ity score. The advertising effort represents the effec-
tive part of the advertising expenditure and is time
dependent. Because almost all search engines have
adopted quality-based ranking and pricing mecha-
nisms in recent years, the quality of the advertise-
ments (measured by the quality score) has become
an influential factor that affects budget decisions in a
major way. We assume a much more general and time-
varying relationship between the advertising budget
and the advertising effort to more accurately charac-
terize sponsored search advertising. We also assume
heterogeneous advertising effort elasticity based on
the observation that sponsored search advertising
involves advertising with varying degrees of exper-
tise, different advertising schedules, dynamic bids,
and other factors.

Based on this model, we offer a solution frame-
work to derive the optimal budget allocation strat-
egy, and we analyze various theoretical properties of
the solution. Some notable properties are as follows:
(1) The observation in traditional advertising that the
marginal return of increased advertising expenditure
is never increasing (Sasieni 1971) holds in sponsored
search advertising as well. (2) Under the optimal bud-
get allocation solution, the advertising effort is pos-
itively proportional to the product of the change of
the accumulated payoff in a market, the change of
the market share, and the advertising effort elastic-
ity. (3) There exists a saturation level of advertis-
ing expenditures termed the “producer equilibrium”
where the marginal payoff drops to zero in cases
where budget constraints are not imposed.

We conduct computational experiments based on
real-world data to evaluate our solution, explore
identified properties of the solution, and perform
sensitivity analysis. Experimental results show that
our budget strategy outperforms several baseline
strategies. In addition, our solution process and the
derived heuristic strategy illuminate critical manager-
ial insights for advertisers in sponsored search. Man-
agerially, our analysis points to some interesting
findings with relevance to advertisers in sponsored
search advertising: (1) There exists a producer equi-
librium without consideration of budget constraints.
(2) Advertisers with increasing advertising effort elas-
ticity should invest more of their budget in the later
stages, but those with decreasing advertising effort
elasticity should invest more of their budget in the ear-
lier stages. (3) The gross advertising return has a dom-
inating effect on the optimal budget strategy when it
is relatively small.

The remainder of this paper is organized as follows:
§2 provides the literature review. Section 3 presents
an advertising budget allocation model across search

advertising markets. Section 4 discusses the proper-
ties of the optimal solution and presents a solution
framework. We then present the experimental results
and related managerial implications in §5. Section 6
discusses implementation issues of our model applied
in practice. Finally, we conclude this research and dis-
cuss future research directions in §7.

2. Literature Review
In this section, we first survey the literature on adver-
tising response. We then focus on the topic of opti-
mal advertising budget allocation in general and bud-
geting decisions in the specific context of sponsored
search.

2.1. Advertising Response
In early literature related to advertising, advertis-
ing response functions are formulated to capture the
relationship between advertising spending and sales
(Sasieni 1971, Rao and Rao 1983). The pioneering
work of Vidale and Wolfe (Vidale and Wolfe 1957)
proposed the concept of advertising effectiveness and
advertising response dynamics, which leads to the
Vidale-Wolfe model. This model implies concavity
and the existence of advertising spending saturation
(Little 1979). Another important concept is advertising
goodwill introduced by Nerlove and Arrow (Nerlove
and Arrow 1962), stating that the current aggre-
gated advertising effectiveness can influence bud-
get decisions later on. Subsequent research explored
extending the basic Vidale-Wolfe model to more com-
plicated situations such as competition among adver-
tisers (Erickson 1992) and stochastic disturbance in
the marketing environment (Sethi 1983).

In uncertain markets where the response func-
tion is not known, stochastic models of the adver-
tising budget decision have been developed to help
with budget allocation decisions (Holthausen and
Assmus 1982, Du et al. 2007, Yang et al. 2013).
Holthausen and Assmus (1982) presented a model
for allocating the advertising budget to market seg-
ments when sales response to advertising is uncer-
tain. In this line of work, an efficient frontier is
defined over expected profits, and the advertiser
chooses the optimal allocation based on her prefer-
ence function. Du et al. (2007) considered the adver-
tising budget decision with uncertain advertising
response as a Markov decision process and developed
a stochastic model with two-dimension state variables
to solve it. Sethi (1973) examined the optimal adver-
tising schedule problem, extending the dynamic ver-
sion of the Vidale-Wolfe advertising model. In later
work, he considered a variation of that problem in
which the objective functions of the deterministic
and the stochastic problem are identical (Sethi 1983).
Sethi’s response function also captures the word-of-
mouth effect. In the work of Naik et al. (1998), three
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phenomena—repetition wearout, copy wearout, and
advertising quality restoration—were explicitly con-
sidered to extend the Nerlove-Arrow model by intro-
ducing an ordinary differential equation of the adver-
tising quality.

2.2. Optimal Control of Advertising Budget
Previous research on marketing budget decisions has
shown that profit improvement from better allo-
cation across products or regions is much higher
than that from simply increasing the overall bud-
get (Tull et al. 1986, Fischer et al. 2011). Because of
the dynamic nature of advertising markets, various
dynamic programming approaches have been devel-
oped to find optimal solutions for budget allocation
problems either over multiple products (Fischer et al.
2011) or among generic and specialized Web portals
(Fruchter and Dou 2005). Fruchter and Dou (2005)
utilized dynamic programming techniques to derive
the analytical solution to the optimal budget alloca-
tion problem. Their conclusions indicate that budget
allocation strategies rely nonlinearly on the targeted
audiences, average click-through rates, and adverting
effectiveness of websites. Thus advertisers are advised
to switch more budgets into specialized Web portals
to maximize click volumes in the long term. However,
the payoff in their model considers only direct adver-
tising effects (such as clicks) while ignoring effects
on market shares and advertising responses. Fischer
et al. (2011) explored the marketing budget alloca-
tion problem for multiproduct, multicountry firms
with various marketing activities. They focused on
the adjustment of the budget level during next year’s
planning cycle by assuming that the total market-
ing budget has already been set at the firm level
and is kept constant over the planning horizon. Their
research findings suggest that budgets should be allo-
cated according to the size of the business, the effec-
tiveness of the marketing activities, and the growth
potential of the product.

We note that previous research on optimal adver-
tising budgets (or expenditures) does not apply to
sponsored search advertising because of this market’s
distinctive features, such as the heavy use of the qual-
ity score and the dynamic nature of the advertising
activities. In this work, we extend the response func-
tion as given in Sethi (1983) to better suit the setting
of sponsored search advertising.

2.3. Budget Strategies in Sponsored
Search Advertising

Most search advertisers, especially those from small
and medium-sized enterprises, have some budget
constraints (Search Engine Watch 2006, Abrams et al.
2007). How to effectively allocate the limited advertis-
ing budget is a critical operational-level issue. How-
ever, the literature review uncovered only a few

studies relevant to budget allocation across search
markets in sponsored search auctions. Some research
has investigated how to place bids over a set of key-
words to maximize the advertiser’s expected number
of clicks under a given budget (Özlük and Cholette
2007, Feldman et al. 2007, Muthukrishnan et al. 2010).
Results from Özlük and Cholette (2007) showed that
price elasticities of the click-through rate and response
functions are key factors for budget decisions, and
advertisers can improve profits by investing in more
keywords under a certain threshold. Feldman et al.
(2007) studied how to spread a given budget across
keywords to gain maximal revenues, and proposed
a two-bid uniform bidding strategy that random-
izes bid prices between two bid prices on all key-
words in the campaign until the actual daily budget
is exhausted. Muthukrishnan et al. (2010) explored
the stochastic version of this problem. In actual spon-
sored search advertising, advertisers are not allowed
to spread their budget across keywords directly.

