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Discriminative Least Squares Regression for
Multiclass Classification and Feature Selection
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Abstract— This paper presents a framework of discriminative
least squares regression (LSR) for multiclass classification and
feature selection. The core idea is to enlarge the distance
between different classes under the conceptual framework of
LSR. First, a technique called ε-dragging is introduced to force
the regression targets of different classes moving along opposite
directions such that the distances between classes can be enlarged.
Then, the ε-draggings are integrated into the LSR model for
multiclass classification. Our learning framework, referred to as
discriminative LSR, has a compact model form, where there is
no need to train two-class machines that are independent of
each other. With its compact form, this model can be naturally
extended for feature selection. This goal is achieved in terms of
L2,1 norm of matrix, generating a sparse learning model for
feature selection. The model for multiclass classification and its
extension for feature selection are finally solved elegantly and
efficiently. Experimental evaluation over a range of benchmark
datasets indicates the validity of our method.

Index Terms— Feature selection, least squares regression,
multiclass classification, sparse learning.

I. INTRODUCTION

LEAST SQUARES REGRESSION (LSR) is a widely-used
statistical analysis technique. It has been adapted to many

real-world situations. LSR earns its place as a fundamental tool
due to its effectiveness for data analysis as well as its com-
pleteness in statistics theory. Many variants have been devel-
oped, including weighted LSR [1], partial LSR [2], and other
extensions (for example, ridge regression [3]). In addition,
the utility of LSR has been demonstrated in many machine
learning problems, such as discriminative learning, manifold
learning, clustering, semi-supervised learning, multitask learn-
ing, multiview learning, multilabel classification, and so on.
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Linear regression was the first type of regression analysis
to be strictly studied. Given a data set {xi }n

i=1 ⊂ R
m and a

destination set {yi }n
i=1 ⊂ R

c, where yi is the image vector of
xi , the popularly-used regularization for linear regression can
be addressed as an optimization problem

min
W,b

n∑

i=1

∥∥∥WT xi + b − yi

∥∥∥
2

2
+ λ ‖W‖2

F (1)

where W ∈ R
m×c and b ∈ R

c are to be estimated and λ is
a regularization parameter, || · ||2 denotes the L2 norm, and
|| · ||F stands for the Frobenius norm of matrix.

In data analysis, (1) is often applied to data fitting where
each yi is a continuous observation. When it is employed for
data classification, yi is manually assigned as “+1/−1” for
two-class problems or a class label vector for multiclass prob-
lems. For classification tasks, it is desired that, geometrically,
the distances between data points in different classes are as
large as possible after they are transformed. The motivation
behind this criterion is very similar to those used for distance
measure learning [4], [5]. But, formally, (1) does not contain
the information related to such a geometrical criterion.

To enlarge the distance between classes, Leski proposed
a LSR model via the squared approximation of the misclas-
sification errors [6]. However, the algorithm is designed for
two-class classification problems. When it is considered with
one-versus-rest training rule for multiclass extensions, for-
mally one can obtain multiple models that are independent of
each other. In other words, this will not generate an economical
training framework for multiclass classification, and will not
lead to a compact model that can be easily extended for other
learning tasks.

The above observation motivates us to consider how to
explicitly embed class label information into the LSR frame-
work so that the distances between different classes can be
enlarged. Under this motivation, our goal is to develop a LSR
model with compact form for multiclass classification that can
be naturally extended for multiclass feature selection.

In pattern recognition and machine learning, feature selec-
tion has been identified as a key component in developing
robust algorithms for classification. Generally speaking, the
goal of feature selection is to choose from the input data
a subset of relevant features, with which better performance
(high accuracy and low training time) of the learning machine
could be achieved. In addition, feature selection is one of the
most important approaches to dealing with high-dimensional
data. The efforts in feature selection have surged in a few
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decades, with the development of numerous approaches and
proposals for real world applications [7], [8]. In spite of many
thoughtful attempts, it is still a challenging task in pattern
recognition and machine learning.

Taking the class labels of data points into account or not,
feature selection algorithms will fall into three categories:
unsupervised algorithms [9], semi-supervised algorithms
[10]–[12], and supervised algorithms [7], [13]. In addition,
multiple criteria have been proposed, including maximum
mutual information [14]–[16], maximum margin [11], min-
imum reconstruction errors [17], [18], low misclassification
error in neural network [19], probabilistic prediction [20],
sparse representation [21]–[28], stability [29], eigenvalue
sensitivity [30], and so on.

The family of supervised feature selection algorithms can be
divided into filters [14], [15], [31], wrappers [32], [33], and
embedded methods [21], [23], [34], according to whether a
specific classifier is integrated into the learning framework [7].
Filters evaluate the correlation or relevance of a feature with
respect to the class label distribution of the data. Thus, they
are developed independently of specific classifiers. Wrappers
use the prediction with a given learning machine to score the
relative usefulness of subsets of features. But the computa-
tional complexity is usually very high. In contrast, embedded
methods incorporate feature selection as part of the training
process [7]. As embedded methods are coupled with specific
classifier, they often show good performance.

In the literature, regularization formulation with sparse
representation has also been applied to feature selection. Moti-
vated by the lasso [35], a widely used trick is to reformulate
the support vector machine (SVM) with L1 or L0 norm [21],
[22], [24]. For example, Bradley and Mangasarian constructed
a L1-SVM that typically yields sparse solution [36]. Note
that, with L1-SVM, the number of selected features is upper
bounded by the number of training samples. To remedy this
drawback, Wang et al. proposed a hybrid Huberized SVM
with a combination of L1 and L2 norms [24]. However, most
algorithms with sparse representation mainly focus on two-
class classification problems. Additionally, they often require
complex optimization procedures. Cawley et al. developed
sparse multinomial logistic regression via Bayesian L1 regular-
ization [23]. Their algorithm can deal with multiclass feature
selection. Many experiments have demonstrated that it is a
powerful feature selection algorithm [23]. However, it can be
computationally demanding in case of high-dimensional data.
Actually, developing an efficient feature selection model along
the line of sparse representation for multiclass classification
problems is still a fundamental topic to be further studied.

Our goal is to construct a new LSR model for multiclass
classification. The core idea is to embed class label informa-
tion into the LSR formulation such that the distances between
classes can be enlarged. In order to implement this idea, a
technique called ε-dragging is introduced to force the regres-
sion targets of different classes moving along with opposite
directions. Intrinsically, such a geometrical treatment follows
the one-versus-rest training rule for multiclass problem. By the
use of Hadamard product matrices, we describe the ε-dragging
technique in terms of a single compact target function.

This term is then added into the LSR framework and a learn-
ing model for multiclass classification is finally constructed.
Our new LSR framework, referred to as discriminative LSR
(DLSR), can explicitly utilize label information. It can also be
naturally extended for feature selection.

The most important properties of our new approach are as
follows.

1) To develop the DLSR approach, Hadamard product of
matrices is introduced to organize the ε-draggings. This
treatment yields a compact model form, which translates
well the one-versus-rest training rule for multiclass
classification.

2) The DLSR formulation for multiclass classification will
yield a convex problem. By performing variable decou-
pling, only a group of linear equations needs to be solved
in each iteration. This task can be further avoided via
variable substitution. Thus, each iteration has only linear
time complexity. The low time complexity will facilitate
its real-world applications.

3) The DLSR formulation for multiclass classification can
be naturally extended to develop a learning model for
feature selection. This is achieved by forcing the L2,1
norms on both the LSR term and the regularization
term, generating a convex sparse learning problem. With
theoretical analysis about this problem, it is divided
into two convex subproblems, each of which can be
efficiently solved.

4) Besides the theoretical guarantee about our DLSR
formulation for classification, experiments on public
benchmark datasets from many different fields indicate
that the algorithm is comparable to classical algorithms,
including the traditional LSR, logistic regression [37],
LDA [38] and SVM [39].

5) The validity of the extension algorithm for feature
selection is tested on a total of 20 data sets coming
from different fields. It is also widely compared with
the classical feature selection algorithms. Its validity is
illustrated in high classification accuracy, convergence to
global optimum, and effectiveness for high-dimensional
data.

The remainder of this paper is organized as follows. In
Section II, we present the DLSR approach for multiclass
classification. In Section III, we extend our approach for
feature selection. In Section IV, we report the experiments
on multiclass classification. Experiments on feature selection
are given in Section V. Conclusions are drawn in Section VI.

II. DLSR FOR MULTICLASS CLASSIFICATION

A. Problem Formulation and Learning Model

Given n training samples {(xi , yi )}n
i=1 falling into c (≥ 2)

classes, where xi is a data point in R
m and yi ∈ {1, 2, . . . , c} is

the class label of xi , our goal is to develop a LSR framework
such that the distances between classes are as large as possible.

