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On the Monotonicity of Interval Type-2
Fuzzy Logic Systems

Chengdong Li, Member, IEEE, Jianqiang Yi, Senior Member, IEEE, and Guiqing Zhang

Abstract—Qualitative knowledge is very useful for system mod-
eling and control problems, especially when specific physical struc-
ture knowledge is unavailable and the number of training data
points is small. This paper studies the incorporation of one common
qualitative knowledge—monotonicity into interval type-2 (IT2)
fuzzy logic systems (FLSs). Sufficient conditions on the antecedent
and consequent parts of fuzzy rules are derived to guarantee the
monotonicity between inputs and outputs. We take into account five
type-reduction and defuzzification methods (the Karnik–Mendel
method, the Du–Ying method, the Begian–Melek–Mendel method,
the Wu–Tan method, and the Nie–Tan method). We show that IT2
FLSs are monotonic if the antecedent and consequents parts of
their fuzzy rules are arranged according to the proposed mono-
tonicity conditions. The derived monotonicity conditions are valid
for the IT2 FLSs using any kind of IT2 fuzzy sets (FSs) (e.g., Trape-
zoidal IT2 FSs and Gaussian IT2 FSs) and stand for type-1 FLSs
as well. Guidelines for applying the proposed conditions to model-
ing and control problems are also given. Our results will be useful
in the design of monotonic IT2 FLSs for engineering applications
when the monotonicity property is desired.

Index Terms—Data-driven method, fuzzy logic system, model-
ing and control, monotonicity, type-2 fuzzy, type-reduction and
defuzzification method.

I. INTRODUCTION

R ECENTLY, type-2 (T2) fuzzy logic systems (FLSs)
[1]–[7] have attracted increasing interest, as T2 FLSs not

only have the advantages of conventional FLSs (type-1 FLSs)
but can provide the capability to model high levels of uncer-
tainties and produce more complex input–output mappings and
better results as well. To date, due to the computation com-
plexity and theoretical analysis difficulty, the most widely stud-
ied and applied T2 FLSs are the interval ones, where interval
type-2 (IT2) fuzzy sets (FSs)1 [8]–[12] are adopted to reduce
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1IT2 FSs are isomorphic to interval-valued FSs [12]. Both concepts are alter-

natively used by different researchers; for example, in [13]–[17], interval-valued
FSs are utilized, while in most of the other references, IT2 FSs are adopted. As
an extension of T1 FSs, IT2 FSs (interval-valued FSs) have close relationships
with other extensions, e.g., intuitionistic FSs [18], interval-valued intuitionistic

computational complexity. IT2 FLSs have found lots of appli-
cations in many areas, especially in the modeling and control
fields [21]–[35].

For modeling, IT2 FLSs represent the input–output map-
pings of the systems to be identified and are usually constructed
through data-driven methods. When constructing IT2 FLSs us-
ing data-driven methods, we often encounter that the data points
are noisy and that the number of the data points is small. As
discussed in [36]: “in such cases, it is very important to fully
exploit the additional nonquantitative knowledge about the sys-
tem in order to obtain meaningful, interpretable models. More-
over, taking the qualitative knowledge about the system into
account renders the model-identification process less vulner-
able to noise and inconsistencies in the data and suppresses
overfitting.” Monotonicity between the inputs and outputs is
one of such qualitative knowledge in many modeling problems.
Taking the identification of the water heating system [37] for
example, the temperature of water will change with respect to
the heat power monotonically. Therefore, the identified fuzzy
model (type-2 or type-1) for the water heating system should be
monotonic between the heat power and the temperature.

For control applications, IT2 FLSs are utilized to realize con-
trol laws to reduce control errors. In many cases, the control
signal (output of IT2 FLS) should be monotonic with respect to
the error and/or the change of error (inputs of IT2 FLS). One
typical example is the control of a liquid level in a tank. An
appropriate fuzzy controller (type-2 or type-1) for this system
needs to open the valve larger as the liquid level deviates more
from the required level. Another example is the temperature
control of the refrigerator. The more the real temperature in the
refrigerator deviates from the setpoint, the lager the control ac-
tion is needed to be generated by IT2 FLS to increase the motor
speed in the compressor.

From the previous discussion, we can see that it would be very
helpful to find the conditions under which the FLSs can give
monotonic input–output mappings. There are several meaning-
ful papers on the monotonicity of type-1 (T1) FLSs [36]–[42].
Broekhoven et al. [36], [38] have studied the monotonicity is-
sue on the Mamdani–Assilian models under the mean of max-
ima defuzzification and the center-of-gravity defuzzification.
In [37], [39], and [40], sufficient parameter conditions are given
to ensure a monotonic input–output mapping of the TSK T1
FLS. Kouikoglou et al. [41] have discussed how to ensure the
monotonicity of the hierarchical sum-product T1 FLSs. Seki
et al. [42] have derived the monotonicity conditions of the sin-
gle input rule modules (SIRMs) connected T1 FLSs.

