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a b s t r a c t

The urgent problemof impulsivemomentswhich cannot be determined in advance brings new challenges
beyond the conventional impulsive systems theory. In order to solve this problem, the novel concept
of impulsive time window is proposed in this paper. And the stability problem of stochastic fuzzy
uncertain delayed neural networks with impulsive time window is investigated. By combining the
discretized Lyapunov function approachwithmathematical inductionmethod, several novel and easy-to-
check sufficient conditions concerning the impulsive time window are derived to ensure that the model
considered here is exponentially stable in mean square. Numerical simulations are presented to further
demonstrate the effectiveness of the proposed stability criterion.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since mathematical modeling of physical systems and pro-
cesses in many areas of engineering often leads to complex non-
linear systems, which brings several difficulties to analysis and
synthesis, researchers have been seeking effective methods for the
control of nonlinear system. It is well known that there has been
a turning point in one of the most effective methods in accor-
dance with the advent of the fuzzymodel (Takagi & Sugeno, 1985),
which is among all of modes to solve the control of complex non-
linear system. Recently, an army of results have been advanced
for the fuzzy model which has received increasing attention re-
search because it can provide an effective solution to the control
of plants that are mathematically ill-defined, uncertain and non-
linear (Chen & Zheng, 2013; Ho & Sun, 2007; Huang, Ho, & Lam,
2005; Li, Rakkiyappan, & Balasubramaniam, 2011; Rakkiyappan &
Balasubramaniam, 2010; Song&Cao, 2007; Takagi & Sugeno, 1985;
Wang, Ho, & Liu, 2004; Wu, Su, Shi, & Qiu, 2011; Zhang, Wang, &
Liu, 2008). The main feature of the fuzzy model is to express the
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local dynamics of each fuzzy rule by a linear system model and to
express the overall system by fuzzy ‘‘blending’’ of the local linear
system models. To date, fuzzy model has been suggested as an al-
ternative approach to conventional control techniques for complex
control systems.

For many applications which have been found in various fields,
neural networks have been extensively studied and developed
(He, Li, & Huang, 2013; Li, Liao, & Lei, 2013; Wang, Liao, &
Huang, 2013a, 2013b; Wen, Bao, Zeng, Chen, & Huang, 2013;
Wen, Zeng, & Huang, 2013; Wen, Zeng, Huang, & Chen, 2013;
Zeng, Huang, & Zheng, 2010; Zeng, Wang, & Liao, 2003; Zeng
& Zheng, 2012). In the real world, neural networks are often
subjected to external disturbances. Generally speaking, there are
two kinds of disturbances considered: parameter uncertainties
and stochastic perturbations. Therefore, it is necessary to consider
both parameter uncertainties and stochastic effects on the stability
of neural networks (Huang, Li, Duan, & Starzyk, 2012; Lu, Cao,
Mahdavi, & Huang, 2012; Wong, Zhang, Yang, & Wu, 2013;
Yang, Cao, & Lu, 2012; Yu & Cao, 2007). On the other hand, the
states of electronic networks and biological networks are often
subjected to instantaneous disturbances and experienced abrupt
changes at certain instants, which may be caused by switching
phenomenon, frequency changes, or other sudden noise, i.e., they
exhibit impulsive effects (Li, 2009; Li, Feng, & Huang, 2008; Li &
Song, 2013; Li & Zhang, 2009; Lu, Ho, & Cao, 2010, 2011; Song &
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Zhang, 2008; Zhang, Tang, Fang, & Wu, 2012; Zhang, Tang, Miao,
& Du, 2013; Zhang, Tang, Miao, & Fang, 2014; Zhang, Tang, Wu, &
Fang, 2013). Moreover, time delays are often encountered in the
real world due to finite switching speed of amplifiers. Hence, it is
of great importance to both investigate delay and impulsive effects
on the stochastic stability of neural networks.

It is widely recognized that there are two kinds of impulsive
effects, i.e., stabilizing impulses and destabilizing impulses (Lu
et al., 2010). Recently, in Wong et al. (2013), a novel strategy
named mixed impulses has been proposed. Hence, the previous
results which only concerned the lower bound or upper bound
of the impulsive sequences become trivial. Moreover, in many
actual control systems, the impulsive moments almost cannot be
specified in advance. Therefore, it becomes desirable to discuss the
impulsive systems with impulsive time window. To the best of the
authors’ knowledge, the problem of stochastic stability for fuzzy
uncertain delayed neural networks with impulsive timewindow is
still an open issue. It is, therefore, themotivation behind our efforts
to bridge this gap by studying stochastic stability of fuzzy neural
networks with impulsive time window.

Motivated by the shortcoming of the aforementioned research
in this area, in this paper, the problem of stochastic stability for un-
certain delayed fuzzy neural networks with impulsive time win-
dow is investigated. Based on the discretized Lyapunov function
method and mathematic induction method, several stability cri-
teria are derived under which stochastic uncertain delayed fuzzy
neural networks with impulsive time window are exponentially
stable in mean square. The main contributions of this paper can be
listed as follows: (1) the stochastic uncertain delayed neural net-
works both considered the T–S model and impulsive time window
are firstly constructed; (2) a unified framework is established to
handle stochastic, parameter uncertainty, impulsive time window
and fuzzy rule; (3) some approximation algorithms are proposed to
compute the lower and upper bounds of the impulsive time win-
dow, respectively. The rest of this paper is arranged as follows. In
the next section, the problem to be considered and some needed
preliminaries are presented. The main results are derived in Sec-
tion 3. In Section 4, we present several simulation examples to
verify the effectiveness of our theoretical results. Finally, the con-
clusions are drawn in Section 5.