One way to achieve our goal is to apply Leski’s two-
class LSR model [6] with the one-versus-rest training rule.
This approach yields n independent subproblems where the
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subproblems have to be solved subsequently one by one. Here,
we will develop a unique compact model for multiclass cases.

Note that an arbitrary set of c independent vectors in R
c is

capable of identifying c classes uniquely. Thus, we can take
0−1 class label vectors as the regression targets for multiclass
classification. That is, for the j th class, j = 1, 2, . . . , c, we
define f j = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R

c with only the j th
element equal to one [in other words, this is actually achieved
in way of dummy (or unary) encoding where the 1 is the
dummy]. Now our goal is to learn a linear function

y = WT x + t (2)

such that for n training samples we have

fyi ≈ WT xi + t, i = 1, 2, . . . , n (3)

where W is a transformation matrix in R
m×c and t is a

translation vector in R
c.

Let X = [x1, x2, . . . , xn]T ∈ R
n×m collect the n data points,

and Y = [fy1, fy2, . . . , fyn ]T ∈ R
n×c record their images.

Then, the conditions in (3) can be rewritten as

XW + entT ≈ Y (4)

where en = [1, 1, . . . , 1]T ∈ R
n is a vector with all 1 s.

We see in the j th column in Y, only the elements corre-
sponding to the data in the j th class are equal to one and all
the remaining elements are zero. Thus, each column vector
of Y actually stipulates a type of binary regression with target
“+1” for the j th class and target “0” for the remaining classes.
Although it is impossible for us to write out similar constraints
used in two-class cases [6] with 0/1 outputs, we can drag these
binary outputs far away along two opposite directions. That
is, with a positive slack variable εi , we hope the output will
become 1 + εi for the sample grouped into “1” and −εi for
the sample grouped into “0.” In this way, the distance between
two data points from different classes will be enlarged. This
gears to the general criterion of enlarging the margin between
classes for regression [39], [40].

Table I further explains the motivation, which reports six
data points in three classes. Their class label vectors are listed
in the third column. Now if we collect together the first
component of the class label vectors, we can get “1, 1, 0,
0, 0, 0.” This gives a binary-class partition, in which the first
two points are divided into one class while the last four data
points are divided into another class. After ε-draggings are
performed, their images will be changed from “1, 1, 0, 0, 0,
0” to “1 + ε11,1 + ε21, −ε31, −ε41, −ε51, −ε61.” As all εs are
nonnegative, this treatment could help to enlarge the distance
between classes after the data points are mapped.

To develop a unique compact optimization model for mul-
ticlass cases, we consider c columns together. Let B ∈ R

n×c

be a constant matrix, in which the i th row and j th column
element Bij is defined as

Bij =
{ +1, if yi = j

−1, otherwise.
(5)

Geometrically, each element in B corresponds to a dragging
direction. That is, “+1” means it points to the positive axis,
while “−1” means it points to the negative axis. Performing

TABLE I

PERFORMANCE OF ε-DRAGGING ON DATA POINTS IN THREE CLASSES

class y y after ε-dragging constraint

x1 1 [1, 0, 0] [1 + ε11,−ε12,−ε13] ε11, ε12, ε13 ≥ 0

x2 1 [1, 0, 0] [1 + ε21,−ε22,−ε23] ε21, ε22, ε23 ≥ 0

x3 2 [0, 1, 0] [−ε31, 1 + ε32,−ε33] ε31, ε32, ε33 ≥ 0

x4 2 [0, 1, 0] [−ε41, 1 + ε42,−ε43] ε41, ε42, ε43 ≥ 0

x5 3 [0, 0, 1] [−ε51, −ε52, 1 + ε53] ε51, ε52, ε53 ≥ 0

x6 3 [0, 0, 1] [−ε61, −ε62, 1 + ε63] ε61, ε62, ε63 ≥ 0

the above ε-dragging on each element of Y and recording these
{ε} by matrix M ∈ R

n×c , we have the following residual:
XW + entT − (Y + B � M) ≈ 0 (6)

where � is a Hadamard product operator of matrices.
Now following the regularized LSR framework, we can

obtain a learning model as follows:
min

W,t,M

∣∣∣∣XW + entT − Y − B � M
∣∣∣∣2

F + λ||W||2F
s.t. M ≥ 0

(7)

where λ is a positive regularization parameter.
Application of this new notation to (1) yields

min
W,t

∣∣∣
∣∣∣XW + entT − Y

∣∣∣
∣∣∣
2

F
+ λ||W||2F . (8)

In contrast to (8), we add a term B � M in (7), which
is related to ε-draggings to enlarge the distances between
different classes. Accordingly, the learning model now turns
out to be a constrained optimization problem.

With our formulation, we see the c subproblems are grouped
together to share a unique learning model. This will yield two
advantages. One is that, even with the similar one-versus-rest
training rule, we only need to solve them once for multiclass
cases. Another advantage is that the model has a compact
form, which can be further refined in order to implement
feature selection based on sparse representation.

B. Solving the Optimization Model

Based on convex optimization theory, it can be easily
justified that problem (7) is convex, which has a unique
optimal solution. Here, an iterative method will be presented.
The optimization of (7) with respect to W and t is based on
the following theorem [41].

Theorem 1: Given M, and let R = Y + B � M ∈ R
n×c.

Then, the optimal W and t in (7) can be calculated as

W = (XT HX + λIm )−1XT HR (9)

and

t = (RT en − WT XT en)

n
(10)

where Im is a m ×m identity matrix, and H = In −(1/n)eneT
n ,

in which In is a n × n identity matrix.
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Proof: Based on (7), we denote g(W, t) = ||XW+entT −
R||2F + λ||W||2F . According to matrix theory, we have

∂g(W, t)
∂t

= 0 ⇒ WT XT en + teT
n en − RT en = 0

⇒ t =
(
RT en − WT XT en

)

n
.

Furthermore, we have

∂g(W, t)
∂W

= 0

⇒ XT
(

XW + 1

n
eneT

n R − 1

n
eneT

n XW − R
)

+ λW = 0

⇒ XT
(

In − 1

n
eneT

n

)
XW−XT

(
In − 1

n
eneT

n

)
R+λW = 0

⇒ W = (XT HX + λIm)−1XT HR.

Thus, we finish the proof.
Now we consider the optimization with respect to M ∈

R
n×c. Given W and t, and let P = XW+ entT −Y record the

regression errors of the n data points. Then, M can be solved
from the following optimization problem:

min
M

||P − B � M||2F , s.t. M ≥ 0. (11)

Based on the fact that the squared Frobenius norm of matrix
can be decoupled element by element, (11) can be decoupled
equivalently into n × c subproblems. For the i th row and j th
column element Mij , we have

min
Mij

(Pij − Bij Mij )
2, s.t. Mij ≥ 0 (12)

where Pij and Bij are the i th row and j th elements of P and
B, respectively. Now we have the following theorem.

Theorem 2: The optimal solution to (12) is

Mij = max(Bij Pi j , 0). (13)

Note that B2
i j = 1. Thus, we have (Pij − Bij Mij )

2 =
(Bij Pi j − Mij )

2. Considering the nonnegative constraint about
Mij , we can get (13). Accordingly, M in (11) can be finally
calculated as follows:

M = max(B � P, 0). (14)

C. Algorithm of DLSR

On the basis of Theorems 1 and 2, we develop an iterative
method that solves the primal problem. Algorithm 1 lists the
steps of the DLSR algorithm.

In step 1, W0 and t0 are allocated to store the results
obtained in the previous iteration. In step 4, matrix U is
calculated in advance. With this variable substitution, in each
iteration, W in (9) can be obtained via step 8.

To analyze the convergence of Algorithm 1, we denote the
objective function in (7) by G(W, t, M). Then, we have the
following theorem.

Theorem 3: The Algorithm 1 monotonically decreases the
value of G(W, t, M).

Proof: Denote the value of the objective function at
the (t − 1)-th iteration by G(Wt−1, tt−1, Mt−1). During the
tth iteration, we first fix Mt−1 and solve subproblem

Algorithm 1 DLSR
Input: n data points {xi }n

i=1 in R
m , and their corresponding class

labels {yi }n
i=1 ⊂ {1, 2, . . . , c}; parameter λ in (7); and maximum

number of iterations T .
1: Allocate M, W, W0, t, and t0.
2: M = 0, W0 = 0, and t0 = 0.
3: Construct X and Y in (4), and B according to (5).
4: Let U = (XT HX + λIm )−1XT H.
5: Let k = 1.
6: while k < T do
7: R = Y + B � M.
8: W = UR, t = 1

n RT en − 1
n WT XT en .