FSs [18], and L-FSs [19]. Deschrijver and Kerre [20] have made a comprehen-
sive study on the relationships among such popular extensions of T1 FSs.
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1198 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 5, OCTOBER 2014

TABLE I
EXISTING RESULTS FOR MONOTONICITY OF IT2 FLSS

However, for the monotonicity of IT2 FLSs, there have been
only a few studies up until now because of the complexity of
the input–output mappings of IT2 FLSs. Only for some special
IT2 FLSs, e.g., SIRMs-connected IT2 FLS [43] which is es-
sentially linear combination of the single input IT2 FLSs, the
Begian–Melek–Mendel method-based IT2 FLS [44], and the
single-input IT2 FLS [45], [46], the parameter conditions for
the monotonicity have been given. Related results are shown in
Table I. From this table, we can observe that the existing results
have the following limitations.

1) Only two kinds of type-reduction and defuzzification
methods have been considered. For IT2 FLSs, different
type-reduction and defuzzification methods can give dif-
ferent input–output mappings. The popular type-reduction
and defuzzification methods include the Karnik–Mendel
(KM) method [1], [8], [47]–[50], the Du–Ying (DY)
method [51], the Begian–Melek–Mendel (BMM) method
[52], the Wu–Tan (WT) method [53], the Nie–Tan (NT)
method [54], [55], and the uncertainty bound (UB) method
[56]. There exist no monotonicity results for the other
type-reduction and defuzzification methods.

2) The most widely used type-reduction and defuzzification
method is the KM method. However, for this method, up
until now, the results are only for single input IT2 FLSs.

3) There exist strict limitations on the membership functions
(MFs) including both the kinds of IT2 FSs and the differ-
entiability of the MFs of IT2 FSs.

Therefore, to be more practical, more work needs to be done
to guarantee the monotonicity of multiinput IT2 FLSs with dif-
ferent kinds of MFs and out-processing methods. In this study,
we present a unified framework for the monotonicity of IT2
FLSs. We derive the parameter conditions under which the IT2
FLSs can give monotonic input–output mappings. The derived
conditions are composed of two parts: the conditions on the an-
tecedent IT2 FSs and the conditions on the consequent weights.
Particularly, we consider five kinds of type-reduction and de-
fuzzification methods which cover most of practical IT2 FLSs.
We also show how to use the proposed results to design appropri-
ate monotonic IT2 FLSs for modeling and control applications.
To the best of the authors’ knowledge, this is the most com-
prehensive study on the monotonicity of IT2 FLSs. The main
novelties of this paper are listed as follows.

1) The presented results are valid for all kinds of IT2 FSs
including the Trapezoidal IT2 FSs, the Gaussian IT2 FSs,
Triangular IT2 FSs, and even the general IT2 FSs.

2) The presented conditions are useful for the five widely
used type-reduction and defuzzification methods which
cover most of IT2 FLSs in practice.

3) The derived conditions are for multiinput IT2 FLSs, no
matter which type-reduction and defuzzification method
is adopted.

4) Except the proposed antecedent and consequent condi-
tions, there exist no other limitations on the MFs of IT2
FSs. Hence, the monotonicity conditions can be more eas-
ily satisfied.

5) The presented results are also valid for T1 FLSs and gen-
eral TSK FLSs and more loose than some existing results
for T1 FLSs [37], [39], [42].

The rest of this paper is organized as follows. Section II
studies the monotonicity of T1 FLS and the IT2 FLS using
the KM method. Section III derives the monotonicity condi-
tions on the antecedent T1 FSs and IT2 FSs. Section IV studies
the monotonicity of the IT2 FLSs using the DY method, the
BMM method, the WT method, the NT method, and the other
out-processing methods. Section V extends the monotonicity
conditions to general TSK IT2 FLSs, presents guidelines for
applying the derived conditions to modeling and control prob-
lems and summarizes other fundamental properties of IT2 FLSs.
Finally, conclusions are drawn in Section VI. The proofs of all
lemmas and theorems are given in the Appendix.

II. MONOTONICITY OF FUZZY LOGIC SYSTEMS

In this study, we consider the general multiinput single-
output FLS, whose input variables are supposed to be x =
(x1 , . . . , xp) ∈ X1 × X2 × · · · × Xp . However, our results can
be readily extended to multiinput multioutput FLS, for the lat-
ter can be decomposed into several multiinput single-output
FLSs [1], [8].

First, the structures of T1 FLSs and IT2 FLSs are introduced
briefly.