2. Model description and some preliminaries

In this section, some preliminaries are given including model
formulation, lemmas, and definitions.

Consider the following stochastic uncertain delayed neural
networks:

dx(t) = [−(C + 1C)x(t) + (A + 1A)f (x(t))
+ (D + 1D)f (x(t − τ(t)))]dt
+ [1W0x(t) + 1W1x(t − τ(t))]dW (t)

x(t) = φ(t), t ∈ [−τ , 0]

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vec-
tor associated with the neurons; C = diag(c1, c2, . . . , cn) > 0
is a positive diagonal matrix, A = (aij)n×n and D = (dij)n×n are
the connection weight matrices; 1C, 1A, 1D, 1W0 and 1W1 are
time-varying matrices on Rn×n that denote the parameter uncer-
tainties. f (x(t)) = (f1(x(t)), f2(x(t)), . . . , fn(x(t)))T denotes the
neuron activation function vector; τ(t) is the transmission delay
that satisfies 0 ≤ τ(t) ≤ τ , where τ is a positive scalar. W (t) =

[ω1(t), ω2(t), . . . , ωn(t)]T is an n-dimension Brown motion.
Taking impulsive timewindoweffects into account,wehave the

following model:
dx(t) = [−(C + 1C)x(t) + (A + 1A)f (x(t))

+ (D + 1D)f (x(t − τ(t)))]dt
+ [1W0x(t) + 1W1x(t − τ(t))]dW (t), t ≠ tk

x(t+k ) = Bkx(t−k ), tk ∈ Dk
x(t) = φ(t), t ∈ [−τ , 0]

(2)
where Dk are the time window of impulsive times tk, i.e., Dk =

[dkmin + tk−1, dkmax + tk−1), where dkmin and dkmax denote the mini-
mum andmaximum residence time, respectively. Bk are impulsive
gain at impulsive instants tk; x(t+k ) = limσ→0+x(tk + σ), x(t−k ) =

limσ→0−x(tk + σ).
In this paper, a general class of stochastic fuzzy uncertain de-

layed neural networkswith impulsive timewindow, are discussed.
As in Takagi and Sugeno (1985), the model of stochastic fuzzy un-
certain delayed neural networks with impulsive time window is
composed of r plant rules that can be described as follows:

Plant Rule i:

IF z1(t) is Mi1 and · · · and zp(t) isMip
THEN


dx(t) = [−(Ci + 1Ci)x(t) + (Ai + 1Ai)f (x(t))

+ (Di + 1Di)f (x(t − τ(t)))]dt
+ [1W 0

i x(t) + 1W 1
i x(t − τ(t))]dW (t), on t ≠ tk

x(t+k ) = Bikx(t−k ), on tk ∈ Dk
x(t) = φ(t), on t ∈ [−τ , 0]

(3)

where i = 1, 2, . . . , r , Mij(j = 1, . . . , p) are the fuzzy sets, z(t) =

(z1(t), z2(t), . . . , zp(t))T is the premise variable vector, r is the
number of fuzzy IF-THEN rules. It is known that (3) has a unique
global solution on t ≥ 0 with the initial value φ(t) ∈ L([−τ , 0],
Rn).

By the singleton fuzzifier, the product inference engine and the
center average defuzzifier, the final output of the fuzzy system (3)
is inferred as follows:

dx(t) =

r
i=1

hi(z(t)){[−(Ci + 1Ci)x(t)

+ (Ai + 1Ai)f (x(t))
+ (Di + 1Di)f (x(t − τ(t)))]dt
+ [1W 0

i x(t) + 1W 1
i x(t − τ(t))]dW (t)}, t ≠ tk

x(t+k ) =

r
i=1

hi(z(t))Bix(t−k ), tk ∈ Dk

(4)

where

hi =
wi(z(t))
r

i=1
wi(z(t))

, wi(z(t)) =

p
j=1

Mij(zj(t))

and Bi = (Bi1, Bi2, . . . , Bik)
T ,Mij(zj(t)) denotes the grade of mem-

bership of zj(t) in Mij. Note that
r

i=1

hi(z(t)) = 1, hi(z(t)) ≥ 0, i = 1, 2, . . . , r.

Remark 1. From the second equation of (4), it is obvious that a set
of controlmatricesBi and impulsive timewindowDk are to be de-
signed to guarantee the stochastic exponential stability of model
(4) in mean square. The impulsive control strategy considered
here has some favorable features which are described as follows:
(1) The impulse effects here are dependent on the fuzzy rules,
namely, both stabilizing and destabilizing impulses are consid-
ered. (2) The impulses occur in a randommanner in the impulsive
time window. (3) The impulsive effects can be distinct at differ-
ent impulsive instants. Moreover, it is noted that impulsive control
strategy considered here can be directly used to realize the state-
dependent impulsive control strategy.