9: P = XW + entT − Y.
10: M = max(B � P, 0).
11: if (||W − W0||2F + ||t − t0||22) < 10−4, then
12: Stop.
13: end if
14: W0 = W, t0 = t, k = k + 1.
15: end while
16: Output W and t.

min
W,t

G(W, t, Mt−1). Solving it via (9) and (10) yields the opti-

mal solution (Wt , tt ) at the t th iteration. Since this subproblem
is convex, naturally we have

G(Wt−1, tt−1, Mt−1) ≥ G(Wt , tt , Mt−1). (15)

Next, we solve subproblem min
M≥0

G(Wt , tt , M) by fixing

(Wt , tt ). Solving it via (14) yields the optimal Mt . Due to
the convexity of this subproblem, it follows:

G(Wt , tt , Mt−1) ≥ G(Wt , tt , Mt ). (16)

Combining (15) and (16) together, we get

G(Wt−1, tt−1, Mt−1) ≥ G(Wt , tt , Mt ). (17)

In this way, the above conclusion is proved.
Finally, we give some explanations about the above algo-

rithm. First, we point out that the elements (the quantities
of ε-draggings) of the optimum M are all finite. As can be
witnessed from (13), the elements of M will be dropped
into the interval of zero and the maximum absolute element
of P. Note that P collects the regression errors of the training
samples. These errors are all finite since the optimization is
started at finite cost function values. Thus, it is unnecessary
to regularize M to avoid εs growing to infinity.

Second, we use an example to explain the performance of
ε-draggings. Fig. 1(a) shows 60 training samples in R

2 space,
which belong to three classes. Let X = [x1, x2, . . . , x60] ∈
R

2×60 collect these data points sequentially class by class (for
example, the first 20 data points in X belong to the first class).
Now we employ X to train the model in (7) with ε-draggings
and that in (8) without ε-draggings. Correspondingly, we got
two optimal transformations: y = WT x + t from (7) and
y = WT

0 x + t0 from (8). Let the images of data points in
X under these two transformations be I and I0, respectively.
Actually we have I = [WT x1 + t, . . . , WT x60 + t] and
I0 = [WT

0 x1+t0, . . . , WT
0 x60+t0]. Now the differences of the

images caused by ε-draggings can be evaluated as D = I − I0
(∈ R

3×60). Each column of D includes three components of
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Fig. 1. Training samples and the differences of the images caused by ε-draggings. (a) 60 training samples in three classes. (b) First components of the
differences caused by ε-draggings. (c) Second components of the differences caused by ε-draggings. (d) Third components of the differences caused by
ε-draggings.

a difference vector. Fig. 1(b)–(d) shows the three components
recorded, respectively, in the first, second, and third row of
D. We see that the three curves clearly show patterns. For
example, according to the construction of the class label matrix
Y in (4), the first 20 data points will be divided into one class,
while the last 40 data points will be divided into another class.
With ε-draggings, we hope the first 20 data points could be
transformed above one, while the last 40 data points could
be transformed below zero. In other words, the differences
of the first 20 data points could be positive, while those of
the last 40 ones could be negative. The differences shown in
Fig. 1(b) demonstrate this fact. We see ε-dragging indeed helps
to enlarge the distances of the classes. This fact can also be
witnessed in Fig. 1(c) and (d).

III. EXTENDING DLSR FOR FEATURE SELECTION

A. Optimization Model

Suppose we are given n training samples {(xi , yi )}n
i=1,

which belong to c (≥2) classes. Here, xi ∈ R
m is a data point

and yi ∈ {1, 2, . . . , c} is its class label. Our goal is to select
d features from the original m features for classification.

Straightforwardly, the task is to find a 0−1 selection matrix
W ∈ {0, 1}m×d such that x̃ = WT x (∈ R

d) is a sub-vector
of x, where each row and each column in W has only one
component equal to 1. Directly finding such a 0−1 selection
matrix is proven to be a NP hard problem [42]. A commonly-
used way is to consider the feature selection problem by taking
W as a transformation matrix.

If some rows of W were equal to zero, the data dimensions
that correspond to these rows could be removed, i.e., a
selection of dimensions could be performed. We can formalize
this as follows. Let Wi be the i th row of W. Then, a new
vector w̄, which collects the L2 norms of the row vectors of
W, can be constructed as

w̄ = [ ||W1||2, ||W2||2, . . . , ||Wm ||2 ]T ∈ R
m (18)

where ||Wi ||2 =
√∑c

j=1 W 2
i j , i = 1, 2, . . . , m. Now we see

that constructing d nonzero rows in W is just equivalent to
forcing the number of nonzero entities in w̄ equal to d

||w̄||0 = d. (19)

Unfortunately, directly solving the problem with constraints
in L0 norm is also a NP hard problem. Alternatively, we

consider approximating L0 norm with L1 norm [43], [44]
and use the following L2,1 norm of matrix W to develop the
learning model for feature selection

‖W‖2,1 = ‖w̄‖1 =
m∑

i=1

√√√√
c∑

j=1

W 2
i j . (20)

Formally, ||W||2F in (7) will be replaced by ||W||2,1 for
feature selection. Furthermore, we can also replace the least
squares term in (7) by || · ||2,1. That is, ||A||2F will be replaced
by ||A||2,1, where A = XW + entT − Y − B � M. This
treatment is motivated as follows. First, in contrast to ||A||2F ,
||A||2,1 will be more robust to outliers. This is due to the
fact that the residuals are not squared and thus outliers have
less importance. Second, similarly to (18), we can construct
a vector ā in R

n from A, and force some entities in ā to be
zero. Then, optimizing a sparse ā is just equivalent to mini-
mizing the ||A||2,1. This treatment could result in some zero
rows in A, which will facilitate the learning for the optimal
transformation. Note that L1 norm of A can also be employed
to enhance the robustness of the model. However, L2,1 norm-
based loss function is rotational invariant [45], and will lead
to unchanged loss value under orthogonal transformations. But
L1 norm-based one does not have this desirable property.

Now (7) can be extended for feature selection as follows:
min

W,t,M
||XW + entT − Y − B � M||2,1 + λ||W||2,1

s.t. M ≥ 0
(21)

where λ is a positive tradeoff parameter.
Note that L2,1 is a norm. Thus, || · ||2,1 is a convex function.

Additionally, the constraint M ≥ 0 is also convex. Then, (21)
is convex and has therefore only one global minimum.

B. Solving the Optimization Model With Given M

Note that problem (21) is a nonlinear optimization problem.
Here, we develop an iterative method to solve it. Like for
problem (7), the first step is to solve W and t by fixing matrix
M. Let T = Y + B � M ∈ R

n×c. Then, (21) will turn out to
be the following subproblem:

min
W,t

||XW + entT − T||2,1 + λ||W||2,1. (22)

In (22), there does not exist analytical solution for W and t.
A straightforward way to minimize it is the gradient descent
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approach, which requires an appropriate choice of the initial
solution and a proper control of the step size in each iteration.
To avoid these problems, here we reformulate (22) and develop
an equivalent model easy for optimization.

In order to derive our optimization approach, we reformulate
the problem in terms of homogeneous coordinates. For x, its
homogeneous coordinate is defined as x̃ = [x, u]T , where u
is a scalar number.

Let W̃ = [WT , t]T ∈ R
(m+1)×c. With homogeneous

coordinate, the transformation in (2) can be rewritten as

y = W̃T x̃. (23)

To simplify (22), first we give a more general conclusion
about the formulation with homogeneous coordinates.

Lemma 1: For transformation y = WT x + t with W and t
to be optimized, suppose h(t) ≥ 0 holds for any t, and

lim
t→0

h(t) = 0. (24)

Let {W∗, t∗} be the optimal solution to the following
optimization problem:

min
W,t

f

([
X, uen

] [
W
tT

])
+ λg(W) + λh(t) (25)

where f (·) and g(·) are two functions, X = [x1, x2, . . . ,
xn]T ∈ R

n×m , en = [1, 1, . . . , 1]T ∈ R
n , and λ is a positive

number.
Then, for u → ∞, {W∗, ut∗} will be the optimal solution

to the following optimization problem:
min
W,t

f (XW + entT ) + λg(W). (26)

Proof: Here, a proof by contradiction is given as follows.
Suppose {W∗, ut∗} is not the optimal solution to (26). Then
there exists another solution {Ŵ, t̂} such that

f (XŴ + en t̂T ) + λg(Ŵ) < f (XW∗ + uent∗T ) + λg(W∗).
(27)

In the case of u → ∞, we have

f

([
X, uen

] [
Ŵ
1
u t̂T

])
+ λg(Ŵ) + λh

(
1

u
t̂
)

= f (XŴ + en t̂T ) + λg(Ŵ)

< f (XW∗ + uent∗T ) + λg(W∗)

≤ f

([
X, uen

] [
W∗
t∗T

])
+ λg(W∗) + λh(t∗T ) (28)

In (28), the first equality holds since (1/u)t̂ = 0 when
u → ∞. In this case, we have h((1/u)t̂) = 0. In addition,
the first inequality in (28) holds according to (27), and the
second inequality holds due to the fact that h(t∗T ) ≥ 0.

