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Abstract. This paper presents a preliminary study on the nonlinear
approximation capability of feedforward neural networks (FNNs) via a
geometric approach. Three simplest FNNs with at most four free parame-
ters are defined and investigated. By approximations on one-dimensional
functions, we observe that the Chebyshev-polynomials, Gaussian, and
sigmoidal FNNs are ranked in order of providing more varieties of non-
linearities. If neglecting the compactness feature inherited by Gaussian
neural networks, we consider that the Chebyshev-polynomial-based neu-
ral networks will be the best among three types of FNNs in an efficient
use of free parameters.

1 Introduction

Machine learning through input-output data from examples can be considered as
approximations of unknown functions. Two cases can be found in the nonlinear
approximations. One is having a certain degree of knowledge about the nonlinear
functions investigated. The other is in the case that a priori information is
unavailable in regards to the degree of nonlinearity of the problem. The last case
presents more difficulty in handling, but often occurs in real world problems.
In this work, we will investigate feedforward neural networks (or FNNs) as the
nonlinear approximators for the last case.

Significant studies have been reported on that FNNs are universal approxima-
tors with various basis (or activation) functions [1-3]. However, the fundamental
question still remains: Among the various basis functions, which one provides the
most efficiency in approximations of arbitrary functions? This efficiency can be
evaluated by the approximation accuracy over a given number of free parameters
employed by its associated FNN. Some numerical investigations have shown that
the radial basis functions usually afford the better efficiency than the sigmoidal
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functions [4]. Hence, further question arises: What are natural reasons for some
basis function exhibiting better efficiency than the others?

In this paper, we attempt to answer the two basic questions above via a ge-
ometric approach. The interpretations from the approach seem simply and pre-
liminary at this stage, but we believe that a geometric approach does provides a
unique tool for understanding the nature insights of nonlinear approximation ca-
pabilities of universal approximators. This paper is organized as follows. Section
2 proposes a new methodology. Three simplest FNNs are defined and examined
in Section 3. A nonlinearity domain analysis is made with respect to their avail-
ability of nonlinearity components for the three FNNs in Section 4. Finaly, some
remarks are given in Section 5.

2 Proposed Methodology

In the studies of approximation capability, the conventional methodology used
in FNNs is generally based on the performance evaluations from approximation
errors. Two common methods are employed in the selections of basis functions.
One is on the estimation of error bonds, and the other is on the examination of
numerical errors to the specific problems. Few studies related the basis functions
to the approximation capability using a geometric approach. In this work, we
propose a new methodology from the following aspects.

2.1 Nonlinearity Domain Analysis

Nonlinearity domain analysis is a novel concept. There is no existing and explicit
theory for such subject. We propose this concept in order to characterize a given
nonlinear function by its nonlinearity components similar to a frequency domain
analysis. Here are some definitions:

Definition 1. Free parameters, linear parameters, and nonlinear parameters.

Any nonlinear function can be represented in a form as:

y = f(x, θ) = f(x, θL, θNL), (1)

where x∈ RN and y∈ RM are input and output variables, respectively; θ, θL and
θNL are free parameter set, linear and nonlinear parameter sets respectively. The
behaviors and properties of nonlinear functions are controlled by free parameters.
If it can change the shape or orientation of nonlinear function, this parameter
will fall into a nonlinear parameter set. Otherwise, it is a linear parameter (also
called location parameter).

Definition 2. Nonlinearity domain, nonlinearity components and nonlinearity
variation range.

Nonlinearity domain is a two dimensional space used for characterization of non-
linearity of functions. Nonlinearity components are a set of discrete points with
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an infinite number along the horizontal axis of nonlinearity domain. The vertical
axis represents the variable of nonlinearity variation range. The plot in Fig. 1
can be called “Nonlinearity Spectrum”, which reveals two sets of information.
First, for a given function, how many nonlinearity components could be gen-
erated by changing the free parameters. Each component represents a unique
class of nonlinear functions, say, NCj for the jth nonlinearity component, which
could be an “S-type curve”. Second, for each included component, what is its
associated nonlinearity variation range. This range exhibits the admissible range
realized by the given function. A complete range is normalized within [0,1]. If
NVj = 0.5, it indicates that the given function can only span a half space in the
jth nonlinearity component.
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Fig. 1. Nonlinearity Domain Analysis

2.2 Definition of the Simplest-Nonlinear FNNs

The general form of FNNs is a nonlinear mapping: f : RN → RM . In the
nonlinearity domain analysis, it will be a complex task if the high dimensionality
of FNNs is involved. In order to explore the nature insights of FNNs, one has
to make necessary simplifications, or assumptions. In this work, we define the
simplest-nonlinear FNNs for the nonlinearity domain analysis.

Definition 3. Simplest-nonlinear FNNs.

The simplest-nonlinear FNNs present the following features in their architec-
tures: I. A single hidden layer. II. A single hidden node (but more for polynomial-
based FNNs). III. A single-input-single-output nonlinear mapping, fs : R → R.
IV. Governed by at most four free parameters:

y = fs(x, θ) = fs(x, a, b, c, d), (2)

where a, b, c, d ∈ R. Further classification of the four parameters is depending
on the basis function applied. We will give discussions later about the reason of
choosing four free parameters, and call FNNs in eq (2) the simplest FNNs.
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When we define the simplest FNNs, one principle should be followed. The
conclusions or findings derived from the simplest nonlinear FNNs can be ex-
tended directly to judge approximation capability of the general FNNs. For ex-
ample, we only study the nonlinearity of curves. However, the nature insights
obtained from this study can also be effective to the FNNs that construct hyper-
surfaces.