A. T1 Fuzzy Logic Systems

By assigning the jth input variable Nj T1 FSs, we can obtain∏p
j=1 Nj fuzzy rules, each of which has the following form:

Rule(i1 . . . ip): If x1 is Ai1
1 , x2 is Ai2

2 , . . . , xp is A
ip
p , Then

yo(x) is wi1 ...ip , where ij = 1, 2, . . . , Nj , wi1 ···ip s are the crisp

consequent weights, A
ij

j s are antecedent T1 FSs for the input
variables. This rule base can be seen as the simplest TSK model
and the Mamdani model with height defuzzification, where
wi1 ···ip represents the point with the maximum membership
degree of the consequent T1 FS of Rule(i1 . . . ip) [57]. In fact,
it represents the most frequently used T1 FLSs in engineering
problems [57], [58].
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Once a crisp input x = (x1 , x2 , . . . , xp) is applied to the T1
FLS, through the singleton fuzzifier, the firing strength of Rule
(i1 . . . ip) can be calculated by the product operation as follows:

fi1 ...ip (x) =
p∏

j=1

μ
A

i j
j

(xj ). (1)

Then, the output of the T1 FLS is computed as

yo(x) =

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)

=

∑N1
i1 =1 · · ·

∑Np

ip =1 wi1 ···ip
∏p

j=1 μ
A

i j
j

(xj )
∑N1

i1 =1 · · ·
∑Np

ip =1
∏p

j=1 μ
A

i j
j

(xj )
. (2)

B. IT2 FLS

By blurring the T1 FSs and crisp weights, we can obtain the
following type-2 fuzzy rule base:

Rule(i1 . . . ip): If x1 is Ãi1
1 , x2 is Ãi2

2 , . . . , xp is Ã
ip
p , Then,

yo(x) is [wi1 ...ip , wi1 ···ip ], where ij = 1, 2, . . . , Nj , Ã
ij

j s are the
antecedent IT2 FSs for the input variables, and [wi1 ···ip , wi1 ···ip ]s
are the interval consequent weights. This rule base can be seen
as the Mamdani model with KM method where [wi1 ···ip , wi1 ···ip ]
can be viewed as the centroid of the consequent IT2 FS [57].
When wi1 ···ip = wi1 ···ip , this IT2 FLS can be viewed as the
simplified TSK model [57]. Again, this rule base represents the
most widely used IT2 FLSs in engineering applications, e.g.,
modeling problems [21] and control applications [30], [51],
[58].

Once a crisp input x = (x1 , x2 , . . . , xp) is applied to the IT2
FLS, through the singleton fuzzifier and the type-2 inference
process, the interval firing strength of Rule (i1 , i2 , . . . , ip) can
be calculated by the product operation as follows:

F i1 ···ip (x) = [fi1 ···ip (x), f
i1 ···ip (x)] (3)

where

fi1 ···ip (x) =
p∏

j=1

μ
Ã

i j
j

(xj ) (4)

f
i1 ···ip (x) =

p∏

j=1

μ
Ã

i j
j

(xj ) (5)

in which μ
Ã

i j
j

and μ
Ã

i j
j

denote the lower and upper MFs of the

IT2 FS Ã
ij

j .
To generate crisp output, the output processing including

type-reduction and defuzzification is needed. There exist sev-
eral different type-reduction and defuzzification methods. The
IT2 FLSs with different type-reduction and defuzzification
methods have different input–output mappings. In this section,
we only discuss the most widely used Karnik–Mendel type-
reduction and Center-Of-Sets (COS) defuzzification method
(KM method) [1], [47]–[50], while other output processing
methods will be given in Section IV. The KM type-reducer

which uses the Karnik–Mendel algorithms to realize the type-
reduction are reported as the COS type-reducer in some early
literatures on IT2 FLSs [8].

Let

yn
l (x) =

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)
(6)

yn
r (x) =

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)
(7)

where fi1 ···ip (x) means fi1 ···ip (x) or f
i1 ···ip (x). Consequently,

we have a total of 2
∏ p

j = 1 Nj different combinations for both
yn

l (x) and yn
r (x), i.e., n = 1, . . . ,K where K = 2

∏ p
j = 1 Nj .

By the KM type-reducer, the left and right end points of the
interval output of the IT2 FLS are computed as

yl(x) = minK
n=1y

n
l (x) (8)

yr (x) = maxK
n=1y

n
r (x). (9)

The Karnik–Mendel algorithm [1], [8] or its enhanced ones
[47]–[49] can be used to find yl(x) and yr (x) effectively. This
is why, we usually call this COS type-reducer as the KM type-
reducer. As the expressions in (8) and (9) are very convenient for
our theoretical analysis, the details of Karnik–Mendel algorithm
are omitted here. For more details, see [1], [8], and [47]–[49].

If the KM method is adopted, the crisp output of the IT2 FLS
is calculated as

yo(x) =
1
2
[yl(x) + yr (x)]. (10)

When all sources of uncertainty disappear, IT2 FSs Ã
ij

j s be-

come T1FSs A
ij

j s, and interval weights [wi1 ···ip , wi1 ···ip ]s be-
come crisp weights wi1 ···ip s. Simultaneously, yn

l (x) and yn
r (x)

all turn to the same function yo(x), which is the input–output
mapping of a T1 FLS. Hence, the T1 FLS can be viewed as a
special case of the IT2 FLS using the KM method.