From (28), we see that {W∗, t∗} is not the optimal solution
to problem (25). This is just a contradiction. Due to this
contradiction, we have proven our claim.

Now for (22), we have the following theorem.
Theorem 4: Let X̃ = [x̃1, x̃2, . . . , x̃n]T ∈ R

n×(m+1) collect
the n homogeneous coordinates. In the case of u → ∞,
solving (22) is equivalent to solving the following problem:

min
W̃

||X̃W̃ − T||2,1 + λ||W̃||2,1. (29)

Proof: According to Lemma 1, we define f (A) = ||A −
T||2,1, g(W) = ||W||2,1 and h(t) = ||tT ||2,1. Then we can
rewrite the objective function in (22) as follows:

||XW + entT − T||2,1 + λ||W||2,1 = f (XW + entT ) + λg(W).
(30)

Note that ||W̃||2,1 = ||W||2,1 + ||tT ||2,1, X̃ = [X, uen], and
X̃W̃ = XW + uentT . Hence, the objective in (29) can be
reformulated as

||X̃W̃−T||2,1+λ||W̃||2,1 = f (X̃W̃)+λg(W)+λh(t). (31)

Note again that limt→0 h(t) = limt→0 ||tT ||2,1 = 0. Now
we can take (30) and (31) as the objective functions in (26) and
(25). According to Lemma 1, the solution of (29) is equivalent
to the solution of (22) which proves our claim.

According to Lemma 1 and Theorem 4, if we get the optimal
solution {W∗, t∗} to (29), we will obtain the optimal solution
{W∗, ut∗} to (22).

Now we face the task of how to solve (29). Naturally, we can
consider the derivative of the objective function with respect
to W̃, and take it to be zero. This will give us a method to
solve the optimization problem.

First, we consider the derivative of the term ||W̃||2,1.
According to the definition of L2,1 norm, the derivative about
the element W̃i j can be calculated as

∂||W̃||2,1

∂W̃i j
= W̃i j

(
c∑

k=1

W̃ 2
ik

)−0.5

= W̃i j

||wi ||2 (32)

where wi is the i th row of W̃. Then, it is easy to obtain

∂||W̃||2,1

∂W̃
= �W̃ (33)

where � is a diagonal matrix in R
(m+1)×(m+1) with the i th

diagonal component �ii equal to 1/||wi ||2.
Next, we consider the derivative of the term ||X̃W̃ − T||2,1

with respect to W̃. Actually, it can be viewed as a composite
function, which is generated by f (Ũ) with f (U) = ||U||2,1
and U = X̃W̃ − T. This derivative can be obtained according
to the chain rule. Hence, by use of simple matrix operations
on the basis of (33), we have

∂||X̃W̃ − T||2,1

∂W̃
= X̃T D(X̃W̃ − T) (34)

where D is a diagonal matrix in R
n×n with the i th diagonal

component Dii equal to 1/||x̃T
i W̃ − fT

yi
||2. Here, fyi is the i th

column of matrix Y [see the notation in (4)].
Finally, we take the derivative of the objective function in

(29) and set it to zero

X̃T D(X̃W̃ − T) + λ�W̃ = 0. (35)

Equation (35) indicates that W̃ can be solved as

W̃ = (X̃T DX̃ + λ�)−1X̃T DT. (36)

In (36), the regularization term λ� is embedded into the cal-
culation of the inverse matrix to reduce the under-determined
configurations in case of fewer samples than dimensions.
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Note that both � and D are dependent on W̃. Therefore,
W̃ can be iteratively determined by use of � and D from the
previous optimization step. Denoting the result at the t th step
by W̃t , at the next step, we have

�
(t)
ii = 1

||wi
t ||2

, i = 1, 2, . . . , m + 1 (37)

D(t)
ii = 1

||x̃T
i W̃t − fyi ||2

, i = 1, 2, . . . , n (38)

and
W̃t+1 = (X̃T Dt X̃ + λ�t )

−1X̃T Dt T (39)

where wi
t is the i th row of W̃t , �

(t)
ii is the i th diagonal matrix

of �t , and D(t)
ii is the i th diagonal matrix of Dt .

Note that (29) is a convex problem and therefore its global
minimum is determined within the optimization. In this way,
the optimization problem in (22) is also solved. The steps of
the optimization procedure explained above are briefly given
in Algorithm 2 (see Section III-D).

C. Solving the Optimization Model With Given W and t

Let P = XW + entT − Y ∈ R
n×c. Given W and t, (21) can

be simplified as follows:
min

M
||P − B � M||2,1, s.t. M ≥ 0. (40)

For (40), we have the following theorem.
Theorem 5: The optimal M in (40) is calculated as

M = max(B � P, 0). (41)

Here, we see (11) and (40) have the same solution though
they have different objective functions. Actually, based on L2,1
norm, (40) can be divided into n subproblems, each of which
optimizes a row of M. Specifically, let Pij , Bij , and Mij be
the i th row and j th components of P, B, and M. Further let
mi be the i th row of M. Then, mi can be obtained from the
following optimization problem:

min
mi

√∑c
j=1 (Pij − Bij Mij )2

s.t. Mij ≥ 0, j = 1, 2, . . . , c.
(42)

Note that functions f (x) = √
x and g(x) = x have the

same monotonicity for x ≥ 0, and thus there exists a bijection
between them. As a result, the solution of (42) is equivalent
to the optimization of

∑c
j=1 (Bij Pi j − Mij )

2 with respect to
Mij . This leads to c subproblems as formulated in (12). Thus,
(11) and (40) have the same optimum.

D. Algorithm of DLSR for Feature Selection

After the optimal W is obtained from (21), d features can
be selected from the m original features. This goal can be
achieved by sorting the entities of w̄ in (18). The steps are
described as follows.

First, we calculate the sum of the squared entities of each
row in W. Let w̄ = [w1, w2, . . . , wm ]T be a vector in R

m .
The i th entity of w̄ is computed as

wi =
⎛

⎝
c∑

j=1

W 2
i j

⎞

⎠
0.5

, i = 1, 2, . . . , m. (43)

Algorithm 2 DLSR for Feature Selection (DLSR-FS)
Input: n data points {xi }n

i=1 in R
m , and their corresponding class

labels {yi }n
i=1; number of features to be selected d; parameter λ in

(21); large positive number u; and maximum number of iterations T .
1: Allocate M, W, W0, t, t0, W̃, and W̃0.
2: k = 1, M = 0, W0 = 0, t0 = 0, W̃0 = 0.
3: Construct X and Y in (4), B according to (5), and X̃ in (29).
4: while k < T do
5: T = Y + B � M.
6: � = Im+1, D = In , here Im+1 and In are identity matrices.
7: t = 1.
8: while t < T do
9: W̃ = (X̃T DX̃ + λ�)−1X̃T DT.

10: �ii = 1/||w̃i ||2, i = 1, 2, . . . , m + 1.
11: Dii = 1/||x̃T

i W̃ − yT
i ||2, i = 1, 2, . . . , n.

12: if ||W̃ − W̃0||2F < 10−4, then
13: Output W̃.
14: end if
15: W̃0 = W̃, t = t + 1.
16: end while
17: Assign the first m rows of W̃ to W.
18: Assign the last row of W̃ (after transposed) to t.
19: t = ut.
20: P = XW + entT − Y.
21: M = max(B � P, 0).
22: if (||W − W0||2F + ||t − t0||22) < 10−4, then
23: Break.
24: end if
25: W0 = W, t0 = t, k = k + 1.
26: end while
27: Calculate w̄ according to (43).
28: Output the indices of the first d largest entities of w̄.

Then, we select out the first d largest entities in w̄ (as the d
largest nonsparse ones), and output their indices for selecting
d features.

Algorithm 2 lists the steps of the algorithm of DLSR for
feature selection (DLSR-FS). Steps 5–19 are computed to
solve (22), while steps 20 and 21 are employed to solve (40).
For both the outer while loop and the inner while loop, we set
the maximum number of iterations as T . Actually, on most
datasets, the convergence reaches within about ten iterations
when solving (22). In addition, the outer while loop stops
within about 20 iterations. In our implementation, we set T
to be 30.

Finally, we point out that, in Algorithm 2, u is positively
infinite, according to Lemma 1. In implementation, we use u =
10 000. Note that parameter d will not affect the computations
during training (steps 4∼26) as we need to rank all of the m
source features. Thus, only the parameter λ has to be optimized
with respect to the given data.