Another stream of related research is bid optimiza-
tion. By considering bid dynamics and rankings of
advertisers, Zhang and Feng studied a cyclical bid
adjustment model in a two-player competition (Zhang
and Feng 2005, 2011), where an equilibrium bidding
price for two advertisers can be obtained. They also
adopted an empirical strategy of the Markov switch-
ing regression to examine the existence of such cycli-
cal bidding strategies. Yao and Mela (2011) developed
a dynamic structural model of keyword advertising
to explore how the interactions between search users,
advertisers, and the search engine affect consumer
welfare and firm profits. In that model, they used a
pure-strategy Markov perfect equilibrium to model
the bidder’s decision of whether and how much to
bid to maximize the discounted expected future prof-
its. Amin et al. (2012) cast the bidding optimization
with a budget constraint as a Markov decision pro-
cess with censored observations and correspondingly
employed a reinforcement learning algorithm. Simi-
larly, Gummadi et al. (2011) formulated the bidding
optimization as a discounted Markov decision process
and provided approximate optimal bidding strategy
over a large number of auctions.

The problem settings for bidding determination
versus budget allocation are quite different because
they deal with disparate topics. The former often
studies bid determination and dynamic adjustments
on specific keywords at the microlevel of advertis-
ing decisions in sponsored search. These studies focus
more on the properties and solutions of the game
where several risk-neutral advertisers compete for a
limited number of positions. In each period, an adver-
tiser’s bidding strategy depends on bid prices set by
other advertisers and her own setting such as the val-
uation for a click. The latter (i.e., budget allocation)
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usually centers on budget allocation across markets,
over multiple campaigns, and among different pro-
motional activities at the macrolevel of advertising
decisions in sponsored search.

Bid determination and budget allocation also have
something in common. On one hand, research out-
comes on bidding strategies might provide useful
insights for budget competition among several adver-
tisers in sponsored search, which is not in the scope
of this work. Our work concerns budget allocation
across several search markets for an individual adver-
tiser. On the other hand, under a certain condition, the
bid determination for a single query can be viewed
as a special type of budget decision. However, such
a setting fails to capture several distinctive features
in budget decisions, including the saturation level of
the market, relationships between advertising spend-
ing and market sales, aggregate advertising effects,
and temporal effects of advertising spending over a
finite time horizon. These features are all included in
our budget allocation model.

During the entire life cycle of sponsored search
advertising, budget decisions occur at three levels:
allocation across search markets; temporal distribu-
tion over a series of slots (e.g., days); and adjust-
ment of the remaining budget (e.g., daily budgeting).
In a previous work (Yang et al. 2012), we devel-
oped a hierarchical budget optimization framework
(BOF), considering the entire life cycle of advertising
campaigns in sponsored search advertising. The BOF
could support a set of strategies across different levels
of abstractions (e.g., system, campaign, and keyword).
In this paper we examine the budget allocation prob-
lem across search advertising markets (e.g., at the
market level of the BOF). This work develops an opti-
mal model of budget allocation across several search
markets over a finite planning horizon by taking
the advertising response function to capture market
dynamics. We also assume a different response func-
tion to provide a better fit for budget decision scenar-
ios, taking into account several distinctive features in
sponsored search.

3. Optimal Budget Allocation Across
Search Markets

3.1. Problem Statement
An important decision an advertiser faces when ad-
vertising her products and services via sponsored
search is how to allocate the search engine advertising
budget across multiple search engines.1 The main rea-
son for advertisers considering more than one search

1 According to Varian (2006), the likely market structure for a search
engine advertising market will be one with a few large providers
in a given country or language group.

engine is to reach different target audiences. In other
words, advertisers often prefer to advertise on more
than one search engine to reach a wider selection
of consumers. In this study, we consider using two
search engines.

There are typically two types of budget situations
for an advertiser. One is that there exists a given
(exogenous) total budget level for a certain period
of time. In the second scenario, an advertiser can
spend according to advertising performance and does
not have a specific total budget constraint. We term
the decision problems under these two cases as con-
strained budget allocation (CBA) and unconstrained
budget allocation (UBA), respectively. In both cases,
the advertiser seeks to optimize the total profit gained
from advertising through sponsored search within a
certain period of time (T ). Decisions need to be made
dynamically between time 601T 7.

The notation used in this paper is listed in Table 1.

3.2. Model Formulation
We consider an advertiser who plans to allocate her
search engine advertising budget B across two search
engines. Let i denote the index of search engines.

Search Demand. Let mi4t5 be the potential search
demand for search engine i at time t. The search
demand on a search engine is defined as the total
number of clicks on advertisements generated from
the keywords related to the advertiser.

Revenue. Let ci4t5 be the proportion of effective
clicks among mi4t5 in market i at time t. Let vi4t5
denote the revenue generated from an effective click.
Let �i4t5 denote this advertiser’s market share on mar-
ket i at time t and bi4t5 denote the advertising budget
allocated to market i at time t. Then for market i
at time t, mi4t5ci4t5 represents the total number of
effective clicks, Ci4t5 = vi4t5mi4t5ci4t5 represents the
total revenue (gross advertising return), and Ci4t5�i4t5
denotes the advertiser’s revenue in market i at time t.

Table 1 List of Terms

Terms Definition

B The total advertising budget
i The index of a search market
mi 4t5 The potential search demands in market i at time t

ci 4t5 The proportion of effective clicks in market i at time t

vi 4t5 The revenue generated from an effective click in market i at time t

�i 4t5 An advertiser’s market share on market i at time t

È4t5 The vector of market shares for the advertiser at time t

bi 4t5 The advertising budget allocated in market i at time t

Ci 4t5 The gross advertising return in market i at time t

ui 4t5 The advertising effort in market i at time t

� The response constant
� The market share decay constant
�i 4t5 The advertising effort elasticity in market i at time t

qi 4t5 The advertiser’s quality score in market i at time t

R4t5 The present value of the remaining advertising budget at time t
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The goal of budget allocation is to maximize the
following objective function:

∑

i

∫ T

0
e−rt4vi4t5mi4t5ci4t5�i4t5− bi4t55dt1 (1)

where e−rt is the discount factor.
In Equation (1), bi4t5 can be further written as

bi4t1È4t55, where È4t5 represents the vector of mar-
ket shares.