Remark 2. In the following sequel, we will illustrate that the im-
pulses considered here encompass the impulses in the previous
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results. To be more specific, if we assume that the lower and up-
per bounds of the impulsive time window are identical, i.e., dkmin =

dkmax = d > 0, where d is a constant, then the impulsive time win-
dow turns into the fixed impulses considered in Li (2009), Li et al.
(2008), Li and Zhang (2009), Lu et al. (2010), Lu et al. (2011) and
Song and Zhang (2008). If r = n, i.e., i = 1, . . . , n, it turns into the
heterogeneous impulses considered in Zhang et al. (2013). If r < n,
i.e., i = 1, 2, . . . , r , it will turn into the pinning impulsive strat-
egy considered in Lu, Kurths, and Cao (2012). Moreover, the het-
erogeneous impulses can encompass the time-varying impulsive
considered in Zhang et al. (2013). In summary, the impulses based
on fuzzy rules and impulsive time window are general enough to
include most of the existing impulses as special cases (Li, 2009; Li
et al., 2008; Li & Song, 2013; Li & Zhang, 2009; Lu et al., 2010, 2011,
2012; Song & Zhang, 2008; Zhang et al., 2012, 2013, 2014, 2013).

In the following, we will establish theoretical results to
characterize that the stochastic uncertain delayed fuzzy neural
networks with impulsive time window are exponentially stable
in mean square. The following definitions and assumptions are
necessary for getting our main results.

Definition 1. For the given impulsive time sequences tk ∈ Dk, the
stochastic uncertain delayed fuzzy neural networks (4) are said
to be global exponentially stable in mean square if there exists
positive scalarλ, such that for everyϱ > 0, there is a positive scalar
ϱ1 such that E∥φ∥ ≤ ϱ1 implying

E∥x(t)∥ ≤ ϱe−λ(t−t0) (5)

holds for all t > t0.

For the parameter uncertainty 1Ci, 1Ai, 1Di, 1W 0
i , 1W 1

i and
the nonlinear function f (·), we make the following assumptions.

Assumption 1. Assume the parameter uncertainties 1Ci, 1Ai,
1Di, 1W 0

i and 1W 1
i satisfied the following condition:

[1Ci, 1Ai, 1Di, 1W 0
i , 1W 1

i ]

= MF(t)[Φ1
i , Φ2

i , Φ3
i , Φ4

i , Φ5
i ] (6)

where M, Φ
j
i , i = 1, . . . , r, j = 1, 2, . . . , 5 are known real con-

stant matrices with appropriate dimensions, and F(t) is the time
varying uncertain matrix that satisfies

F T(t)F(t) ≤ I (7)

where I denotes an identity matrix with appropriate dimensions.

Assumption 2. There exist scalars l+i , l
−

i such that for any x, y ∈

R, x ≠ y

l−i ≤
fi(x) − fi(y)

x − y
≤ l+i . (8)

Assumption 3. There exist scalars dmin, dmax such that for any
k ∈ N+

tk ∈ [tk−1 + dmin, tk−1 + dmax) (9)

where dmin = mink∈N+{dkmin}, dmax = maxk∈N+{dkmax}.

3. Main results

In this section, the exponential stability of stochastic fuzzy
uncertain delayed neural networks with impulsive time window
is investigated by using the discretized Lyapunov function and
mathematical induction method.
For convenience, denoting

L1 = diag

l−1 + l+1

2
,
l−2 + l+2

2
, . . . ,

l−n + l+n
2


,

L2 = diag{l+1 l
−

1 , l+2 l
−

2 , . . . , l+n l
−

n }.

Now, our main results are given in the following theorem,
which shows that the stochastic uncertain delayed fuzzy neural
networks are exponentially stable in the mean square for all ad-
missible parameter uncertainties if the following matrix inequali-
ties are feasible.

Theorem 1. Consider the stochastic uncertain fuzzy delayed neural
networks (4) with impulsive time window. Suppose that Assump-
tions 1–3 hold. If for prescribed positive scalar µ ∈ (0, 1), there exist
a set of matrices Pq > 0, q = 0, 1, . . . , L, positive scalars λ1, σ , β ,
small enough constant ϵ0 and ϵ0 ∈ (0, 1−µ) such that the following
inequalities hold:

Pq ≤ λ1In, (10)

− ln(µ + ϵ1)/dmax > 0 (11)

MTPqM − σ I ≤ 0, q = 1, 2, . . . , L, (12)

−µP0 + BT
i PLBi < 0, i = 1, 2, . . . , r (13)

Ξ (j)
=


Γ

(j)
11 PjAi + K1L1 PjDi 0
∗ Γ

(j)
22 0 0

∗ 0 Γ
(j)
33 0

0 0 ∗ Γ
(j)
44

 < 0,

j = q, q + 1, L (14)

where Γ
(j)
11 = (ϵ0 + 3)Pj − 2PjCi +

β

µ
Pj + Ψq − K1L2 + 2σ(Φ4

i )
TΦ4

i ,

Γ
(j)
22 = −K1 +σ(Φ2

i )
TΦ2

i , Γ
(j)
33 = −K2 +σ(Φ3

i )
TΦ3

i , Γ
(j)
44 = −βPj −

K2L2 + 2σ(Φ5
i )

TΦ5
i . K1 = diag{k11, k12, . . . , k1n} > 0 and K2 =

diag{k21, k22, . . . , k2n} > 0, Ψq = L(Pq+1 − Pq)/dmin, dmin and dmax
are the lower and upper bounds of the impulsive timewindow, respec-
tively. ∗ is used to denote the term that is induced by symmetry. Then,
the stochastic uncertain fuzzy delayed uncertain neural networkswith
impulsive time window (4) are exponentially stable in mean square.