E. Algorithm Analysis

Here, we analyze the convergence of Algorithm 2. Denote
the objective function in (21) by F(W, t, M). Then we have
the following theorem.

Theorem 6: Algorithm 2 monotonically decreases the value
of F(W, t, M) during iterations.

Proof: Denote the solution obtained at time t−1 by
(Wt−1, tt−1, Mt−1). Note that (21) is convex, which is further
divided into two convex subproblems, as formulated in (22)
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and (40), respectively. At the tth iteration, we first fix Mt−1

and solve (22). After the optimization is fulfilled, we can get
the optimal solution (Wt , tt ). Thus for currently optimal point
(Wt−1, tt−1), we have

F(Wt−1, tt−1, Mt−1) ≥ F(Wt , tt , Mt−1). (44)

Next, (40) is solved by fixing Wt−1, tt−1. In this way, we
get its optimum Mt via (41). Therefore, for currently optimal
point Mt−1, we have

F(Wt , tt , Mt−1) ≥ F(Wt , tt , Mt ). (45)

Combining (44) and (45) together, it follows:
F(Wt−1, tt−1, Mt−1) ≥ F(Wt , tt , Mt ). (46)

In this way, we have proven our claim.

IV. EXPERIMENTAL EVALUATION OF DLSR

A. Data Sets

Vehicle: This data set, taken from the UCI machine learning
repository,1 contains 1186 data points with 18 dimensions.
Each data point describes a silhouette of vehicle in image.
The purpose is to classify a given silhouette as one of four
types of vehicle.

AT and T Data Set: It includes 40 different persons, and
each person has ten gray images with different expressions
and facial details [46]. The size of each image is 28×23. Thus,
the source dimensionality of data points is 644.

Umist Data Set: It contains the face images of 20 different
persons.2 The size of each image is 56×46. The source
dimensionality is 2576.

AR Data Set: The face images of 120 individuals are used
to construct a data set [47]. For each subject, seven images are
randomly selected, including different facial expressions and
illuminations. Each image is down-sampled to have 32×24
pixels. Thus, the source dimensionality is 768.

Usps Data Set: The images of ten digits are used in
this paper.3 For each digit, 200 images with 16×16 pixels
are randomly selected to construct a data set. The source
dimensionality is 256.

COIL-20 Data Set: It includes 20 objects [48], each of
which has 72 gray images, which are taken from different
view directions. Each image is down-sampled to have 16×16
pixels. Thus, the input dimensionality is 256.

Cora-OS Data Set: It is a subset containing the research
papers about operating system (OS) [49].

WebKB Data Sets: WebKB-CL, WebKB-WT, and WebKB-
WC. The data sets contain a subset consisting of about 3200
web pages from computer science departments of three schools
(Cornell, Washington, and Wisconsin).4

Table II describes these data sets. For the last four data
sets, principal component analysis is used to project them into
200-D subspace.5

1Available at http://www.ics.uci.edu/mlearn/MLRepository.html.
2Available at http://images.ee.umist.ac.uk/danny/database.html.
3Available at http://www.kernel-machines.org/data.
4Available at http://www.cs.cmu.edu/∼webKB/.
5With the original high dimensions, logistic regression may fail to finish

the training within 48 h.

TABLE II

BRIEF DESCRIPTION OF THE DATA SETS FOR CLASSIFICATION

Data set Total num. Train. num. Classes Features

Vehicle 846 340 4 18

AT&T 400 160 40 644

Umist 575 240 20 2576

AR 840 360 120 768

Usps 2000 800 10 256

Coil20 1440 580 20 256

Cora-OS 1246 500 4 6737(200)

WebKB-CL 827 329 7 4134(200)

WebKB-WT 1166 469 7 4165(200)

WebKB-WC 1210 483 7 4189(200)

B. Parameter Settings and Comparisons

We will compare our algorithm, DLSR, with the classical
LSR, LDA [38], linear SVM [39], and logistic regression [37].
For our algorithm, the optimum linear transformation in (2)
is first learned via Algorithm 1. The images of the data
points under this linear transformation are then employed for
classification. The 1-NN classifier is finally used to fulfill
this task. For LSR and LDA, the 1-NN classifier is also
employed to classify the results mapped by linear transforma-
tion. Additionally, the one-versus-rest rule is employed in both
SVM and logistic regression to fulfill the training tasks for
multiclass classifications. Moreover, the results obtained with
1-NN classifier (baseline) by taking the original dimensions
of data as input will also be reported for comparisons.

In our experiments, we take the maximum number of
iterations T = 30 when running Algorithm 1. DLSR has
only one parameter λ to be tested. We use ten-fold cross
validation (but three-folds for AT&T) approach to select it for
each data set. The candidate set is {0.0001, 0.001, 0.01, 0.1,
1.0, 10.0}. This set will be also used to select the regu-
larization parameter λ in the classical LSR with the cross
validation. For SVM, the multiclass classification task is
solved via the LibSVM software [50]. Note that there exists
an important regularization parameter C in SVM. We also
use cross validation approach to select it from the candi-
date set {0.001, 0.01, 0.1, 1.0, 10.0, 100.0}. In addition, the
classic LDA algorithm often suffers from the small sample
size problem when dealing with high-dimensional data. In
this case, the within-class scatter matrix may become sin-
gular. This will make LDA difficult to be performed. Thus,
here the regularized LDA is performed with the regulariza-
tion parameter γ that is tuned via cross validation from
{0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. The selected parameters
will be finally used in experiments.

Table III lists the recognition accuracy and the standard
deviation, obtained with baseline, LDA, SVM, logistic regres-
sion, LSR, and our algorithm. These values are calculated from
20 random splits. Table II lists the number of training samples.

As can be seen from Table III, our algorithm achieves
comparable mean classification accuracy on the data sets,
compared with LDA. Actually, LDA can achieve satisfactory
performances when the distribution of the data in each class
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TABLE III

CLASSIFICATION ACCURACY (%) OF THE DATA SETS LISTED IN TABLE II

Data set Baseline LDA Linear SVM Logistic LSR DLSR

Vehicle 68.5771±1.2983 65.8202±1.9684 70.0593±1.6441 71.5163±1.3982 65.8893±2.4089 68.9302±2.3801

AT&T 91.8125±2.3425 94.4035±1.6713 93.4792±2.1683 92.0208±1.7432 93.1042±1.3751 94.4167±1.3813

Umist 97.0746±1.3648 98.8207±0.7016 98.2537±0.9503 95.9403±1.6160 97.5672±1.2146 98.8209±0.6949

AR 42.1771±2.1970 93.2396±1.0014 63.0208±2.9798 80.3333±1.9289 90.6667±1.1057 93.4271±0.7780

Usps 94.0165±0.5932 91.1375±0.7985 94.0167±0.6615 92.6250±0.7568 91.0375±0.7176 93.0667±0.6681

Coil20 96.6395±0.6255 98.0930±0.5626 98.1279±0.5280 95.0698±0.9502 96.9826±0.6701 98.5581±0.3780

Cora-OS 48.8194±3.0273 65.8839±1.3760 64.9161±2.3626 68.2502±1.5190 65.8839±1.4613 68.2645±1.3938

WebKB-CL 59.6260±3.6190 69.8618±3.2790 71.3333±3.2435 68.3171±2.7123 71.2439±3.4999 74.0163±2.6841

WebKB-WT 76.1093±2.2639 81.9040±1.9850 81.2914±1.9788 78.2340±1.7332 83.9570±1.9885 86.1755±1.7293

WebKB-WC 60.5226±5.5134 73.1897±2.0815 75.7866±2.8435 76.3362±1.7818 75.3933±1.9910 78.4321±2.1999

TABLE IV

RESULTS OF PAIRED STUDENTS’ t TESTS ON THE “>” RELATIONSHIP BETWEEN THE TWO ACCURACIES (MEANS) REPORTED IN TABLE III

Vehicle AT&T Umist AR Usps Coil20 Cora-OS WebKB-CL WebKB-WT WebKB-WC

DLSR > Baseline 0 1 1 1 0 1 1 1 1 1

DLSR > LDA 1 0 0 1 1 1 1 1 1 1

DLSR > Linear SVM 0 1 1 1 0 1 1 1 1 1

DLSR > Logistic 0 1 1 1 1 1 1 1 1 1

DLSR > LSR 1 1 1 1 1 1 1 1 1 1

is Gaussian. When the data distributions are more complex
than Gaussian, the performance of LDA is limited, which can
be witnessed from the WebKB data sets.