C. Definition of Monotonicity

To present monotonicity conditions for FLSs, let us give the
definition of monotonicity first.

Definition 1 [37], [39]: An FLS is said to be monotonically
increasing with respect to (w.r.t) the kth input variable
xk , if ∀x1

k ≤ x2
k ∈ Xk implies that yo(x1 , . . . , x

1
k , . . . , xp) ≤

yo(x1 , . . . , x
2
k , . . . , xp) for all the combinations of (x1 , . . . ,

xk−1 , xk+1 , . . . , xp). And, an FLS is said to be monotonically
decreasing w.r.t the kth input variable xk , if ∀x1

k ≤ x2
k ∈ Xk

implies that yo(x1 , . . . , x
1
k , . . . , xp) ≥ yo(x1 , . . . , x

2
k , . . . , xp)

for all combinations of (x1 , . . . , xk−1 , xk+1 , . . . , xp).
In this study, we just take the increasing monotonicity into

account. Similar results can be obtained for decreasing mono-
tonicity.
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D. Monotonicity of IT2 Fuzzy Logic Systemss Using the
Karnik–Mendel Method

The Karnik–Mendel type-reduction and COS defuzzification
method (KM method) [1], [8], [47]–[50] are the most popular
out-processing methods. The monotonicity of such IT2 FLS is
studied in this section, while the monotonicity of the IT2 FLSs
using other out-processing method is studied in Section IV.

For the increasing monotonicity, we have the following results
for all yn

l (x) and yn
r (x).

Lemma 1: yn
l (x) and yn

r (x) (n = 1, . . . ,K) are all monoton-
ically increasing w.r.t xk if we have the following.

1) For any x2
k ≥ x1

k ∈ Xk, 1 ≤ l ≤ m ≤ Nk , we have
μAm

k
(x2

k )μAl
k
(x1

k ) ≥ μAm
k

(x1
k )μAl

k
(x2

k ), where μAm
k

means either μ
Ãm

k

or μÃm
k

, and μAl
k

means either μ
Ãl

k

or

μÃl
k
.

2) wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip ,
wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip

for all the combinations of (i1 , . . . , ik−1 , ik+1 , . . . , ip),
where ik = 1, · · · , Nk − 1.

Proof: See Appendix A. �
The conclusion in this lemma is very important. Most of the

proofs of the following theorems are based on the conclusion
provided by this Lemma.

For the monotonicity of the IT2 FLS using the KM method,
we have the following theorem.

Theorem 1: The IT2 FLS using the KM method is monoton-
ically increasing w.r.t xk if we have the following.

1) For any x2
k ≥ x1

k ∈ Xk, 1 ≤ l ≤ m ≤ Nk , we have
μAm

k
(x2

k )μAl
k
(x1

k ) ≥ μAm
k

(x1
k )μAl

k
(x2

k ), where μAm
k

means either μ
Ãm

k

or μÃm
k

, and μAl
k

means either μ
Ãl

k

or

μÃl
k
.2

2) wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip ,
wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip

for all the combinations of (i1 , . . . , ik−1 , ik+1 , . . . , ip),
where ik = 1, · · · , Nk − 1.

Proof: See Appendix B. �

E. Monotonicity of T1 Fuzzy Logic System

As discussed in Section II-B, T1 FLS can be viewed as a
special case of the IT2 FLS using the KM method. Consequently,
for the monotonicity of T1 FLS, we have the following result.

Theorem 2: The T1 FLS is monotonically increasing w.r.t xk

if we have the following.
1) For any x2

k ≥ x1
k ∈ Xk, 1 ≤ l ≤ m ≤ Nk , we have

μAm
k

(x2
k )μAl

k
(x1

k ) ≥ μAm
k

(x1
k )μAl

k
(x2

k ).
2) wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip for all the

combinations of (i1 , . . . , ik−1 , ik+1 , . . . , ip), where ik =
1, . . . , Nk − 1.

Note that our result on the monotonicity of both IT2 FLS and
T1 FLS put no limitation on the shapes and types of IT2 FSs

2In this study, we do not constrain the shape of the IT2 FSs, Hence, this
theorem holds for any kind of IT2 FSs, as long as this condition can be satisfied.
In the next section, we will show that this condition can easily be met when
Trapezoidal and Gaussian IT2 FSs are adopted.

(a) (b)

Fig. 1. Trapezoidal FSs: (a) Trapezoidal T1 FS. (b) Trapezoidal IT2 FS.

and T1 FSs. The second condition in Theorems 1 and 2 can be
easily checked. On the other hand, we need to explore how the
antecedent FSs in the rule base can meet the first condition in
both theorems. In the next section, we will study this issue.