3.2.1. Response Function for Search Engine Ad-
vertising. Aggregate advertising models relate prod-
uct sales to advertising spending for a market. The
Vidale-Wolfe advertising model is one of the pio-
neering and earliest works in this direction (Vidale
and Wolfe 1957). This model defines the basic pro-
cess of how sales evolve over time in response to
advertising spending and thus can be used to capture
the dynamics of our search advertising environments.
Sethi (1983) adopted a variation of the Vidale-Wolfe
model that captures several desirable characteris-
tics one would intuitively attribute to advertising
response, and discussed in more detail next.

According to the aggregate advertising response
model in Sethi (1983), the relationship between the
market share (�) and the advertising effort (u) satisfies
the following differential equation:

d�/dt = �u
√

1 − �− ��1

where u denotes the advertising effort; � is the
response constant measuring the effectiveness of ad-
vertising, i.e., response to advertising that acts posi-
tively on the unsold portion of the market; and � is
the market share decay constant determining the rate
at which customers are lost due to forgetting or pos-
sibly due to competitive factors that act negatively on
the sold portion of the market.

The advertising effort u and the response con-
stant � are very general terms, capturing the effective
part of the budget and advertising. This applies to a
wide range of advertising settings including ours. The
square-root term

√
1 − � captures several desirable

properties, e.g., market share has a concave response
to advertising (decreasing returns), there is a satu-
ration advertising level (Little 1979, Krishnamoorthy
et al. 2010), and it also captures the word-of-mouth
effect as noted by Sorger (1989). These properties
are general observations among different advertising
settings including ours. Therefore, we inherited this
model to develop the response function used in our
budget optimization model.

To better suit the sponsored search advertising sce-
nario, we extend the advertising response function in
Sethi (1983) by incorporating the dynamic advertising
effort, the zero decay constant, and the quality score,
which are discussed in more detail next.

Advertising Effort and Elasticity. The advertising ef-
fort represents the effective part of the advertising
budget (or expenditure). Only this part can gener-
ate positive advertising effects. According to Little
(1979), it is assumed that an exponential relationship
exists between the budget b and advertising effort u.
That is, u = b� exists, where � denotes the adver-
tising effort elasticity, which is represented as the
percentage change in the advertising effort to the
change of one percent in the advertising expenditure,
i.e., 4�u/u5/4�b/b5. It is usually fixed as a constant.
For example, Erickson (1992) empirically estimated
that � = 0005. The constant assumption might be
explained by the uniform advertising performance
by professional advertising agencies in traditional
advertisements.

However, in much more dynamic sponsored search
markets, an advertiser can make changes in her ad-
vertising content and strategy at any time in an adver-
tising campaign. In addition, sponsored search ad-
vertising has more flexibility, in terms of keyword
selection, bid determination, budget allocation, and
advertising schedules, which affects the effectiveness
of the advertising budget. As such, the relationship
between b and u is time varying in different search
advertising markets: ui4t5= bi4t5

�4t5.
Decay Term. Another difference in the response

function is that we assume zero decay.
In the advertising response function for traditional

advertising, the decay constant is used to capture the
negative effect: loss due to forgetting or possibly due
to competitive factors that act negatively on the sold
portion of the market (Sethi 1983). In other words, the
lagged response (or the carryover effect) over the time
period between exposure to advertising (i.e., the real-
ization of the cost) and purchase (i.e., the measure of
the payoff generation) is negatively affected by many
factors such as forgetting and competitions. At the
aggregate level, the direct relationship between the
rate of change in sales and the advertising carryover
effect is often characterized by a differential equation
(Sethi 1977). It needs a much larger state space to truly
model the carryover effect at the individual level, con-
sidering various types of cognitive factors and the
temporal dependency between activities.

The sales decay rate refers to the proportion of
sales lost in each time when advertising is reduced
to zero, which ranges from large values to almost
zero (Vidale and Wolfe 1957). In the case of durable
goods, the decay term can be considered to approx-
imate the effect of product breakage and returns,
which is usually assumed to be insignificant and is
ignored (Sethi et al. 2008). One possible reason for
zero decay in durable goods is that the product pur-
chase cycle is much longer than the advertising cycle
(e.g., purchase every five years but advertising once a
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year). This phenomenon also applies to search adver-
tising, which is often conducted continuously (daily
if not hourly). In search advertising, the product pur-
chase cycle is definitely much longer than the adver-
tising cycle. Aravindakshan and Naik (2011) designed
a delay differential equation to capture the role of
delayed forgetting in a model of awareness formation.
Their model well explains some small decay phenom-
ena as observed in Sutherland (2009).

Different advertising media have different lag struc-
tures and effects (Berkowitz et al. 2001). Traditional
advertising (e.g., TV ads) usually takes the volume
of sales as the profit. For a potential customer, there
is a certain period between seeing the advertisement
and making the purchase. During this period, some
negative factors (e.g., forgetting) might cause the loss
of sales. In search advertising, it is common to use
the number of clicks received to measure the profit,
e.g., the pay-per-click (PPC) model widely adopted by
sponsored search advertising. In our model, the real-
ization of the cost (i.e., when the customer clicks) and
the payoff generation (also when the customer clicks)
happen at exactly the same time. In the current search
engine marketing market, an advertiser does not pay
(no cost incurred) when the advertisements are shown
on the search results page (after a user made a search).
Instead, she is only charged when the advertisement
is clicked. Other than the short advertising cycle, the
fact that the realization of the advertising cost and
the payoff generation happen at exactly the same time
also supports our zero decay assumption. The reason
is that it becomes very unlikely for the advertising
effect to drop to zero before profit generation because
there is no time lag between advertising occurrence
and profit generation.

Therefore, we argue that the decay constant is
insignificant in sponsored search advertising. How-
ever, we have conducted simulations to study the
effect of small decay constant on market share. Market
share � is continuously dependent on the parameter �.
Let ��4t5 denote the market share with respect to a
decay constant � at time t, ceteris paribus. Table 2
describes the relative error (e.g., 4�04t5 − ��4t55/�04t5)
with two different decay constants, e.g., � = 0001 and
� = 00001, respectively. As we can see, compared to
the one with zero decay, the variation of market share
is very small with a small �. Our results indicate that
a small decay over a short, finite time horizon has
very limited impact on the market share.

Table 2 The Relative Error with Different �

� t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

�= 0001 0000503 0001001 0001493 0001979 0002460 0002935 0003405 0003868
�= 00001 0000050 0000100 0000150 0000200 0000249 0000298 0000347 0000395

Based on our deliberation, we adopt the zero decay
in our model (i.e., d�/dt = �u

√
1 − �).

Quality Score. In addition to the advertising bud-
get, an advertiser’s quality score q also has signifi-
cant influence over her capacity to gain market shares.
Specifically, a higher quality score entitles an adver-
tiser to pay less for each click, so the same adver-
tising budget can result in a higher market share.
When there is a strong positive correlation between
bid price and relevance (quality), the quality score-
adjusted ranking mechanism facilitates better match-
ing between advertisements and queries and thus
leads to higher expected revenues for search engines
(Feng et al. 2007, Zhang and Feng 2011).