The performance of our algorithm is comparable to that
of SVM. From Table III, we can observe that it achieves
higher accuracy on most data sets. In addition, it significantly
outperforms SVM on the AR data set. In fact, there are 120
classes to be classified, and the classifiers are trained only with
three samples in each class. This indicates that the classical
SVM may fail to find the true decision function when the
size of the classes is large and the size of the training set is
very limited. This problem is attenuated to some degree with
our DLSR that can be trained in a compact way for multiple
classes.

The comparison of our algorithm and logistic regression
reveals that our method provides superior performance in
terms of classification mean accuracy on most data sets. As
can be witnessed from the performances on Vehicle data set,
logistic regression demonstrates its power in low-dimensional
data space. However, on the high-dimensional data sets, for
examples, AT&T, Umist, and AR data sets, our algorithm
outperforms it significantly in accuracy. Compared with the
classical LSR, Table III also indicates that the classification
performance is significantly improved with our algorithm.

To illustrate the statistical difference between our approach
and other algorithms, we did the paired student’s t test on these
data sets. Here, the hypothesis is “the classification (mean)
accuracy obtained by DLSR is greater than that obtained by
the other (given) method.” Each test is run on two accuracy
sequences, which are obtained from the 20 splits by our
method and the given method. Table IV reports the results of
the statistical tests. In each entity, “1” means that the hypoth-
esis is correct (true) with probability 0.95, and “0” means

that “the hypothesis is wrong (false)” with probability 0.95.
For example, on the Vehicle data set (see Table III), the
decision “68.9302 (Our) > 65.8202 (LDA)” is correct with
probability 0.95. In summary, from Table IV, we see the
decision that “our algorithm achieves higher classification
accuracy” is correct on most data sets.

C. Computational Complexity of DLSR

In this section, we analyze the computational complexity of
DLSR. In step 4 of Algorithm 1, the calculation of XT HX will
scale in O(nm2 + m) as H is just a centering matrix for X.
To calculate V = (XT HX + λI)−1U, we can solve the matrix
equations via U = (XT HX+λI)V. With matrix equations, the
computational complexity will scale in about O(nm2). Thus,
totally the complexity in step 4 is about O(2nm2 + m).

The steps of Algorithm 1 that are computationally most
demanding are steps 9 and 10. On the basis of the variable
substitution that is performed in step 4, the total computational
complexity in each iteration will scale in about O(2nmc), lin-
early in the number of training data points, the dimensionality
of data, as well as the number of classes.

Finally, we point out that the computational cost of step 4
is quadratic in the dimensionality of data. To reduce the cost
in the cases of n < m, we denote the centered data matrix by
X̃ = HX ∈ R

n×m . The matrix U that is used in step 4 can be
easily obtained from simple matrix operation

U = (X̃T X̃ + λIm)−1X̃T = X̃T (X̃X̃T + λIn)−1. (47)

Similar to the above analysis, we now see that calculating
U according to (47) will scale in about O(2mn2 + m). In the
case of n < m, this reduces the computational complexity.

Table V reports the training time on the data sets. All
the algorithms are performed on a PC with 2.83-GHz CPU
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TABLE V

AVERAGE TRAINING TIME (SECONDS)

Data set LDA Linear SVM Logistic LSR DLSR

Vehicle 0.012 0.015 0.037 0.001 0.015

AT&T 0.348 0.082 154.479 0.019 0.655

Umist 15.236 0.453 842.210 0.115 3.484

AR 1.399 0.552 1030.610 0.121 4.563

Usps 0.395 0.113 13.689 0.042 1.167

Coil20 0.239 0.150 20.806 0.030 0.988

Cora-OS 0.125 0.079 2.041 0.014 0.406

WebKB-CL 0.039 0.020 1.915 0.008 0.208

WebKB-WT 0.051 0.027 2.213 0.009 0.239

WebKB-WC 0.057 0.027 2.349 0.009 0.282

and 2.0-GB RAM, using MATLAB 7.0. The training time of
our approach is approximately 10 times larger than SVM
computational time and 30 times larger than classical LSR
computational time. In contrast to logistic regression, the train-
ing time is significantly reduced. Compared with LDA, our
approach need not perform the eigenvalue decomposition of
matrix to find the eigenvectors corresponding to the specified
number of largest eigenvalues. In addition, LDA needs to
construct the within-class scatter matrix and the between-class
scatter matrix. This will take much time when the number of
classes is large and dimensions of data are high. For instance,
the average training time on the Umist data set with LDA will
take about 15.2 s whereas our algorithm only needs 3.5 s.

V. EXPERIMENTAL EVALUATION OF DLSR-FS

A. Data Sets

We evaluated our algorithm of DLSR for feature selection
(DLSR-FS) on a total of 20 public data sets. Among them, the
ten data sets listed in Table I are also included. In contrast,
for datasets Cora-OS, WebKB-CL, WebKB-WT, and WebKB-
WC, the original dimensions are now used to conduct exper-
iments for feature selection. The details about the remaining
ten data sets are described as follows (see Table VI).

One UCI Data Set: Protein.6 This set contains 116 protein
structure data points taken from six different classes.

Eight Microarray Data Sets in Bio-Informatics: CAR,
Glioma, Lung, MLL, SRBCT, CLL-SUB-111, GLA-BRA-
180, and TOX-171. The CAR dataset contains in total
174 samples in eleven classes from Affymetrix U95a
GeneChips, while the Glioma dataset has 50 samples in four
classes from Affymetrix U95av2 GeneChips [51]. The Lung
data set totally has 203 samples in five classes [52]. The genes
with standard deviations smaller than 50 expression units are
removed, which produces a dataset with 3312 genes [53]. The
MLL dataset contains 72 samples of mixed-lineage leukemia
cancer data, which contains three leukemia classes. There are
5848 genes in each sample. The SRBCT dataset contains
83 samples in total. Each sample in this dataset contains
2308 gene expression values [54]. In addition, the details about

6Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.

TABLE VI

BRIEF DESCRIPTION OF THE DATA SETS FOR FEATURE SELECTION

Data set Total num. Train. num. Classes Features

Protein 116 48 6 20

Vehicle 846 340 4 18

AT&T 400 160 40 644

Umist 575 240 20 2576

AR 840 360 120 768

Usps 2000 800 10 256

Coil20 1440 580 20 256

Cora-OS 1246 500 4 6737

WebKB-CL 827 329 7 4134

WebKB-WT 1166 469 7 4165

WebKB-WC 1210 483 7 4189

CAR 174 66 11 9182

Glioma 50 20 4 4434

Lung 203 70 5 3312

MLL 72 30 3 5848

SRBCT 83 32 4 2308

CLL-SUB-111 111 41 3 11 340

GLA-BAR-180 180 72 4 49 151

TOX-171 171 68 4 5748

TDT2 600 240 4 36 771

the datasets of CLL-SUB-111 [55], GLA-BRA-180 [56], and
TOX-1717 can be found in Table IV.

Document Data Set: TDT2. It contains 600 samples,8 which
come from four classes.

B. Algorithms and Parameter Settings

We compared our algorithm with several typical feature
selection algorithms in multiclass scenario, including mutual
information (MI) [57], Gini coefficient (Gini) [58], student’s
T-test (T-test) [59], Fisher Score (FS) [31], ReliefF [8], [60],
the minimum redundancy maximum relevance (mRMR) [14].
As the existing sparse SVM-based feature selection approaches
are mainly designed for two-class classification tasks, we
compared our algorithm with the sparse multinomial logistic
regression via Bayesian L1 regularization (SBMLR) [23],
which is proven to be a classical multiclass feature selection
method developed via sparse learning. As a classical unsuper-
vised feature selection approach, Laplacian score (LS) [9] will
be also run for comparisons.

LS is a graph-based approach. Given training data points,
five-nearest neighbor method is employed to construct the data
graph. The affinity between two neighboring data points xi

and x j is evaluated as wi j = exp(||xi − x j ||22/(2σ 2)). In order
to appropriately chose σ , we compute the mean value of the
distances between all of the n training data points, and denote
it by dm . Based on this value, we construct a candidate set
{dm/8, dm/4, dm/2, dm, 2dm , 4dm, 8dm}, from which a σ is
selected. Cross validation is performed to achieve this goal.

7Available at http://featureselection.asu.edu/datasets.php.
8Available at http://www.gabormelli.com/RKB/TDT-2_Benchmark_Task.
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Fig. 2. Group I: The classification accuracy with different numbers of selected features. The final classification accuracy is calculated as the average of the
20 trials. In total, eight different numbers of selected features are evaluated, as indicated by the horizontal axis. To be clear, for each data set, two figures
are employed to illustrate the accuracy and the standard deviation. Specifically, the first figure shows the results obtained by MI, Gini, T-test, FS, and our
method, while the second figure illustrates those obtained by LS, ReliefF, mRMR, SBMLR, and our method.