Proof. Dividing the proof procedures into the following three
steps:

Step 1: Dividing the interval [tk, tk + dmin) into L segments
described asNk,q = [tk+θq, tk+θq+1), q = 1, 2, . . . , L−1 of equal
length h =

dmin
L , and then θq = qh = d dmin

L , q = 0, 1, . . . , L − 1.
Choosing the continuousmatrix function P(t), t ∈ [tk, tk+1)which
is linear within each segment Nk,q, q = 0, 1, . . . , L − 1. Letting
Pq = P(tk + θq), then the matrix function P(t) is piecewise linear
with in the interval [tk, tk + dmin), it can be expressed in terms of
the values at dividing points using linear interpolation formula, i.e.,
for 0 ≤ α ≤ 1, q = 0, 1, . . . , L − 1 and t ∈ Nk,q

P(t) = P(tk + θq + αh)
= (1 − α)Pq + αPq+1

= Pq(α) (15)

where α = (t − tk − θq)/h. Then the continuous matrix function
P(t) is completely determined by Pq, q = 0, 1, . . . , L in [tk, tk +

dmin). Afterward, in the interval [tk + dmin, tk+1), matrix function
P(t) is fixed as a constant matrix P(t) = PL. Hence, the discretized
matrix function P(t) is described as follows:

P(t) =


Pq(α), t ∈ Nk,q, q = 0, 1, . . . , L − 1
PL, t ∈ [tk + dmin, tk+1).

(16)
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Step 2: In view (16), constructing the following discretized
Lyapunov function:

V (t) =


xT(t)Pq(α)x(t), t ∈ Nk,q, q = 1, 2, . . . , L − 1
xT(t)PLx(t), t ∈ [tk + dmin, tk+1).

(17)

Step 3: In the following sequel, we will prove that

EV (t) ≤ λ0ϱ
2e−ϵ0(t−t0), t ∈ [t0 − τ , +∞) (18)

where λ0 = min{λmin(Pq(α)), λmin(PL)}, q = 0, 1, . . . , L − 1.
For any given scalar ϱ > 0, choose ϱ1 > 0 such that λ1ϱ

2
1 <

µλ0ϱ
2. SetW (t) = eϵ0(t−t0)V (t),µ1 = − ln(µ+ϵ1)/dmax. In order

to prove (18), it is equivalent to proving

EW (t) < λ0ϱ
2, t ∈ [t0 − τ , +∞). (19)

In order to do so, themathematical inductionmethod is used. From
(12), one can easily observe that for t ∈ [t0 − τ , t0)

EW (t) = Eeϵ0(t−t0)xTP(t)x(t)

≤ λ1E∥x(t)∥2
≤ λ1ϱ

2
1 < µλ0ϱ

2. (20)

We now claim that

EW (t) < λ0ϱ
2, t ∈ [tk, tk+1). (21)

In order to prove this claim, we firstly show that it is true for k = 0

EW (t) < λ0ϱ
2, t ∈ [t0, t1). (22)

If (22) is not true, then there exists time t̄ satisfying

t̄ = inf{t ∈ [t0, t1) : EW (t) ≥ λ0ϱ
2
}. (23)

Obviously, t̄ > t0, and

EW (t̄) ≥ λ0ϱ
2

EW (t) < λ0ϱ
2, t0 ≤ t < t̄.

Let t∗ = sup{t ∈ [t0, t̄] : EW (t) ≤ µλ0ϱ
2
}. This implies that

t∗ < t̄ and EW (t) > µλ0ϱ
2, t ∈ (t∗, t̄]. For θ ∈ [−τ , 0], then, we

have

EW (t) ≥ µλ0ϱ
2

≥ µEW (t + θ), t ∈ [t∗, t̄]. (24)

Set W̃ (t) = D+W (t) + β( 1
µ
W (t) − w(t − τ(t))) − µ1W (t).