Different search engines have different formu-
las calculating the quality score, which are often
closely guarded business secrets. According to Google
AdWords, the quality score is calculated based on
a number of factors, including the keyword’s past
click-through rate (CTR), the display URL’s past CTR,
the overall CTR of all the ads and keywords (in the
advertiser’s account), the quality of the landing page,
the relevance between the keyword and the ad, the
relevance between the keyword and the query, geo-
graphic performance, etc.

Many factors influencing the quality score can be
affected by various advertising decisions including
budget decisions. For example, the former three fac-
tors (i.e., the keyword’s past CTR, the display URL’s
past CTR, and the overall CTR of all the ads and
keywords) usually depend on bid determination
strategies that determine the likelihood that the ad
is displayed on the search engine result page and
matching options (e.g., the exact match might lead
to more target audiences). The latter four factors
are concerned with the quality of the ad, the key-
word selected, and the target population. To some
degree, the market-level total advertising budget also
impacts the value range of these factors, which in turn
affects the quality score. That is, the quality score is
indirectly determined by budget decisions at the mar-
ket level.

If we assume a functional form for the quality score
(e.g., a linear function of budget), it will introduce bias
because the calculation of the quality score is a closely
guarded secret and is related to many factors. In the
experiments, the quality score is not a fixed value.
We use CTR obtained from real data as the quality
score because CTR directly measures the effectiveness
of an advertisement and is the core component for the
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quality score. This allows us to indirectly capture the
endogeny of the quality score since CTR is affected
by budget and many other decision variables.

Therefore, the advertising response function for
search advertisements is given as follows:

d�/dt = �q4t5b�4t5
√

1 − �0 (2)

3.3. The Model
Combining Equations (1) and (2), we obtain the fol-
lowing objective function for our optimal budget allo-
cation problem across search markets:

max
{

∑

i

∫ T

0
e−rt4vi4t5mi4t5ci4t5�i4t5−bi4t1È4t555dt

}

s.t. d�i/dt=�iqi4t5
(

bi4t1È4t55
)�i4t5

√

1−�i4t51

∑

i

∫ T

0
e−rtbi4t1È4t55dt¶B1

bi4t1È4t55¾01
(3)

where bi is the control variable and �i is the state
variable.

We will derive the optimal budget b∗
i 4t5 (i.e., the

abbreviation for b∗
i 4t1È4t55) allocated to market i at

time t by solving this model. This is a dynamic allo-
cation function over time, and thus the final opti-
mal budget decision for an advertiser in market i is
∫ T

0 e−rtb∗
i 4t5dt.

4. Properties and Solution
In this section, we study the theoretical solution and
properties of the optimization problem presented in
(3) (§4.1) and propose a solution framework for solv-
ing the problem (§4.2).

4.1. Theoretical Properties
In this section, we examine the properties of our
model (3) that could provide valuable insights for
how to make search advertising budget decisions.

The theoretical solution is presented in Theorems 1
and 2, which lay out the optimal budget allocation
decisions for cases with and without budget con-
straints, respectively.

Theorem 1. If the total budget B is smaller than
∫ T

0 e−rt4b∗
011 + b∗

0125 dt, the optimal budget allocation strat-
egy is

b11 b2 = arg min
b∗
�111 b

∗
�12

�

s.t.
∫ T

0
e−rt4b∗

�114t1 �11 �25

+ b∗

�124t1 �11 �255 dt = B1

�≥ 00 (4)

Theorem 2. If the total budget B is bigger than
∫ T

0
e−rt4b∗

011 + b∗

0125 dt1

the optimal total advertising budget is
∫ T

0
e−rt4b∗

011 + b∗

0125 dt0

Proof. See the online supplement (Appendix A)
(available as supplemental material at http://dx
.doi.org/10.1287/ijoc.2014.0626). Note that � is the
Lagrange multiplier introduced to solve the con-
strained optimization problem (3); control variables b1
and b2 denote the budget allocated to markets 1 and 2,
respectively; correspondingly, b∗

�11 and b∗
�12 denote a

theoretical solution for model (3) in the case with
a budget constraint; b∗

011 and b∗
012 denote the theo-

retical solution for model (3) in the case without a
budget constraint. Please see the online supplement
(Appendix A) for more details.

Note that notations b1 and b2 denote the optimal
budget for two specific markets (e.g., Google and
Bing). We study aggregate market-level budget deci-
sions and do not study microlevel bidding strategy.
At the aggregate market level, the connection between
the advertising budget and the payoff is modeled
through the aggregate response function. Thus we do
not need to study the microlevel bidding strategy to
determine the optimal budget at the market level.

Theorem 2 can be justified because the marginal
profit of advertising expenditure is equivalent to (or
approaching) 0 at

∫ T

0 e−rt4b∗
011 + b∗

0125 dt (i.e., vi4t5mi4t5 ·
ci4t5�i4t5 = bi4t5). In other words, there exists a pro-
ducer equilibrium in the case without budget con-
straints, which is equivalent to the payoff supremum
in the case with budget constraints.

Because the theoretical solution is dependent on the
choice of � (i.e., for every value of �, there is a set
of optimal budget allocation solutions), we present a
computational solution in §4.2 to derive a concrete
optimal solution.

Corollary 1. For all t ∈ 601T 7 and i = 112, under the
optimal budget allocation b∗

i 4t1 �i5, the function V�i
�̇i�i/b

∗
i

is constant in each market.

Proof. Note that V�i
is the value function with mar-

ket share �i and advertising effort elasticity �i in mar-
ket i. Please see the online supplement (Appendix B)
for more details.

Corollary 1 implies that the advertising effort elas-
ticity (�) is positively proportional to the optimal bud-
get (b). Advertisers will invest more in the market
with higher advertising effort elasticity, which means
that a unit advertising expenditure is more effective
in that market. Note that this corollary is also valid in
the case with more than two markets.
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4.2. A Computational Solution
Although the solution for model (3) given in §4.1
is theoretically sound, it is not easily computable.
The reason is because without the monotonicity of �,
the determination process of the Lagrange multiplier
leads to a task of solving an infinite number of fully
nonlinear partial differential equations. Therefore we
need to find an efficient computational algorithm for
model (3) to facilitate online implementation.

4.2.1. An Equivalent Model. We prove that the
constrained optimization problem (3) can be trans-
formed to an equivalent problem with reasonable
computational complexity if the budget constraint is
replaced with a new state variable (i.e., R4t5). Let R4t5
be the present value of the remaining advertising bud-
get; i.e.,

R4t5=R4T 5+
∫ T

t
e−rs4b14s5+ b24s55 ds0

Then dR/dt = −e−rt4b14t5+ b24t55.
Now we get a new optimization problem:

max
{

∫ T

0
e−rt

{

C14t5�14t5− b14t5

+C24t5�24t5− b24t5
}

dt
}

1

s.t. d�1/dt = �1q14b15
�14t5

√

1 − �11

d�2/dt = �2q24b25
�24t5

√

1 − �21

dR/dt = −e−rt4b14t5+ b24t551

bi4t5¾ 01 R405= B1 R4T 5¾ 00 (5)

The following theorem indicates that the two prob-
lems are equivalent.

Theorem 3. The optimization problem (5) is equivalent
to the optimization problem (3) in the case with two search
markets.