III. MONOTONICITY CONDITIONS ON THE ANTECEDENT

PARTS OF FUZZY RULES

In practical FLSs, the most frequently used FSs are the Gaus-
sian FS and the Trapezoidal FS, a special case of which is the
Triangular FS [1]–[3]. Next, we will show how the Trapezoidal
and Gaussian FSs can satisfy the first condition in Theorems 1
and 2.

A. Monotonicity Conditions of the Trapezoidal Fuzzy Sets

Fig. 1(a) shows us a Trapezoidal T1 FS A, the MF of which
can be expressed as

μA (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ a or x ≥ d

hx−a
b−a , a < x ≤ b

h, b < x ≤ c

hx−d
c−d , c < x < d

(11)

where 0 < h ≤ 1. We denote such a Trapezoidal T1 FS as
μA (x) = μA (x, a, b, c, d, h).

Note that Triangular T1 FSs are special cases of Trapezoidal
T1 FSs when b = c. Generally, in many applications, normal
Trapezoidal T1 FSs whose heights equal to 1 are adopted.
However, in this study, we consider the general case where
0 < h ≤ 1.

By blurring the Trapezoidal T1 FS shown in Fig. 1(a), we can
obtain the Trapezoidal IT2 FS Ã [see Fig. 1(b)], which can be
described by its lower and upper MFs μ

Ã
(x) and μÃ (x) as

μ
Ã
(x) = μ

Ã
(x, a, b, c, d, h) (12)

μÃ (x) = μÃ (x, a, b, c, d, 1) (13)

where a ≤ a, b ≤ b, c ≤ c, d ≤ d. We denote such a Trape-
zoidal IT2 FS as μÃ (x) = μÃ (x, a, b, c, d, a, b, c, d, h). Again,
when b = c and b = c, the Trapezoidal IT2 FS becomes a Tri-
angular IT2 FS.

Lemma 2: Consider two Trapezoidal T1 FSs μAl (x) =
μAl (x, al , bl , cl , dl , hl), μAr (x) = μAr (x, ar , br , cr , dr , hr ). If
al ≤ ar , bl ≤ br , cl ≤ cr , dl ≤ dr (as shown in Fig. 2),
then, for any x2 ≥ x1 ∈ X , we have μAr (x2)μAl (x1) ≥
μAr (x1)μAl (x2).

Proof: See Appendix C. �
From Lemma 2, we can make the following conclusion.
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Fig. 2. Two Trapezoidal T1 FSs Used in Lemma 2.

(a)

(b)

(c)

Fig. 3. Trapezoidal T1 FSs that satisfy the first condition in Theorem 2.
(a) General case. (b) Normal case. (c) Triangular case.

Theorem 3: For Trapezoidal T1 FSs A1 , A2 , . . . , AN ,
where μAj (x) = μAj (x, aj , bj , cj , dj , hj ), if al ≤ am , bl ≤
bm , cl ≤ cm , dl ≤ dm for any 1 ≤ l ≤ m ≤ N , then the first
condition in Theorem 2 can be met.

Fig. 3 demonstrates several examples that satisfy the first
condition in Theorem 2. A general case is shown in Fig. 3(a),
where the Trapezoidal T1 FSs have different widths and heights.
In Fig. 3(b), the Trapezoidal T1 FSs are normal and have the
same width. The triangular case is shown in Fig. 3(c). As well
known, T1 FSs shown in Fig. 3(b) and (c) are widely used
in fuzzy modeling and fuzzy control problems. See [1], [37],
and [42] for examples.

Theorem 4: For the Trapezoidal IT2 FSs Ã1 , Ã2 , . . . , ÃN in

the input domain X , where μÃj (x) = μÃj (x, aj , b
j
, cj , d

j
,

aj , bj , cj , dj , hj ), if al ≤ am , bl ≤ b
m

, cl ≤ cm , d
l ≤ dm for

any 1 ≤ l ≤ m ≤ N , then the first condition in Theorem 1 can
be met.

Proof: See Appendix D. �
Fig. 4 demonstrates several examples that satisfy the first con-

dition in Theorem 1. A general case is shown in Fig. 4(a), where
the Trapezoidal IT2 FSs have different shapes. The Trapezoidal
IT2 FSs in Fig. 4(b) and the Triangular IT2 FSs in Fig. 4(c)
are widely used in fuzzy modeling and fuzzy control problems.
See [1]–[3] for examples.

B. Monotonicity Conditions of the Gaussian Fuzzy Sets

In this section, we consider the monotonicity conditions of
generalized Gaussian FSs as shown in Fig. 5, which include the
most widely used standard Gaussian FSs.

(a)

(b)

(c)

Fig. 4. Trapezoidal IT2 FSs that satisfy the first condition in Theorem 1.
(a) General case. (b) Normal case. (c) Triangular case.

(a) (b)

Fig. 5. Generalized Gaussian FS: (a) Generalized Gaussian T1 FS. (b) Gen-
eralized Gaussian IT2 FS.