It is obvious from Wu, Yan, Zhang, and Tang (2011) that when
t ∈ [tk, tk+1), D+EW (t) = ELW (t), where L is the Itô operator
(Mao, 2007) and the upper-right Dini derivativeD+W (t) is defined
as D+W (t) = limh→0+(W (t + h) − W (t))/h. Then, for t ∈ [t∗, t̄],
from the definition of W̃ (t), we have

EW̃ (t) = eϵ0(t−t0)(ϵ0EV (t) + LEV (t))

+
β

µ
EW (t) − βEW (t − τ(t)) − µ1EW (t). (25)

In each discretized segment N0,q, the following equation can be
derived that for t ∈ N0,q

Ṗ(t) = Ṗ(t0 + θq + αh)

= Ṗq(α) = (Pq+1 − Pq)α̇. (26)

Since α = (t − t0 − θq)/h, we have α̇ = 1/h, where h = dmin/L.
Thus, we have

Ṗ(t) = (Pq+1 − Pq)/h

= L(Pq+1 − Pq)/dmin = Ψ q. (27)
Moreover, by the linear interpolation relationship of Pq(α), one has

EW̃ (t) ≤ eϵ0(t−t0)
r

i=1

hi(z(t))E{ϵ0xT(t)Pq(α)x(t)

− 2xT(t)Pq(α)Cix(t) + 2xT(t)Pq(α)Aif (x(t))

+ 2xTPq(α)Dif (x(t − τ(t)))

− 2xT(t)Pq(α)1Cix(t) + 2xT(t)Pq(α)1Aif (x(t))

+ 2xT(t)Pq(α)1Dif (x(t − τ(t)))

+ xT(t)(1W 0
i )TPq(α)1W 0

i x(t)

+ xT(t − τ(t))(1W 1
i )TPq(α)1W 1

i x(t − τ(t))

+ 2xT(t)(1W 0
i )TPq(α)1W 1

i x(t − τ(t))

+ xT(t)Ψqx(t) +
β

µ
xTPq(α)x(t)

− βe−ϵ0τ xT(x(t − τ(t)))Pq(α)x(t − τ(t))

− µ1xT(t)Pq(α)x(t)}. (28)

From Assumption 2 and fi(0) = 0 (i = 1, 2, . . . , n), (l+i xi(t) −

fi(xi(t)))(fi(xi(t)) − l−i xi(t)) ≥ 0 for i = 1, 2, . . . , n, this together
with K1 = diag(k11, k12, . . . , k1n) > 0, by the same method used
in Song and Zhang (2008) lead to

0 ≤

n
i=1

k1i(l+i xi(t) − fi(xi(t)))(fi(xi(t)) − l−i (xi(t)))

= 2xT(t)K1L1f (x(t)) − f T(x(t))K1f (x(t)) − xT(t)K1L2x(t). (29)

Similarly as (29), it yields

0 ≤

n
i=1

k2i(l+i xi(t − τ(t)) − fi(xi(t − τ(t)))

× (fi(xi(t − τ(t))) − l−i xi(t − τ(t))))

= 2xT(t − τ(t))K2L1f (x(t − τ(t)))
− f T(x(t − τ(t)))K2f (x(t − τ(t)))

− xT(t − τ(t))K2L2x(t − τ(t)) (30)

where K2 = diag(k21, k22, . . . , k2n) > 0.
Combining Lemma 1 in Zhang et al. (2013) with Assumption 1,

from (13), one observes that the following inequalities hold:

2xT(t)Pq(α)1Cix(t) = 2xTPq(α)MF(t)Φ1
i x(t)

≤ xT(t)Pq(α)x(t)
+ xT(t)(Φ1

i )
TF T(t)MTPq(α)MF(t)Φ1

i x(t)
≤ xT(t)[Pq(α) + σ(Φ1

i )
TΦ1

i ]x(t) (31)

2xT(t)Pq(α)1Aif (x(t)) = 2xTPq(α)MF(t)Φ2
i f (x(t))

≤ xT(t)Pq(α)x(t)
+ f T(x(t))(Φ2

i )
TF T(t)MTPq(α)MF(t)Φ2

i f (x(t))

≤ xT(t)Pq(α)x(t) + f T(x(t))[σ(Φ2
i )

TΦ2
i ]f (x(t)) (32)

and

2xT(t)Pq(α)1Dif (x(t)) = 2xTPq(α)MF(t)Φ3
i f (x(t − τ(t)))

≤ xT(t)Pq(α)x(t)

+ f T(x(t − τ(t)))(Φ3
i )

TF T(t)MTPq(α) (33)

× MF(t)Φ3
i f (x(t − τ(t))) ≤ xT(t)[Pq(α)]x(t)

+ f T(x(t − τ(t)))[σ(Φ3
i )

TΦ3
i ]f (x(t − τ(t))). (34)
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In view of Assumption 1, it can be checked that

xT(t)(1W 0
i )TPq(α)(1W 0

i )x(t)

≤ xT(t)[MF(t)Φ4
i ]

TPq(α)[MF(t)Φ4
i ]x(t)

≤ xT(t)[σ(Φ4
i )

TΦ4
i ]x(t) (35)

2xT(t)(1W 0
i )TPq(α)(1W 1

i )x(t − τ(t))

≤ xT(1W 0
i )TPq(α)1W 0

i x(t)

+ xT(t − τ(t))(1W 1
i )TPq(α)1W 1

i x(t − τ(t))

≤ xT(t)[σ(Φ4
i )

TΦ4
i ]x(t)

+ xT(t − τ(t))[σ(Φ5
i )

TΦ5
i ]x(t − τ(t)) (36)

and

xT(t − τ(t))(1W 1
i )TPq(α)(1W 1

i )x(t − τ(t))

≤ xT(t − τ(t))(Φ5
i )

TF T(t)MTPq(α)MF(t)Φ5
i x(t − τ(t))