Proof. See the online supplement (Appendix C).

4.2.2. Solution Process. Our solution process for
the equivalent optimization problem (5) is designed
according to the dynamic programming principle
(Bertsekas 1995). Next we provide a solution process
for the case without budget constraints (Algorithm 1)
and a solution process for the case with budget con-
straints (Algorithm 2) by using the Pontryagin max-
imum principle (Fuller 1963). The former is to find
the optimal budget allocation strategy and the min-
imum budget to achieve the producer equilibrium.
The latter is to find the optimal budget allocation
strategy within the level of budget available to the
advertiser. Algorithms 1 and 2 are designed according
to the dynamic programming (DP) solution process.
For more detailed information about the solution pro-
cess for a DP problem, please refer to Bertsekas (1995)
and Sethi and Thompson (2000).

(1) The Case Without Budget Constraints. First, we
solve the following partial differential equation with
the terminal value condition V 4T 1�11 �25= 0. The ter-
minal value V 4T 1�11 �25 equals the marginal profit of
a unit advertising expenditure in the terminal state.

Vt + 41 −�154e
rt�15

�1/41−�15
(

�1q1

√

1 − �1V�1

)1/41−�15

+ 41 −�254e
rt�25

�2/41−�25
(

�2q2

√

1 − �2V�2

)1/41−�25

+ e−rt4C1�1 +C2�25= 00 (6)

We can then generate �1, �2, b1, b2, and V from t = 0
to t = T according to Equation (3) and the following
equations:

b1 =
(

ert�1q1�1

√

1 − �1V�1

)1/41−�151

b2 =
(

ert�2q2�2

√

1 − �2V�2

)1/41−�250
(7)

We can then obtain the optimal budget allocation
strategy (b1 and b2) and the minimum budget (B)
needed to achieve the producer equilibrium. The solu-
tion process for the case without budget constraints is
given in Algorithm 1.

Algorithm 1 (The case without budget constraints)
1: procedure UnconstrainedBudgetDecision
2: Input: �14t5, �24t5
3: Output: b4t5
4: for t ← 11T do
5: Observe �14t5, �24t5.
6: b4t5← RealtimeDecision4�14t51 �24t55
7: end for
8: end procedure
9: function RealtimeDecision(�14t5, �24t5)

10: V ← Equation (6)
11: b1 ← 4ert�1q1�1

√

1 − �1V�1
51/41−�15

12: b2 ← 4ert�2q2�2

√

1 − �2V�2
51/41−�25

13: return 4b11 b25
14: end function.

(2) The Case With Budget Constraints. First we solve
the following partial differential equation, with the
terminal value condition W4T 1�11 �21R5 = 0 by con-
structing a backward difference scheme.

0 = Wt +�
1/41−�15
1

(

1
�1

− 1
)

·
(

41 +WR5e
−rt
)−4�1/41−�155

(

W�1
�1q1

√

1 − �1

)1/41−�15

+�
1/41−�25
2

(

1
�2

− 1
)

·
(

41 +WR5e
−rt
)−4�2/41−�255

(

W�2
�2q2

√

1 − �2

)1/41−�25

+ e−rt4C1�1 +C2�250
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We can then generate �1, �2, b1, b2, and W from t = 0
to t = T according to Equation (3) and the following
equations:

b1 =

(

W�1
�1q1�1

√

1 − �1

4WR + 15e−rt

)1/41−�15

1

b2 =

(

W�2
�2q2�2

√

1 − �2

4WR + 15e−rt

)1/41−�25

0

(8)

Next we can get the optimal budget allocation strat-
egy (b1 and b2) and the optimal payoff (V ). The solu-
tion process for the case with budget constraints is
given in Algorithm 2.

Algorithm 2 (The case with budget constraints)
1: procedure ConstrainedBudgetDecision
2: Input: �14t5, �24t5, R4t5
3: Output: b4t5
4: for t ← 11T do
5: Observe �14t5, �24t5, R4t5.
6: b4t5← RealtimeDecision4�14t51 �24t51R4t55
7: end for
8: end procedure
9: function RealtimeDecision(�14t5, �24t5, R4t5)

10: W ← Equation (8)
11: b1 ← 44W�1

�1q1�1

√

1 − �15/4WR + 15e−rt51/41−�15

12: b2 ← 44W�2
�2q2�2

√

1 − �25/4WR + 15e−rt51/41−�25

13: return 4b11 b25
14: end function.

5. Experimental Validation
We have conducted computational experiments to
validate our model. Our experimental evaluation
serves the following two purposes. First, based on
data collected from real-world advertising campaigns,
we aim to evaluate the effectiveness of our budget
allocation method by comparing it with four base-
line budget strategies. One strategy is used in actual
advertising campaigns, one is a heuristic strategy
derived from this work, and the other two are derived
from two existing bidding strategies. Second, we use
real-world data to validate various properties of our
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Figure 1 Clicks per Unit Budget, Effective Clicks per Unit Budget, and Effective CTR (at the Monthly Granularity)

budget allocation method as discussed in §4 and
conduct sensitivity analysis with respect to several
parameters. Specifically, we evaluate our budget allo-
cation method with respect to four factors, includ-
ing budget constraint, the advertising effort elasticity,
quality score, and gross advertising return, and then
we investigate the corresponding impact on budget
allocation strategies and payoffs.

5.1. Data Description
We collected field reports and logs describing detailed
advertising operations from real-world advertising
campaigns by an e-business advertiser who promoted
her services across two search markets during the
period from September 2008 to August 2010. Infor-
mation obtained from the search engine side includes
the number of clicks, the number of displays, CTR,
cost per click (CPC), ranking position, and expendi-
ture. Web logs for the advertiser’s website recorded
information about where the visitors come from and
their activities while on the site. Based on informa-
tion gathered from both the search engine and the
advertiser’s website, we obtained information about
the advertiser’s total advertising budget (B) and rele-
vant budget decisions across these two markets. Some
relevant parameters for our method can be obtained
from the statistics derived from past sponsored search
campaigns (see §6 for more details). Several factors
such as the number of clicks per unit budget, the
number of effective clicks per unit budget, and the
effective CTR at the monthly granularity are shown
in Figure 1. We also generated data sets from histor-
ical advertising logs to support computational exper-
iments to verify properties of our budget allocation
method (see §5.3 for more details) and to perform sen-
sitivity analysis on several important parameters.

In the experiments, q1 and q2 are quality scores for
this advertiser in markets 1 and 2, respectively. The
total number of potential clicks in markets 1 and 2 are
m1 and m2, respectively; the advertising effort elastic-
ity in markets 1 and 2 are �1 and �2, respectively; and
C1 and C2 denote the gross return in markets 1 and 2,
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respectively. The response constant � is fixed at 0.04
in the following experiments.