The generalized Gaussian T1 FS A shown in Fig. 5(a) can be
expressed as

μA (x) = μA (x, a, b, σ, h) =

⎧
⎪⎪⎨

⎪⎪⎩

h ∗ e−
(x −a ) 2

2 σ 2 , x ≤ a

h, a < x ≤ b

h ∗ e−
(x −b ) 2

2 σ 2 , x ≥ b.
(14)

When a = b and h = 1, the generalized Gaussian T1 FS be-
comes a standard Gaussian T1 FS.

By blurring the generalized Gaussian T1 FS A, we can get
the generalized Gaussian IT2 FS Ã [see Fig. 5(b)] which can be
depicted by its lower and upper MFs μ

Ã
(x) and μÃ (x) as

μ
Ã
(x) = μ

Ã
(x, a, b, σ, h) (15)

μÃ (x) = μÃ (x, a, b, σ, 1) (16)

where a ≤ a, b ≤ b, σ ≤ σ.
Next, we denote such a generalized Gaussian IT2 FS as

μÃ (x) = μÃ (x, a, b, a, b, σ, σ, h). Again, when a = b and a =
b, the generalized Gaussian IT2 FS turns to the widely used one.

Lemma 3: Consider two generalized Gaussian T1 FSs
μAl (x)=μAl (x, al , bl , σl , hl), μAr (x)=μAr (x, ar , br , σr , hr ).
If al ≤ ar , bl ≤ br , and (σr )2hl = (σl)2hr (as shown in
Fig. 6), then, for any x2 ≥ x1 ∈ X , we have μAr (x2)
μAl (x1) ≥ μAr (x1)μAl (x2).

Proof: See Appendix E. �
Similarly, from Lemma 3, we can conclude that:
Theorem 5: For the generalized Gaussian T1 FSs

A1 , A2 , . . . , AN , where μAj (x) = μAj (x, aj , bj , σj , hj ), if
al ≤ am , bl ≤ bm , σl = σm , hl = hm for any 1 ≤ l ≤ m ≤
N , then the first condition in Theorem 2 can be met.
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Fig. 6. Two generalized Gaussian T1 FSs used in Lemma 3.

(a)

(b)

(c)

Fig. 7. Gaussian T1 FSs that satisfy the first condition in Theorem 2.
(a) General case. (b) Normal case. (c) Standard case.

Fig. 7 shows several examples that satisfy the first condition
in Theorem 2. A general case is shown in Fig. 7(a), where the
generalized Gaussian T1 FSs have different shapes, but they
have the same height and variation. In Fig. 7(b), the generalized
Gaussian T1 FSs have the same shape. The standard Gaussian
T1 FSs are shown in Fig. 7(c), which are also widely used in
modeling and control.

Theorem 6: For the generalized Gaussian IT2 FSs Ã1 ,
Ã2 , . . . , ÃN in the input domain X , where μÃj (x) =

μÃj (x, aj , b
j
, aj , bj , σj , σj , hj ), if al ≤ am , b

l ≤ bm , σl =
σm = σ, σl = σm = σ, and hl = hm = σ 2

σ 2 for any 1 ≤ l ≤
m ≤ N , then the first condition in Theorem 1 can be met.

Proof: See Appendix F. �
Note that the generalized Gaussian IT2 FSs should have the

same height determined by the uncertain variations. On the other
hand, we do not put such constraints on Trapezoidal IT2 FSs.

Fig. 8 shows several cases that satisfy the first condition in
Theorem 1. A generalized case is shown in Fig. 8(a), where the
Gaussian IT2 FSs have different shapes, but they have the same
height and uncertain variations. The generalized Gaussian IT2
FSs in Fig. 8(b) and (c) have the same shape, respectively. Note
that the lower and upper MFs of each IT2 FS in Fig. 8(b) have
different variations, while the lower and upper MFs of each IT2
FS in Fig. 8(c) have the same variation.

C. Monotonicity Conditions of the Embedded Fuzzy Sets

For IT2 FS Ãj , one of its embedded T1 FSs can be obtained
by

μAj (x) = (1 − η)μÃj (x) + ημ
Ãj (x), η ∈ [0, 1]. (17)

(a)

(b)

(c)

Fig. 8. Generalized Gaussian IT2 FSs that satisfy the first condition in The-
orem 1. (a) General case. (b) The lower and upper MFs of each IT2 FS have
different variations. (c) The lower and upper MFs of each IT2 FS have the same
variation.

(a) (b)

Fig. 9. Type-2 and Type-1 (dashed lines) fuzzy partitions. (a) Trapezoidal FSs.
(b) Gaussian FSs.

The embedded T1 FSs of the IT2 FSs in Figs. 4 and 8 are
depicted using the dashed lines. From Figs. 4 and 8, we can ob-
serve that the embedded T1 FSs may be neither the Trapezoidal
type nor the generalized Gaussian type. Even though the embed-
ded T1 FSs may be abnormal, we can still prove the following
results.