Our algorithm has a parameter λ which should be tuned to
data. We also use cross validation to select a proper λ. The
candidate set for λ is {10−2, 10−1, 1, 10, 102, 103, 104, 105}.

Classification accuracy is employed to evaluate the perfor-
mance of feature selection. A linear SVM-classifier has been

separately trained for each data set using the LibSVM [50]. In
other words, given a training data set, the selected features
will be employed to train a SVM classifier. Note that the
regularization parameter C in SVM should be also tuned
to data. We also use cross validation approach to select a
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Fig. 3. Group II: The classification accuracy with different numbers of selected features. The final classification accuracy is calculated as the average of the
20 trials. In total, eight different numbers of selected features are evaluated, as indicated by the horizontal axis. To be clear, for each data set, two figures
are employed to illustrate the accuracy and the standard deviation. Specifically, the first figure shows the results obtained by MI, Gini, T-test, FS, and our
method, while the second figure illustrates those obtained by LS, ReliefF, mRMR, SBMLR, and our method.

proper C from the candidate set {0.0001, 0.001, 0.01, 0.1, 1,
10, 100}.

To perform the cross validation, the training set is first
divided into a few subsets. Specifically, three-fold cross val-
idation approach is performed on the ten data sets with
number of training samples less than 200, while ten-fold

cross validation approach is performed on the remaining ten
data sets (see Table VI). Finally, cross validation approach is
implemented for each group (λ, C). That is, for our algorithm,
there are 56 groups of parameters λ and C to be selected. In
experiments, a total of 20 trials are run for each group of
parameters (λ, C). In each trial, about 40% data points are
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TABLE VII

GROUP I: AVERAGE ACCURACY (%) AND THE STANDARD DEVIATION OF THE SELECTED TOP 80 FEATURES

Protein Vehicle AT&T Umist AR Usps

MI 67.7941±5.4379 70.8103±1.5283 84.7708±2.9632 92.6567±1.6217 51.9063±2.4476 89.9458±0.5562

Gini 68.7500±6.2914 70.6522±1.6958 87.2500±2.4941 93.8060±2.2793 53.4063±3.2333 88.2792±1.6680

T-test 67.3529±5.1077 69.6047±1.9675 82.6250±2.7774 89.4925±2.3296 54.1667±3.9851 87.8417±0.7803

FS 68.7647±6.0521 69.4565±1.9379 83.9792±3.0633 90.0896±2.1342 59.2292±2.8558 91.5417±1.1885

LS 67.7941±4.6967 71.0474±1.3878 80.1458±2.6877 74.3433±6.4646 29.6042±2.9236 88.0583±0.9715

ReliefF 68.6765±5.9420 70.4743±1.4343 81.8125±3.2055 86.8358±3.1096 57.1979±1.6016 91.5833±0.6052

mRMR 65.2206±6.0025 70.2273±1.8071 86.5000±2.1306 89.8507±1.7673 59.5313±2.2232 83.7875±1.3579

SBMLR 68.0147±5.1801 71.0277±1.6112 88.3750±2.9891 97.0090±1.2785 60.9604±3.5565 93.5542±0.7282

DLSR-FS 70.0000±5.6130 71.4032±1.3189 88.0000±2.0617 97.1552±1.3230 59.0417±2.1088 93.8625±0.5957

TABLE VIII

GROUP II: AVERAGE ACCURACY (%) AND THE STANDARD DEVIATION OF THE SELECTED 80 TOP FEATURES

Coil20 Cora-OS WebKB-CL WebKB-WT WebKB-WC CAR Glioma

MI 96.2000±0.6904 70.7161±1.9287 90.2927±2.1540 90.8664±1.0390 89.0733±1.8544 88.7963±4.2474 67.1667±7.2769

Gini 95.0756±0.8801 70.3290±1.8644 90.0976±2.1357 90.7230±1.0976 89.6067±1.7360 81.1574±5.8350 63.1667±9.9399

T-test 89.4593±1.0278 38.7677±0.2234 52.4797±28.073 24.2053±3.0866 21.8642±4.1544 57.5926±3.3127 56.6667±11.239

FS 95.7733±0.8293 70.6258±1.8905 90.0163±2.2008 89.8234±1.3854 88.7500±1.7214 84.1667±4.9627 66.1667±9.6291

LS 87.6337±0.9212 7.4839±0.0000 13.1707±0.0000 10.5740±18.681 9.3750±0.0000 71.9907±7.3023 62.6667±7.6929

ReliefF 93.3488±1.5234 70.0710±1.2422 90.2439±2.6535 90.0386±1.2911 89.2026±1.3948 90.0926±3.4265 62.8333±9.1303

mRMR 95.4477±0.8032 70.4903±2.0162 90.0488±1.9545 90.6788±1.1885 89.8653±1.6798 83.0093±4.5686 64.5000±8.6704

SBMLR 92.9244±4.3400 70.1871±1.7565 85.6829±6.6610 91.6225±1.8058 86.9558±3.2378 92.6389±2.4859 64.5000±9.5068

DLSR-FS 97.3547±0.6046 70.9742±1.7580 90.8537±2.9225 92.1854±2.2138 90.2909±1.5744 93.9815±2.0704 63.8333±8.0405

randomly selected as training samples, and the remaining data
points are treated as the test samples. The number of training
samples is listed in Table VI. The selected features and the
trained classifier with the selected λ and C are used to classify
the test samples.

The above training method is also used in LS to train the
group of parameters σ and C . Except LS and our algorithm,
for the remaining methods, only parameter C in SVM needs
to be selected via cross validation. In this process, the number
of features to be selected d is fixed.

C. Classification Accuracy Comparisons

Figs. 2 and 3 show the classification accuracy curves of
all nine feature selection methods on the twenty data sets.
The final classification accuracy is calculated as the aver-
age of the 20 trials. In total, eight different numbers of
selected features are evaluated. For the two low-dimensional
data sets, Protein and Vehicle, the number of features to be
selected is [2, 4, 6, . . . , 16], respectively. For the remaining
eighteen high-dimensional, the number of selected features
is taken as [10, 20, 30, . . . , 80], respectively. For clarity, for
each data set we use two figures to illustrate the accuracy
and the standard deviation. Among them, the first figure
shows the curves obtained with MI, Gini, T-test, FS, and our
method, while the second figure shows the curves obtained
with LS, ReliefF, mRMR, SBMLR, and our method. The
results obtained by our method are illustrated twice for
comparison.

Compared with MI, Gini, T-test, FS, LS, and ReliefF, from
Figs. 2 and 3 we see that our algorithm achieves higher mean
accuracies on almost all data sets with different numbers of
selected features. There are only a few cases where our algo-
rithm generates slightly low accuracy on the low-dimensional
data sets. For example, on the Protein data set with d = 12,
MI, Gini, FS, and T-Test achieve slightly higher accuracy than
our algorithm. Additionally, only on one high-dimensional
data set Glioma, the accuracy obtained by MI is higher than
that obtained with our algorithm. Finally, it should be pointed
out that the performance of LS could be largely determined on
the graph construction that is related to the number of nearest
neighbors as well as the edge affinities between neighboring
data points (for example, on some document data sets, using
the Gaussian weighting function may generate unsatisfactory
results). However, how to construct a proper graph is still
an open problem as the optimal one could be well tuned to
explore the relations between data points.

Compared with mRMR, our algorithm achieves higher mean
accuracies on most data sets with different numbers of selected
features. Actually, from Figs. 2 and 3, we see that it is
only on AR and CLL-SUB-111 that it clearly outperforms
our algorithm. In addition, the performance of our method
is comparable to that of SBMLR, which is a typical sparse
feature selection approach. In contrast, on most data sets, our
algorithm achieves higher mean classification accuracies.