5.2. Comparisons
We compared our budget allocation method (BOF-
OC) with four baseline strategies. The first one repre-
sents the budget strategy from a type of advertisers
who evenly allocate the budget across the two search
markets and then over time (called BASE1-Average).
The second baseline strategy first allocates the total
budget across the two search markets according to the
ratio of the gross advertising returns in each market;
then the budget within a market is distributed over
time based on our method (called BASE2-C-Ratio).
The other two baseline strategies are derived from
existing literature on bidding strategies, by treating
the bidding decision for a single keyword as a special
case of the budget decision. Because of the limited
research on advertising budget allocation across sev-
eral markets in sponsored search auctions, no existing
research can be compared directly with ours. This is
the reason we implemented the two baseline strate-
gies derived from the literature on bidding strategies
for comparison purposes.

Next, we describe how we derive these two base-
line strategies. Let pi4t5 denote the advertiser’s bid
price in market i at time t; then the objective function
in model 3 can be given as

max
∑

i

∫ T

0
e−rt

(

mi4t5ci4t5�i4t54vi4t5− pi4t55
)

dt0

In this model setting, bi4t1È5 = mi4t5ci4t5�i4t5pi4t5.
That is, the bid price (i.e., pi4t5) can affect the market
share (e.g., �) through bi4t1È5. The third baseline strat-
egy (called BASE3-TB-Budget) is derived from the
two-bid bidding strategy proposed in Feldman et al.
(2007). The TB-Budget strategy distributes the budget
in a market by randomly choosing between two val-
ues bi and b̄i over time; bi and b̄i correspond to the
two bid prices determined by their two-bid strategy
in market i, respectively. The fourth baseline strategy
(called BASE4-CB-Budget) is derived from the cyclical
bidding strategy proposed in Zhang and Feng (2011).
The CB-Budget budget strategy distributes the budget
based on a pulse function f over time, f 4t5 ∈ 6bi1 b̄i7.

f 4t +ãt5=

{

f 4t5+ �1 if f 4t5 < b̄im3

bi1 otherwise,

where � denotes the increasing scale of the budget.
We execute two sets of experiments. One has lower

gross advertising return (C1 = 50, C2 = 150, Figure 2),
and the other has higher gross advertising return
(C1 = 100, C2 = 300, Figure 3). We keep the advertising
effort elasticity � as a constant 0.05 in the two markets
and the advertiser’s quality score q as 0.1.
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Figure 2 The Payoff of Five Strategies 4C1 = 501 C2 = 1505

Figures 2 and 3 show the payoff obtained by these
five strategies at different (total) budget levels (B).
From Figures 2 and 3, we observe the following:

1. In both cases, our strategy (BOF-OC) always out-
performs the four baseline strategies.

2. In both cases, the payoff of the BASE1-Average,
BASE3-TB-Budget, and BASE4-CB-Budget strategies
initially increases and then exhibits a decreasing
trend after a point. This is because the marginal re-
venue for an additional dollar invested (marginal
cost) is decreasing as the budget increases. At a cer-
tain point, the marginal revenue will be smaller than
the marginal cost; thus the marginal net payoff (i.e.,
the marginal revenue–marginal cost) will be negative,
and the overall net payoff will decrease.

3. In both cases, the payoff generated by both
BASE2-C-Ratio and our BOF-OC strategy first in-
creases with the budget, then levels off. This is due
to the existence of the producer equilibrium for these
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Figure 3 The Payoff of Five Strategies 4C1 = 1001 C2 = 3005
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two strategies, where the marginal revenue equals the
marginal cost.

4. The BASE3-TB-Budget and BASE4-CB-Budget
strategies are superior to the BASE1-Average strategy
and inferior to the BASE2-C-Ratio strategy as the total
budget increases.

As we pointed out earlier, the setting of bidding
strategies is quite different from that of budget deci-
sions. These two have different decision variables.
Our paper is the first to study budget decisions in
such a dynamic setting, so there does not exist prior
work that can be compared directly. The comparisons
of the scaled-down problem show that our model per-
forms better. However, we need to point out that this
conclusion does not mean that our model is supe-
rior since a rigorous comparison needs to be based
on exactly the same problem setting, which is not the
case here.

5.3. Property Verification
We designed computational experiments to verify
properties of our budget allocation method and con-
duct sensitivity analysis with respect to several im-
portant parameters. The data sets used in this section
were generated from historical advertising logs. The
experiments investigate how the advertising effort
elasticity, the quality score, and the gross advertising
return affect the optimal strategy and the correspond-
ing payoff.

5.3.1. Influence of the Advertising Effort Elastic-
ity �. In the following experiments, we investigate
the influence of different functional forms of � on
overall payoffs and study the budget allocations to
different markets when the two markets have differ-
ent �. Specifically, we are intended to explore whether
increasing the advertising effort elasticity over time
will lead to more profit for an advertiser. According to
Hax and Majluf (1982), as an advertiser accumulates
more experience in the process of campaign manage-
ment and promotion activities, her ability to make
decisions (which is reflected through the advertising
effort elasticity) improves. Then the same amount of
advertising budget can result in a higher payoff.

Different forms of �0 We first consider three func-
tional forms of advertising effort elasticity (�). They
have the same mean values. For each case, both mar-
kets have the same �.

• Case 1a: constant between 601T 7 (CONST,
�= 0005),

• Case 1b: linearly increasing between 601T 7
(LINC, �= 008t/T + 001),

• Case 1c: linearly decreasing between 601T 7
(LDEC, �= −008t/T + 009).

These three cases can represent three different types
of advertisers. The CONST case represents mature
advertisers with sufficient accumulated experience.
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Figure 4 (Color online) The Payoff at Different Budget Levels in
Three Shapes of Advertising Effort Elasticity

They have learned over time, and their ability to
optimize advertising expenditure is stable. The LINC
case represents advertisers who are relatively new
to the market. They are still on a learning curve,
and the advertising effort elasticity increases as they
learn over time. The LDEC case represents advertisers
whose effectiveness of converting advertising dollars
to payoffs is declining for some internal or external
reason (e.g., management change).

Figure 4 shows the payoff at different budget caps
with these three forms of advertising effort elastic-
ity and also the corresponding results when � is in-
creased by 0.1.

(1) As shown in Figure 4, the payoffs of these
three settings have the following relationship: LINC <
CONST < LDEC. One possible explanation for this
phenomenon is that higher advertising effort elastic-
ity at an early stage will bring in more profit. This is
true especially for the case with budget constraints.
As the budget is draining off at late stages, advertis-
ers are not able to allocate sufficient funds even if the
elasticity increases. Thus, the advertiser with increas-
ing elasticity is recommended to invest a higher share
at later stages, but the advertiser with decreasing elas-
ticity should invest a higher share at the initial stages
to maximize net profits.

(2) Comparing the three cases with +001 and the
three cases without, we can clearly see that higher �
leads to higher payoffs.

Markets with Different �0 Here we allow different
markets to have different � values to study how the
budget is allocated across the two markets based on
the advertising effort elasticity.

• Case 2a: The advertiser’s effort elasticity is dif-
ferent in these two markets:

�14t5= 0005 + 003 sin
10�t

T
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Figure 5 Optimal Budget Allocated to Two Search Markets Over
Time in Case 2a

in search market 1 (i.e., the advertiser’s elasticity
experiences ups and downs over time), and �24t5 =

0005 in market 2 (i.e., the advertiser’s elasticity stays
constant over time).