Theorem 7: Suppose that IT2 FSs Ã1 , Ã2 , . . . , ÃN satisfy
the first condition in Theorem 1. For their embedded T1 FSs
A1 , A2 , · · · , AN obtained by (17), the first condition in Theo-
rem 2 can be met.

Proof: See Appendix G. �
In [45] and [46], we have presented the monotonicity condi-

tions for the single-input IT2 FLS using the KM method. From
Theorems 4 and 6, we can conclude that the monotonicity con-
ditions in [45] and [46] are special cases of the results in this
study. In addition, from Theorems 3, 5 and 7, we can observe
that in this study the shape or the height of the T1 FSs are not
constrained. Therefore, our result for T1 FLS is more general
and loose than that provided in [37], [39], and [42].

D. Examples

In this section, we provide two examples to verify Theorems
1–7.

1) Example 1: This example is presented to demonstrate
Theorems 1, 4, and 6 using the single-input and double-input
cases. In each case, two kinds of IT2 FSs are considered.

Fig. 9 shows the Trapezoidal and Gaussian IT2 FSs, which
will be used in this example and the following examples.
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TABLE II
SINGLE-INPUT FUZZY RULE BASE WITH INTERVAL CONSEQUENT WEIGHTS

(a)

(b)

(c)

Fig. 10. Input–output mappings of the IT2 FLSs using the KM method.
(a) Single-input IT2 FLSs. (b) Double-input IT2 FLSs. (c) Slices of the input-
output mappings of the double-input IT2 FLSs.

TABLE III
DOUBLE-INPUT FUZZY RULE BASE WITH INTERVAL CONSEQUENT WEIGHTS

For the single-input IT2 FLSs, their rule base is shown in
Table II. And, the MFs of the IT2 FSs in Table II are depicted
in Fig. 9(a) and (b). The input–output mappings of these single-
input IT2 FLSs are shown in Fig. 10(a). The left one is for the
IT2FLS with Trapezoidal IT2 FSs (Trapezoidal IT2 FLS), while
the right one is for the IT2FLS with Gaussian IT2 FSs (Gaussian
IT2 FLS).

For the double-input IT2 FLSs, their rule base is shown in
Table III, and, the MFs of the IT2 FSs in Table III are also
depicted in Fig. 9(a) and (b). The input–output mappings of
these double-input IT2 FLSs are shown in Fig. 10(b). The left
one is for the Trapezoidal IT2 FLS, while the right one is for the
Gaussian IT2 FLS. To observe clearly, slices of the input–output
mappings of the double-input IT2 FLSs shown in Fig. 10(b) are
demonstrated in Fig. 10(c).

TABLE IV
SINGLE-INPUT FUZZY RULE BASE WITH CRISP CONSEQUENT WEIGHTS

(a)

(b)

Fig. 11. Input–output mappings of the T1 FLSs. (a) single-input T1 FLSs.
(b) Double-input T1 FLSs.

TABLE V
DOUBLE-INPUT FUZZY RULE BASE WITH CRISP CONSEQUENT WEIGHTS

From Fig. 10, we can observe that the input–output mappings
of both the single-input and double-input IT2 FLSs with dif-
ferent kinds of IT2 FSs are consistent with the conclusions in
Theorems 1, 4, and 6. Another thing needs to be mentioned is
that the Gaussian IT2 FLSs perform smoother than the Trape-
zoidal IT2 FLSs.

2) Example 2: This example is done to demonstrate Theo-
rems 2, 3, and 5 using the single-input and double-input cases.
In each case, we consider two kinds of T1 FSs that are depicted
in Fig. 9(a) and (b) using the dashed lines.

For the single-input T1 FLSs, their rule base is shown in
Table IV. The input–output mappings of these single-input T1
FLSs are shown in Fig. 11(a). The left one is for the Trapezoidal
T1 FLS, while the right one is for the Gaussian T1 FLS.

For the double-input T1 FLSs, their rule base is shown in
Table V. The input–output mappings of these double-input T1
FLSs are shown in Fig. 11(b). The left one is for the Trapezoidal
T1 FLS, while the right one is for the Gaussian T1 FLS.

From Fig. 11, we can see that the input–output mappings of
both the single-input and double-input T1 FLSs with different
kinds of T1 FSs are consistent with the conclusions in Theorems
2, 3, and 5. Again, the Gaussian T1 FLSs perform smoother than
the Trapezoidal ones.
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IV. MONOTONICITY OF IT2 FUZZY LOGIC SYSTEMS USING

OTHER OUT-PROCESSING METHODS

In this section, the monotonicity of IT2 FLSs using other
four different out-processing methods (the DY method [51],
the BMM method [52], the WT method [53], and the NT
method [54], [55]) is investigated. In these out-processing meth-
ods, all the consequent interval weights become crisp weights,
i.e. wi1 ···ip = wi1 ···ip = wi1 ···ip . Therefore, the expressions of
yn

l (x) and yn
r (x) in (6) and (7) become yn (x) = yn

l (x) = yn
r (x).