In summary, on most data sets, the accuracy curves obtained
by our algorithm locate at the top level, compared with those
obtained by the remaining eight algorithms. For more clarity,



XIANG et al.: DLSR FOR MULTICLASS CLASSIFICATION AND FEATURE SELECTION 1751

TABLE IX

GROUP III: THE AVERAGED ACCURACY (%) AND THE STANDARD DEVIATION OF THE SELECTED 80 TOP FEATURES

Lung MLL SRBCT CLL-SUB-111 GLA-BAR-180 TOX-171 TDT2

MI 89.2481±3.1249 91.5476±2.8357 79.6078±7.1805 52.2143±4.9155 55.1389±6.3049 70.6796±5.0458 97.4306±0.9317

Gini 86.0150±4.9117 96.1905±3.0314 96.5686±4.0172 54.2143±8.1405 52.1296±5.3747 67.1359±3.8997 97.2556±0.7187

T-test 87.4812±6.4415 62.9762±12.226 92.3529±3.3602 51.7143±5.5541 52.6389±5.3256 63.9320±7.4359 71.9028±0.6640

FS 86.1654±5.2682 95.5952±2.2221 96.5686±3.0426 52.7857±6.4302 51.6667±5.6009 66.8447±5.7505 96.9861±0.7501

LS 88.6842±2.6997 92.6190±3.4460 88.0392±7.7366 52.8571±4.9051 53.9815±3.9524 69.7573±4.9130 25.1806±0.2745

ReliefF 90.6391±1.5520 95.7714±2.2221 96.2745±3.9677 53.5000±8.2714 51.0185±4.4141 68.8350±5.0586 95.7222±1.2105

mRMR 89.9248±2.8594 93.0952±5.0003 89.1176±6.6865 61.0000±5.8094 52.4074±4.8848 73.9806±4.8961 97.2556±0.8041

SBMLR 91.6917±1.3017 93.8095±4.3971 91.2745±5.5632 50.4286±6.3567 53.4259±4.8635 63.3981±5.4111 95.9306±1.0788

DLSR-FS 92.7820±1.5696 96.7857±2.0836 96.4706±4.3427 55.9286±6.8946 58.2870±4.9770 75.2427±5.2567 97.2917±1.0310

TABLE X

RESULTS OF PAIRED STUDENTS’ t TESTS ON THE “>” RELATIONSHIP BETWEEN THE TWO ACCURACIES (MEANS)

REPORTED IN TABLES VII–IX

Our > MI Our > Gini Our > T-test Our > FS Our > LS Our > ReliefF Our > mRMRr Our > SBMLR

Protein 1 0 0 0 1 0 1 0

Vehicle 1 1 1 1 1 1 1 0

AT&T 1 0 1 1 1 1 1 0

Umist 1 1 1 1 1 1 1 0

AR 1 1 1 0 1 1 0 0

Usps 1 1 1 1 1 1 1 1

Coil20 1 1 1 1 1 1 1 1

Cora-OS 0 1 1 0 1 1 0 1

WebKB-CL 0 0 1 0 1 0 1 1

WebKB-WT 1 1 1 1 1 1 1 0

WebKB-WC 1 1 1 1 1 1 1 1
CAR 1 1 1 1 1 1 1 1

Glioma 0 0 1 0 0 0 0 0

Lung 1 1 1 1 1 1 1 1

MLL 1 0 1 1 1 1 1 1

SRBCT 1 0 1 0 1 0 1 1

CLL-SUB-111 1 0 1 1 1 0 0 1

GLA-BAR-180 1 1 1 1 1 1 1 1

TOX-171 1 1 1 1 1 1 0 1

TDT2 0 0 1 1 1 1 0 1

Tables VII–IX list the averaged accuracy and the standard
deviation evaluated on 20 random splits. These values are
obtained with d = 16 for Protein and Vehicle data sets,
and d = 80 for the remaining 18 data sets. The classifica-
tion accuracies in Tables VII–IX, indicate that our algorithm
achieves the highest mean accuracy on 14 data sets. For the
results reported in Tables VII–IX, we also performed the
paired student’s t test on the 20 data sets. Here, the hypothesis
is “the classification (mean) accuracy obtained by DLSR-FC
is greater than that obtained by the other (given) method.”
The results of the statistical tests are reported in X. We see
the decision that “our algorithm achieves higher classification
accuracy” is true with probability 0.95 on most data sets,
compared with the remaining eight algorithms.

D. Computational Complexity of DLSR-FS

This section analyzes the computational complexity of
DLSR-FS described in Algorithm 2. The most computationally
demanding step of Algorithm 2 is step 9. It is easy to justify

that calculating T1 = X̃T DX̃ + λ� will scale in about
O(n(m + 1)2), and calculating T2 = X̃T DT will scale in
about O((m + 1)nc). Note that computing T3 = T−1

1 T2
will scale in about o(c(m + 1)2) by solving linear equations.
Thus, in total, the computational complexity of step 9 will
be up to about O((n + c)(m + 1)2 + (m + 1)nc). Another
computationally demanding operation is performed in step 20.
The computational complexity of this step is about O(nmc).
All the remaining steps do not contain complex computations.

In our experiments, we must deal with high-dimensional
data. For example, the dimensionality of the data points in
GLA-BAR-180 is up to 49 151. It requires a lot of memory
and a large amount of time to solve T3 = T−1

1 T2. Actually,
we can reformulate (36) to reduce the cost in the cases of
n < m. With simple matrix operation, we have

(X̃T DX̃ + λ�)−1X̃T D = T4(X̃T4 + λIn)−1 (48)

where T4 = �−1X̃T D.
Note that in (48) both � and D are two diagonal matrices.

Thus T4 can be easily computed. Now it is easy to check that
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TABLE XI

AVERAGE TRAINING TIME (SECONDS). THE NUMBERS IN THE FIRST

COLUMN CORRESPOND TO THE DATA SETS ORDERLY IN TABLE VI

MI Gini Ttest FS LS ReliefF mRmr Sbmlr Our

1 0.001 0.05 0.002 0.01 0.04 0.02 0.97 0.05 0.05

2 0.001 0.02 0.001 0.01 0.03 0.12 0.16 0.43 0.41

3 0.19 20.9 0.01 0.82 0.05 0.69 296. 33.5 0.16

4 0.37 57.4 0.03 1.68 0.37 5.53 536. 37.1 0.97

5 0.70 151 0.01 2.89 0.26 4.97 581. 136.1 1.16

6 0.04 16.6 0.01 0.10 0.81 2.18 98.8 6.31 5.34

7 0.05 9.61 0.01 0.18 0.32 1.94 102 7.39 1.52

8 0.50 1.23 1.91 1.18 4.01 19.4 504 59.8 8.21

9 0.27 0.66 1.91 1.02 0.51 3.58 537 68.7 1.17

10 0.30 0.88 6.43 236 0.73 4.79 498 1.74 1.73

11 0.27 0.78 12.0 177 0.85 5.35 500 47.4 1.97

12 0.63 36.1 0.21 3.31 0.29 1.73 107 34.5 0.45

13 0.14 2.76 0.04 0.63 0.06 0.07 62.3 0.02 0.08

14 0.13 7.17 0.03 0.58 0.09 0.43 128 4.60 0.20

15 0.20 3.78 0.07 0.66 0.08 0.21 134 5.12 0.12

16 0.05 1.44 0.02 0.33 0.05 0.10 8.42 0.81 0.07

17 0.44 2.00 0.10 1.27 0.22 0.66 6.26 3.87 0.38

18 5.34 23.4 0.45 7.04 1.67 10.9 33.1 60.8 5.74

19 0.17 3.77 0.05 0.83 0.20 0.72 7.69 7.57 0.61

20 3.28 4.10 14.3 5.58 5.54 39.7 14.3 66.3 11.7

the computational complexity of computing W̃ in (36) via (48)
will be about O((m + c + 1)n2 + (m + 1)nc). We see that it
will be largely reduced in the case of n � m.

Table XI reports the averaged training time of running one
split with the nine algorithms. The result does not include
the time to train the SVM classifier. Compared with the three
baseline algorithms, MI, Gini, and T-Test, our algorithm will
take more time as it is implemented iteratively. Compared with
the four classic algorithms, FS, ReliefF, mRMR, and SBMLR,
our algorithm costs less time on most data sets, in particular
on high-dimensional data sets, as for instance GLA-BAR-111
which has 49 151 dimensions. Here, our algorithm takes 5.74 s
for training whereas FS, ReliefF, mRMR, and SBMLR will
take about 7.04 s, 10.9 s, 33.1 s, and 60.8 s.

VI. CONCLUSION

In this paper, we presented a framework of DLSR for
multiclass classification and feature selection. The main novel
contributions of this paper were the following: 1) a training
model with compact form for DLSR was developed, which
translated the one-versus-rest training rule for multiclass clas-
sification problems well; 2) based on this compact model, a
learning framework with sparse representation both on the
LSR term and on the regularization term was constructed
for feature selection; and 3) the homogeneous coordinate
representation for the LSR yielded an effective and efficient
solution to the feature selection formulation with sparse repre-
sentation. Additionally, theoretical analyses about the derived
model for multiclass classification and its extension for feature
selection were given. Comparative experiments indicated that

the proposed method results in high classification accuracy,
convergence to global optimum, and effectiveness for high-
dimensional data.

The main limit of our approach is that the training time
is still high compared with the traditional feature selection
approaches. The optimization problem is actually divided
into two subproblems, which are solved one by one in an
iterative optimization framework. Although the subproblems
are all convex and the convergency of the algorithm can be
guaranteed, the convergence speed is slow. In the future, we
would like to speed up our algorithm by combining it with a
multiple gradient descent technique.
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