• Case 2b: The advertiser’s effort elasticity stays
the same over time and across two markets, i.e.,
�14t5= �24t5= 0005.

Figures 5 and 6 illustrate the optimal budget allo-
cated to the two search markets over time under these
two cases, respectively. When the two markets have
the same � (Figure 6), the optimal budgets allocated
to the two markets are almost the same. When the two
markets have different � (Figure 5), the optimal bud-
gets allocated to the two markets are significantly dif-
ferent. As the advertiser’s elasticity experiences ups
and downs over time, so does the budget allocation.
Thus, we can draw the conclusion that the advertis-
ing effort elasticity has a significant influence on the
optimal budget allocation in the two markets.
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Figure 6 Optimal Budget Allocated in Two Search Markets Over
Time in Case 2b
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Figure 7 The Normalized Performance Difference in Case 3a

5.3.2. Influence of q. In this experiment, we first
study the influence of the quality score (q) on the opti-
mal payoff. Since each market has a quality score, we
study how the ratio q1/q2 affects the optimal payoff.
We study the influence of q1/q2 under two settings,
one with low gross advertising return (Case 3a: C1 =

C2 = 50) and the other with high gross advertising
return (Case 3b: C1 = C2 = 200). Under each setting,
we first compute the payoff generated by the C ratio-
based strategy (i.e., BASE2-C-Ratio), and then calcu-
late the normalized payoff difference (NPD) between
the payoff from BASE2-C-Ratio and the payoff of
our BOF-OC strategy. NPD is defined as 4f2 − f15/f1,
where f1 and f2 represent the payoff by BASE2-C-
Ratio and by our approach, respectively. The reason
we use NPD instead of the payoff generated by our
BOF-OC is that NPD provides a relative change of the
payoff from BOF-OC. The payoff from the BASE2-C-
Ratio method does not change when C (C1 and C2) is
fixed. As NPD becomes smaller or bigger, so does the
payoff from our BOF-OC strategy.

Figures 7 and 8 show the normalized payoff differ-
ence for Cases 3a and 3b as q1/q2 increases from 1 to 10.

1 2 3 4 5 6 7 8 9 10

q-ratio
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Figure 8 The Normalized Performance Difference in Case 3b
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As shown in Figure 7, the quality score ratio be-
tween these two markets (q-ratio) has a negligible
(e.g., the scale of NPD is 0.000005) and unstable effect
on the optimal budget strategy (case 3a). This implies
that the effect of q on the market share � and the opti-
mal budget strategy is unclear when C is relatively
small. Note that the small NPD in Case 3a indicates
that the payoff from our BOF-OC method does not
change much with q-ratio.

As shown in Figure 8, in Case 3b there exists an
interval (1 ≤ q1/q2 ≤ 6) where q-ratio has a negligible
effect (NPD ≈ 0). However, q begins to increasingly
influence the optimal budget strategy when q1/q2 ≥ 6.
This implies that q has some effect on the optimal
budget strategy only when its ratio across markets is
large enough to influence the market share � in the
situation where C is large.

5.3.3. The Influence of Gross Advertising Re-
turn C. In this experiment, we investigate the influ-
ence of different C values and the ratio of C1 and C2

in two markets.
Different C Value0 As shown in Figures 7 and 8, dif-

ferent C values do have some effect on the payoff. In
this experiment, we want to study how the change
in C affects the NPD. We increase C1 and C2 together
while keeping C1/C2 = 3. Figure 9 shows the NPD
with C1 increasing from 0 to 3,000.

As shown in Figure 9, the payoff from the BASE2-
C-Ratio method is very close to that from our BOF-OC
solution when C (C1 and C2) is small (NPD ≈ 0
region). This indicates that we can use the BASE2-
C-Ratio method to approximate the optimal solution
when C (C1 and C2) is relatively small. We investigate
this further in the next section.

Ratio of C1 and C20 As shown in Figure 9, C does not
seem to have a significant effect on the payoff when
it is relatively small. That is, using C-ratio alone is
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Figure 9 The Normalized Performance Difference with C1/C2 = 3
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Figure 10 (Color online) The Normalized Performance Difference
with Varying C1 and C2

enough to derive a near-optimal solution (the BASE2-
C-Ratio method). In this section, we further investi-
gate the relationship between C and the NPD varying
both C1 and C2.

From Figure 10, we can draw the following
conclusions.

(1) On the surface of normalized payoff difference,
there exist two quite distinct regions. The first region
is called the C-sensitive region, where either C1 or
C2 is small; the second region is called the C-insensi-
tive region, where both C1 and C2 are large. In the
C-sensitive region, we can use BASE2-C-Ratio method
to approximate the optimal solution, but we cannot
do that in the C-insensitive region.

(2) It also proves an interesting property of our
budget model—when the gross advertising return is
relatively small, the ratio of optimal budgets allocated
to these two search markets approximates the ratio of
gross advertising returns in these two markets, e.g.,
B1 2 B2 ≈ C1 2 C2. Thus, an advertiser can simply use
the C ratio-based strategy, which could have near-
optimal performance in cases with smaller C and a
constrained advertising budget.

(3) In summary, in the C-sensitive region, C has a
dominating influence on the optimal budget strategy,
whereas other factors (such as q and �) have insignif-
icant effects. The reason might be that the change in
these other factors is inadequate to influence market
share � in the C-sensitive situation.

5.4. Managerial Insights
Our research provides several managerial insights for
advertisers in sponsored search advertising.

First, as demonstrated through both theoretical
analysis and experimental evaluation, the optimal
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budget allocation solution would be quite differ-
ent for the two cases—with or without budget con-
straints. Moreover, different levels of the total market-
level advertising budget can lead to different optimal
strategies and payoffs. This indicates that an adver-
tiser should allocate her budget in a different manner
depending on the amount of budget available to her
in a certain promotional period. Often times, in prac-
tice, the same allocation strategy is adopted.

Second, there exists a producer equilibrium where
the marginal payoff (i.e., the net profit generated
by one additional unit of advertising expenditure)
is zero (Theorem 2). In other words, in the equi-
librium there won’t be any additional payoff from
increasing advertising expenditure. This phenomenon
implies that there exists a saturation level of adver-
tising expenditure in the sponsored search market.
Specifically, below this saturation level, adding funds
will lead to additional payoff, whereas at (or over)
this level, increasing funds will not result in addi-
tional payoff. This also coincides with the law of
diminishing marginal utility in economics. Therefore,
advertisers should estimate when the saturation level
will be reached and cautiously make budget decisions
to avoid overspending.