≤ xT(t − τ(t))[σ(Φ5
i )

TΦ5
i ]x(t − τ(t)). (37)

Defining

Ξq(α) =

Γ
q
11(α) Pq(α)Ai + K1L1 Pq(α)Di 0
∗ Γ

q
22(α) 0 0

∗ 0 Γ
q
33(α) 0

0 0 ∗ Γ
q
44(α)


where Γ

q
11(α) = (ϵ0 +3)Pq(α)−2Pq(α)Ci +

β

µ
Pq(α)+Ψq −K1L2 +

σ(Φ1
i )

TΦ1
i +2σ(Φ4

i )
TΦ4

i , Γ
(q)
22 (α) = −K1 +σ(Φ2

i )
TΦ2

i , Γ
(q)
33 (α) =

−K2 + σ(Φ3
i )

TΦ3
i , Γ

q
44(α) = −βe−ϵ0τPq(α) − K2L2 + 2σ(Φ5

i )
TΦ5

i .
We have

Ξq(α) = (1 − α)Ξq + αΞq+1. (38)

Thus, from (14), we see

EW̃ (t) ≤ eϵ0(t−t0)
r

i=1

hi(z(t))E[ηT(t)Ξq(α)η(t)] < 0

t ∈


q=0,1,...,L−1

N0,q = [t0, t0 + dmin) (39)

where

η(t) = [xT(t), f T(x(t)), f T(x(t − τ(t))), xT(t − τ(t))]T.

On the other hand, since P(t) = PL, when t ∈ [t0 + dmin, t1).
Based on (14), this yields

EW̃ (t) ≤ eϵ0(t−t0)
r

i=1

hi(z(t))E[ηT(t)ΞLη(t)],

t ∈ [t0 + dmin, t1). (40)

Thus, we have, for t ∈ [t∗, t̄],

D+EW (t) − µ1EW (t) + βE

1
µ
W (t) − W (t − τ(t))


< 0. (41)

From (41), we have

D+EW (t) ≤ µ1EW (t). (42)

It leads to

W (t̄) ≤ W (t∗)eµ1(t̄−t∗)
≤ µλ0ϱ

2eµ1dmax ≤ λ0ϱ
2. (43)

This is a contradiction. Hence, (24) is true.
Now,we assume that the claim (24) also holds for k = 1, 2, . . . ,

r − 1(r > 2)

EW (t) < λ0ϱ
2, t ∈ [tk, tk+1), k = 1, 2, . . . , r − 1. (44)
In this sequel, we will show (24) holds for k = r .

EW (t) < λ0ϱ
2, t ∈ [tr , tr+1). (45)

From (15), we have

W (tr) = eϵ0(tr−t0)V (t+r )

= eϵ0(tr−t0)xT(t+r )P(t+r )x(t+r )

≤ µeϵ0(tr−t0)
r

i=1

hi(z(t))[xT(t−r )BT
i PLBix(t−r )]

≤ µ

r
i=1

hi(z(t))[xT(t−r )P0x(t−r )]

≤ µW (t−r ). (46)

Hence, from (45), we have EW (tr) ≤ µλ0ϱ
2. If (45) is not true,

then there exists a natural number t̃ satisfying

t̃ = min{t ∈ [tr , tr+1) : EW (t) ≥ λ0ϱ
2
}. (47)

Obviously, t̃ > tr and EW (t̃) > EW (tr). Let

t∗∗
= max{t ∈ [tr , t̃) : EW (t) ≤ λ0ϱ

2
}. (48)

Then, (45) can be obtained similar as the proof of (24) easily. There-
fore (45) holds. Namely, the claim (21) holds for k = r + 1. By
mathematical induction method, the claim holds for all k ∈ N.

From the definition ofW (t), we have

EV (t) ≤ λ0ϱ
2e−ϵ0(t−t0). (49)

Hence,

E∥x(t)∥ ≤ ϱ


λ0

λ1
e

−ϵ0
2 (t−t0). (50)

The proof is thus completed.

Remark 3. The discretized Lyapunov function method which was
proposed in Han (2005), was used to analyze the linear neural sys-
tem. And in Xiang and Xiao (2014), it was used to analyze the
switched systems with unstable modes. Different from the previ-
ous results, in this paper, it is applied to investigate the stochas-
tic stability problem of the impulsive systems with time window.
Here it should be noted that the number of discretized matrices
Pq, q = 0, 1, . . . , L are L + 1 which have to be prescribed in ad-
vance and different choices of L could lead to different analysis re-
sults. Roughly speaking, the larger the L is chosen, the denser the
division of the interval [tk, tk + dmin) therefore produced and, in-
tuitively, less conservative results can be obtained.

Remark 4. In Chen and Zheng (2013) and Zhang et al. (2013), the
novel time-dependent Lyapunov function method was used to in-
vestigate the stability and synchronization problems of nonlinear
dynamic systems, respectively. Motivated by the above interesting
results, the discretized Lyapunov functionmethod is applied in this
paper. Obviously, the method here is more general and the results
are less conservative than the above literatures (Chen & Zheng,
2013; Zhang et al., 2013). To bemore specific, if q = 1, PL = P2, the
discretized method is reduced into the time-dependent Lyapunov
function method.