2.3 Classification for Nonlinearity Components

In the nonlinearity domain analysis, all nonlinearity components are classified ac-
cording to the geometric properties from nonlinear functions. However, there ex-
ist various geometric features for classification. These include continuity, mono-
tonicity, symmetry, periodicity, compactness, boundness, singularity, etc. In this
work, we restrict the studies within the smooth functions. Therefore, the geo-
metric properties in related to the continuity and monotonicity features will be
used in the classification. In this work, we consider the following aspects:

– G1. Monotonic increasing or decreasing.
– G2. Convexity or concavity.
– G3. Number of inflection points.
– G4. Number of peaks or valleys.

Therefore, each nonlinearity component should represent a unique class of
nonlinear functions with respect to the above aspects. After the classification,
we usually arrange the components, NCj , along the axis in an order of increasing
nonlinearity complexity. In this work, we only consider the one-dimensional non-
linear functions. Then, we immediately set {NC0 : y = c} and {NC1 : y = ax+c}
to be constant and linear components, respectively. Although these two compo-
nents are special cases for the zero degree of nonlinearity, both of them cannot
be missed for the completeness of nonlinearity components. The next will start
from simple nonlinear curves, say, “C-type” and “S-type” curves. We will give
more detailed classification examples later.

3 Examination of Parameters on Three Simplest FNNs

In this section, we will examine the parameters on the simplest FNNs with three
different basis functions, i.e., sigmoidal, Gaussian, and Chebyshev-polynomials.
Their mathematic representations are given in the following forms.

The simplest sigmoidal FNNs:

y =
a

1 + exp(bx + c)
+ d (3)

The simplest Gaussian FNNs:

y = a exp
[
− (x − c)2

b2

]
+ d (4)
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The simplest Chebyshev-polynomial FNNs:

y = aT3(x) + bT2(x) + cT1(x) + d (5)

where Ti(x) are the Chebyshev polynomials (see [5] and their architectures of
FNNs).

Both simplest sigmoidal and Gaussian FFNs apply at most four free param-
eters. In order to make a fair comparison, we set the cubic forms for the simplest
Chebyshev-polynomial FNNs. The first analysis of the three types of FNNs is
the classification of linear and nonlinear parameters. We catalogue two sets of
parameters for the reason that linear parameters do not change the geometric
properties (say, G1-G4 in Section 2.3) of nonlinear functions. Table 1 presents
the two parameter sets for the three simplest FNNs. All linear parameters play
a “shifting” role to the curves; but only nonlinear parameters can change the
shape, or curvatures, of functions. We conclude that the Chebyshev shows better
features over the others on the following aspects:

I. The Chebyshev presents a bigger set of nonlinear parameters, which indi-
cates that it can form a larger space for nonlinearity variations.

II. The nonlinear parameters in the Chebyshev can be changed into linear
parameters. This flexibility feature is not shared by the others.

III. The nonlinear parameters in both sigmoidal and Gaussian can produce
a “scaling” effect to the curves. This will add a dependency feature to
the nonlinear parameters and thus reduce the approximation capability if
similarity is considered. The Chebyshev, in general, does not suffer this
degeneration problem.

Table 1. Comparisons of linear and nonlinear parameters for the three simplest FNNs

Linear parameters Nonlinear parameters
Sigmoidal c, d a, b
Gaussian c, d a, b

Chebyshev d a, b, c

4 Nonlinearity Domain Analysis on Three Simplest
FNNs

In this section we will conduct nonlinearity domain analysis on the three simplest
FNNs. Without losing the generality, a smooth function in a compact interval,
{f(x); x ∈[0,1]}, will be approximated. Therefore, any function can be approxi-
mated by the linear combinations of several simplest FNNs. The approximation
will allocate the proper segmentation range (by using linear parameters) from
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the given basis function (by using nonlinear parameters for the proper shapes).
Therefore, each simplest FNN can provide the different nonlinear curves (see
Fig. 2 for the sigmoidal function).

In this work, we summarize the nonlinearity components in their availability
for the three simplest FNNs in Table 2, in which each NCj is given graphically
in Fig. 3. All NCj represent unique classes of nonlinear, but smooth, functions
according to the geometric properties. One can observe that the Chebyshev is

Inflection
Point

S1

S3

S2

Fig. 2. Segmentation of a sigmoidal function and different nonlinear curves. (S1, S2
and S3 correspond to the C-, Inverse C- and S-curves, respectively.)

the best again in producing the most nonlinearity components. However, the
nonlinearity variations range for each FNNs is not given and will be a future
work.

Table 2. Comparisons of nonlinearity components in their availability for the three
simplest FNNs. (The sign “

√
” indicates the availiabilty of its current component,

otherwise it is empty).

NC0 NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NC10

Sigmoidal
√ √ √ √ √ √ √ √

Gaussian
√ √ √ √ √ √ √ √ √

Chebyshev
√ √ √ √ √ √ √ √ √ √ √

5 Final Remarks

In this work, we investigate the FNNs with three commonly used basis func-
tions. A geometric approach is used for interpretation of the nature in FNNs.
We conclude that the Chebyshev-polynomial FNNs are the best type in com-
paring with the sigmoidal and Gaussian FNNs by including more nonlinearity
components. However, a systematic study on the nonlinearity domain analysis
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Fig. 3. Nonlinear curves and their associated nonlinearity components NCj

is necessary to reach overall conclusions for each type of FNNs. For example,
the compactness feature of the Gaussian is more efficiency in approximation of
a local behavior of nonlinear functions. On the other hand, we believe that both
performance-based and function-based evaluation approaches [6] will provide a
complete study to ease the difficulty of “trial and error” in designs of universal
approximators, such as fuzzy systems and neural networks.
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