Third, in the C-sensitive region (i.e., the gross adver-
tising return in either search market is relatively
small), the gross advertising return has a dominat-
ing effect on the optimal strategy and correspond-
ing payoffs. In other words, using only C to allocate
the budget (the C ratio-based strategy) will lead to a
near-optimal result in the C-sensitive region. This indi-
cates that when the gross advertising return of search
markets is relatively small, advertisers can use a sim-
ple C ratio-based method to help them allocate their
budget. When C is large in both markets, advertis-
ers should incorporate all the factors such as the total
budget, quality score, and advertising effort elastic-
ity to make the optimal decision. According to the
definition of the composite factor C, the C-sensitive
situation occurs when (1) the advertiser is from a
small company or (2) the size of the target population
in a search market is small. Therefore, this provides
a simple but effective heuristic strategy for budget
allocation for small business advertisers. However,
the precise determination of the value range and
boundaries of these factors demands a comprehensive
empirical study that is beyond the scope of this paper.

Finally, experiments with different forms of adver-
tising effort elasticity suggest that advertisers with
increasing advertising effort elasticity are recom-
mended to invest higher shares at the later stages,
whereas those with decreasing advertising effort elas-
ticity should invest higher shares at the initial stages
to maximize net profit.

6. Practical Implementation Issues
In this section we discuss several issues related to the
possible implementation of our solution in real spon-
sored search advertising campaigns.

Our paper provides a solution process to derive
the optimal budget strategy for search advertising
across markets over a given promotional period. For
an advertiser with a total budget B, Algorithm 1 is
first used to derive the optimal budget solution (with-
out considering B as the budget constraint). If the
sum of the optimal budgets over the entire promo-
tional period is smaller than the total budget B (the
case without budget constraints), the advertiser can
adopt the solution from Algorithm 1 as the final opti-
mal budget strategy (Equation (7)). If the sum of the
optimal budgets over the entire promotional period is
bigger than the total budget B (the case with budget
constraints), Algorithm 2 is then used to derive the
final optimal budget solution (Equation (8)).

For both cases, the advertiser needs to estimate
the following five parameters necessary for mak-
ing budget allocation decisions: the potential search
demand m, the proportion of effective clicks c, the
value-per-click v, the quality score q, and the advertis-
ing effort elasticity �. Next we provide some insights
for estimating these parameters in real-world search
advertising budget decision settings.

• The potential search demand in a search market
can be obtained from keyword research tools pro-
vided by major search engines or third-party compan-
ies (e.g., WordTracker). For example, Google AdWords
provides the information about the number of online
searches conducted by search users over the past
month for a specific keyword or phrase. Through con-
tinuous observations over time for a certain set of
keywords, a search demand curve can be generated.
In a similar way, Google Trends also provides a search
demand curve for a given keyword. In this work,
to provide more accurate evaluation, we obtain the
search demand for a set of keywords based on histori-
cal data from Google Trends. However, for advertisers
who are allocating budgets for future search adver-
tising campaigns, we recommend they employ a pre-
diction model to estimate the future search demand
based on the time series data. The double seasonal
multiplicative ARIMA model (Mohamed et al. 2010)
is a good predictive model to consider because of
the presence of a double seasonal pattern in the time
series data (i.e., daily and weekly seasonality).

• The value-per-click and the proportion of effec-
tive clicks in a search market can be estimated from
historical reports and logs of advertising campaigns
and the advertiser’s proprietary information. The
value-per-click is related to the advertiser’s propri-
etary information, such as the cost and price of the
product or service, and can be easily determined. For
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an advertiser who has conducted advertising cam-
paigns previously, an appropriate set of predictor
variables (e.g., impression, rank, click-through rate,
and search users’ activities on the advertiser’s web-
site) are recorded in the historical logs and reports.
Then a Bayesian probit regression model can be used
to dynamically learn and predict the effective propor-
tion of clicks of future search advertising campaigns
(Graepel et al. 2010).

• Because of the proprietary nature of search
engine operations, it is impossible to obtain the qual-
ity score (q) directly from the advertiser. In this work
we take the CTR as the quality score in the compari-
son experiment. In practice, we can also measure the
relevance between the ad text and the corresponding
landing page, between the keyword and the ad text,
between the keyword and the query using text min-
ing techniques (e.g., Raghavan and Hillard 2009). An
advertiser’s quality score can then be approximated
as the product of her CTR and the relevance factors. In
the situation with stable advertising performance, the
quality score’s amplitude of variation is quite small.
Therefore, it can be treated as a constant during a
given promotional period.

• The advertising effort elasticity � can be instan-
tiated as the normalized profit-per-unit cost. Usually,
it is reasonable to assume that the advertising effort
elasticity is either stable during a short period of
time or increasing slowly during a long period of time
because the advertiser’s ability to leverage advertis-
ing dollars usually increases with the experience accu-
mulation of advertising operations.

These parameters can be first initialized based on
historical reports in the ways described previously.
After each advertising period, the advertiser should
observe the state variable (i.e., the market share �) that
can be easily obtained from the number of impres-
sions and search demand in a specific period and
also must update the five parameters continuously by
tracking the ongoing advertising performance. As the
estimations get more and more accurate, the budget
allocation decisions can also be improved over time.

There is one additional insight observed from the
experiments. As we discuss in §5.4, when the gross
advertising return in either search market is relatively
small, advertisers can use the C ratio-based strategy
to reach near-optimal budget allocations. Specifically,
the advertiser can first allocate the total budget across
the search markets according to the ratio of the gross
advertising returns from each market, and then the
budget allocated to each market is distributed over
time based on our method. This applies mostly to
advertisers with a small target population in a search
market. This can be meaningful in practice since such
a simple heuristic strategy gives small advertisers
with limited resources a chance to consider optimiz-
ing their budget decisions.

7. Conclusions and Future Directions
In this paper we present a novel optimal budget allo-
cation model to dynamically allocate the advertising
budget across several search markets simultaneously,
under a finite time horizon. Our model captures sev-
eral distinctive features of sponsored search advertis-
ing by introducing dynamic advertising effort u and
quality score q to extend the advertising response
function to suit search advertising scenarios. We also
discuss a range of properties and present a feasi-
ble solution for our model. We have conducted a
series of computational experiments to evaluate our
model and identified properties, performed sensitiv-
ity analysis with respect to several important parame-
ters, and validated our strategy by comparing it with
four baseline strategies based on real-world data from
actual advertising campaigns. Experimental results
show that our strategy outperforms these four base-
line strategies. Our research brings out some criti-
cal managerial insights for advertisers in conducting
sponsored search advertising: (1) there exists a pro-
ducer equilibrium where the marginal payoff is zero,
and different levels of advertising budget will lead to
different optimal strategies and payoffs; (2) advertis-
ers with increasing advertising effort elasticity should
invest higher shares in later stages of the marketing
campaign, whereas those with decreasing advertising
effort elasticity should invest higher shares in the ear-
lier stages; and (3) the gross advertising return has
a dominating effect on the optimal strategy in the
C-sensitive region.

We are in the process of extending our model in
the following directions: (a) a comprehensive empir-
ical study of our budget approach to validate iden-
tified properties and to determine the value range
and boundaries of impact factors in field experiments
of search campaigns, (b) budget allocation strategies
in uncertain marketing environments of sponsored
search auctions, and (c) further refinements of the pro-
posed algorithm to improve space and time efficien-
cies, with the aim of developing practical online bud-
get allocation decision-making tools.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2014.0626.
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