Remark 5. The following properties for the impulsive time win-
dow {dmin, dmax} hold with fixed constants 0 < u < 1, it is easy to
see that if Theorem 1 holds for some d∗

max, then it holds for any
dmax < d∗

max, since (13) can be satisfied for any dmax < d∗
max.

Thus, if LMIs (12), (14)–(16) are feasible with given u and dmin, the
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corresponding maximal admissible impulse interval d∗
max can be

computed by the following optimization algorithm:

d∗

max = maxdmax<d∗
max{dmax : (13)holds}. (51)

Similarly, given dmax, if Theorem 1 holds for some d∗

min, then it
holds for any dmin > d∗

min. To see this, assume that conditions (12),
(14)–(16) of Theorem 1 are satisfied for given d∗

min, we can still
choose [tk, tk + d∗

min) to be divided into the same segments Nk,q,
q = 0, 1, . . . , L − 1, then (12), (14)–(16) can ensure D+EW (t) ≤

µ1EW (t), t ∈


q=0,1,...,L−1 Nk,q = [tk, tk + d∗

min). And also has
D+EW (t) ≤ µ1EW (t) ∀t ∈ [tk + d∗

min, tk+1) = [tk + d∗

min, tk +

dmin)


[tk +dmin, tk+1). Thus, the dmin > d∗

min can also be obtained
with given µ1, µ, σ , and dmax satisfying condition (13) can be esti-
mated by

d∗

min = mindmin<dmax{dmin : (12), (14)–(16) holds}. (52)

From (51) and (52), it is obvious that the impulsive time window
[dmin, dmax] can be obtained effectively.

If there are no parameter uncertainty and stochastic perturba-
tion in (4), i.e., the neural networks model in (4) reduces into the
following model:

dx(t) =

r
i=1

hi(z(t))[−Cix(t) + Aif (x(t))

+Dif (x(t − τ(t)))]dt, t ≠ tk

x(t+k ) =

r
i=1

hi(z(t))Bikx(t−k ), tk ∈ Dk.

(53)

Then the following corollary can be obtained directly.

Corollary 1. Consider the stochastic delay uncertain neural net-
works (6) with impulse time window based on T–S model. Suppose
that Assumption 2 holds. If for prescribed positive scalar µ ∈ (0, 1),
there exist a set of matrices Pq > 0, q = 0, 1, . . . , L, positive scalars
λ1, β , small enough constant ϵ0 and ϵ0 ∈ (0, 1 − µ) such that the
following inequalities hold:

Pq ≤ λ1In, (54)

− ln(µ + ϵ1)/dmax > 0 (55)

−µP0 + BT
i PLBi < 0, i = 1, 2, . . . , r (56)

Ξ (j)
=


Γ

(j)
11 PjAi + K1L1 PjDi 0
∗ Γ

(j)
22 0 0

∗ 0 Γ
(j)
33 0

0 0 ∗ Γ
(j)
44

 < 0, (57)

j = q, q + 1, L (58)

where Γ
(j)
11 = ϵ0Pj − 2PjCi +

β

µ
Pj + Ψq − K1L2, Γ

(j)
22 = −K1,

Γ
(j)
33 = −K2, Γ

(j)
44 = −βPj − K2L2. K1 = diag{k11, k12, . . . , k1n} > 0

and K2 = diag{k21, k22, . . . , k2n} > 0,Ψq = L(Pq+1 −Pq)/dmin, dmin
and dmax are the lower and upper bounds of the impulse timewindow,
respectively. ∗ is used to denote the term that is induced by symmetry.
Then, the stochastic fuzzy uncertain delayed neural networks with
impulsive time window (53) are exponentially stable in mean square.

If there is no state delay in model (4), thenmodel (4) reduces to
the following model:

dx(t) =

r
i=1

hi(z(t))[−(Ci + 1Ci)x(t)

+ (Ai + 1Ai)f (x(t))]dt + [1W 0
i x(t)]dW (t), t ≠ tk

x(t+k ) =

r
i=1

hi(z(t))Bix(t−k ), tk ∈ Dk

(59)
then the following corollary can be obtained easily.

Corollary 2. Consider the stochastic delay uncertain neural net-
works (6) with impulse time window based on T–S model. Suppose
that Assumptions 1 and 2 hold. If for prescribed positive scalar µ ∈

(0, 1), there exist a set of matrices Pq > 0, q = 0, 1, . . . , L, positive
scalars λ1, σ , β , small enough constant ϵ0 and ϵ0 ∈ (0, 1 − µ) such
that the following inequalities hold:

Pq ≤ λ1In, (60)

− ln(µ + ϵ1)/dmax > 0 (61)

−µP0 + BT
i PLBi < 0, i = 1, 2, . . . , r (62)

Ξ (j)
=


Γ

(j)
11 PjAi + K1L1
∗ Γ

(j)
22


< 0, j = q, q + 1, L (63)

where Γ
(j)
11 = (ϵ0 + 2)Pj − 2PjCi +

β

µ
P (j)

+ Ψq − K1L2 + σ(Φ4
i )

TΦ4
i ,

Γ
(j)
22 = −K1 + σ(Φ2

i )
TΦ2

i , K1 = diag{k11, k12, . . . , k1n} > 0 and
Ψq = L(Pq+1 − Pq)/dmin, dmin and dmax are the lower and upper
bounds of the impulsive time window, respectively. ∗ is used to de-
note the term that is induced by symmetry. Then, the stochastic de-
layed fuzzy uncertain delayed neural networks with impulsive time
window (59) are exponentially stable in mean square.

4. Numerical examples

In order to show theusefulness of the theoretical results derived
in the preceding section, we present three numerical examples in
this section.

Example 1. Let r = 2. Consider the following plant rules of
stochastic uncertain delayed neural networks with impulsive time
window:

Plant Rule i

IF z1(t) is Mi1 and · · · zp(t) isMip
THEN

dx(t) =

r
i=1

hi(z(t))[−(Ci + 1Ci)x(t)

+ (Bi + 1Bi)f (x(t))
+ (Di + 1Di)f (x(t − τ(t)))]dt

+ [1W 0
i x(t) + 1W 1

i x(t − τ(t))]dW (t), t ≠ tk

x(t+k ) =

r
i=1

hi(z(t))Bikx(t−k ), tk ∈ Dk

(64)

for i = 1, 2, where Mip is a fuzzy set, z(t) = [z1(t), . . . , zp(t)]T is
the premise variable vector and

fi(xi) = tanh(xi), τ (t) =
1
2
sin(t) +

1
2
,

M = diag(0.1, 0.5),
Φ1

1 = Φ1
2 = 0.3I, Φ2

1 = Φ2
2 = 0.2I, Φ3

1 = Φ3
2 = 0.4I

Φ4
1 = Φ4

2 = 0.5I, Φ5
1 = Φ5

2 = 0.3I, F(t) = 0.5I.

We let

C1 =


−1 0
0 −1


, C2 =


−0.9 0
0 −0.9


,

B1 =


0.4 0.3
0.6 0.28


, B2 =


0.2 0.4
0.2 0.4


,

D1 =


0.4 0.5
0.2 0.9


, D2 =


0.5 0.3
0.1 0.3


.
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Fig. 1. The state trajectories of ei1 of subsystem 1 of Example 1 without impulsive
effects.

Fig. 2. The state trajectories of ei1 of subsystem 1 of Example 1 with impulsive
effects.

Then, we can get L1 = diag{0.5, 0.5}, L2 = 0, τ = 1. Let B1k = 0.4,
B2k = 0.6. Then, by (12)–(15), if we fix L = 1, µ = 0.9, the feasible
solution can be obtained (it is omitted here for saving space).More-
over, we have 0.1324 ≤ tk − tk−1 ≤ 0.3258. Let tk − tk−1 = 0.3,
the corresponding trajectories of the stochastic uncertain delayed
neural networks without and with impulsive time window effects
in (44) are presented in Figs. 1 and 2, respectively. One can eas-
ily see that, when there are no impulse effects, the above network
is not exponentially stable in mean square. However, Fig. 2 shows
that it is exponentially stable in mean square with the impulsive
interval tk − tk−1 = 0.3. The simulation further confirms the pre-
vious results derived well.

Example 2. In this example, we will show that if the impulsive ef-
fects here are destabilizing impulse. Consider the neural networks
model with

C1 =


−0.6 0
0 −0.6


, C2 =


−0.3 0
0 −0.3


,

B1 =


0.4 −0.2

−0.3 0.3


, B2 =


0.6 −0.4
0.6 −0.2


,

D1 =


0.2 −0.7
0.4 0.4


, D2 =


0.4 0.6

−0.5 0.6


,

Fig. 3. The state trajectories of ei1 of subsystem 1 of Example 2 with impulsive
effects.

Fig. 4. Impulsive sequence of Example 3.

and B1k = B2k = 1.1, tk − tk−1 = 0.48, and other parameters are
given in Example 1. According to Theorem 1, it can be concluded
that the neural networks (66) can be exponentially stable in mean
square. Fig. 3 depicts state trajectories of ei1 and ei2. The simula-
tion results confirm that the stochastic uncertain delayed neural
networks are exponentially stable in mean square.

Example 3. In this example, we will show that the results derived
are also valid for mixed impulse sequence. Consider the neural
networks (66) with B1k = 0.6, B2k = 1.1 and other parameters
are the same as those in Example 2. Fig. 4 depicts the impulsive
sequence, and the corresponding state trajectories are plotted in
Fig. 5. The simulation results show that our results are also valid
for mixed impulsive sequences.

5. Conclusion

In this paper, we have investigated the stochastic stability prob-
lem for a class of fuzzy delayed neural networks with impulsive
timewindow. The impulses considered here aremore general than
most existing results. Based on the discretized Lyapunov approach
and mathematical induction method, several novel stability cri-
teria are obtained such that the proposed fuzzy neural networks
with impulsive time window can be exponentially stable in mean
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Fig. 5. The state trajectories of ei1 of subsystem 1 of Example 3 with mixed
impulsive effects.

square. And then, some effective optimization algorithms are pre-
sented to compute the lower and upper bounds of the impulsive
time window, respectively. Finally, the simulation examples are
given to illustrate the validation of the proposed results.
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