A. Monotonicity of IT2 Fuzzy Logic Systems Using
the Du–Ying, Begian–Melek–Mendel, Wu–Tan
and Nie–Tan methods

1) The Du–Ying Method: Du and Ying proposed an out-
processing method in [51]. The final output of the IT2 FLS
using the DY method is computed as the average of all the
K yn (x), where K = 2

∏ p
j = 1 Nj , i.e.,

yo(x) =
1
K

K∑

n=1

yn (x). (18)

2) The Begian–Melek–Mendel Method: In [52], Biglarbegian
et al. proposed another closed-form out-processing method. The
final output of the IT2 FLS using the BMM method is computed
as the linear combination of y1(x) and yK (x), i.e.,

yo(x) = αy1(x) + βyK (x)

= α

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)

+ β

∑N1
i1 =1 · · ·

∑Np

ip =1 f
i1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 f
i1 ···ip (x)

. (19)

3) The Wu–Tan Method: The WT method proposed in [53]
adopts the equivalent T1 FS to realize the type-reduction and
defuzzification. The final output of the IT2 FLS using the WT
method is computed as

yo(x) =

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)
(20)

where

fi1 ···ip (x) =
p∏

j=1

μ
A

i j
j

(xj ) (21)

in which

μ
A

i j
j

(xj ) = (1 − η
ij

j (xj ))μÃ
i j
j

(xj ) + η
ij

j (xj )μÃ
i j
j

(xj ) (22)

where η
ij

j (xj ) is a function of the inputs and is different for
different IT2 FSs [53].

4) The Nie–Tan Method: When η
ij

j (xj ) = 1
2 , the WT method

turns to another out-processing method — the NT method pro-
posed by Nie and Tan in [54]. Hence, the NT method is a special
case of the WT method.

(a)

(b)

(c)

(d)

Fig. 12. Input–output mappings of the single-input IT2 FLSs using different
type-reduction and defuzzification methods. (a) DY method. (b) BMM method.
(c) WT method (η(x) = 0.5) and the NT method. (d) UB method.

For the IT2FLSs using these four type-reduction and de-
fuzzification methods, we have the following results on the
monotonicity:

Theorem 8: The IT2 FLSs using the DY, BMM, WT,3 and NT
methods are monotonically increasing w.r.t xk if we have the
following.

1) For any x2
k ≥ x1

k ∈ Xk, 1 ≤ l ≤ m ≤ Nk , we have
μAm

k
(x2

k )μAl
k
(x1

k ) ≥ μAm
k

(x1
k )μAl

k
(x2

k ), where μAm
k

means either μ
Ãm

k

or μÃm
k

, and μAl
k

means either μ
Ãl

k

or

μÃl
k
.

2) wi1 ···ik −1 ik ik + 1 ···ip ≤ wi1 ···ik −1 (ik +1)ik + 1 ···ip for all the
combinations of (i1 , . . . , ik−1 , ik+1 , . . . , ip), where ik =
1, · · · , Nk − 1.

Proof: See Appendix H. �

B. Examples

Two examples illustrating Theorem 8 are presented in
Figs. 12 and 13.

1) Single-Input Example: In this example, the fuzzy rule
base is shown in Table IV, and the MFs of the IT2 FSs in

3As η
ij

j (xj ) is a function of the inputs and is different for different IT2 FSs,
it is quite difficult to prove the monotonicity of the IT2 FLS using the WT

method. Here, we assume that η1
j (xj ) = η2

j (xj ) = · · · = η
N j

j (xj ) = ηj in
the WT method. For the IT2 FLS using the general WT method, the proof of
such a conclusion is still under investigation.
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(a)

(b)

(c)

(d)

Fig. 13. Input–output mappings of the double-input IT2 FLSs using different
type-reduction and defuzzification methods. (a) DY method. (b) BMM method.
(c) WT method (η(x) = 0.5) and the NT method. (d) UB method.

Table IV are also depicted in Fig. 9(a) and (b). The input–output
mappings of the single-input IT2 FLSs using the DY method,
the BMM method, and the WT (NT) method are shown in
Fig. 12(a)–(c), respectively. The left column is for the Trape-
zoidal IT2 FLSs, while the right column is for the Gaussian IT2
FLSs.

2) Double-Input Example: In this example, the fuzzy rule
base is shown in Table V. And, the MFs of the IT2 FSs in Table V
are also depicted in Fig. 9(a) and (b). The input–output mappings
of the double-input IT2 FLSs using the DY method, the BMM
method, and the WT (NT) method are shown in Fig. 13(a)–(c),
respectively. The left column is for the Trapezoidal IT2 FLS,
while the right column is for the Gaussian IT2 FLSs.

From Figs. 12 and 13, we can observe that the input–output
mappings of both the single-input and double-input IT2 FLSs
with different kinds of IT2 FSs are consistent with the conclu-
sions in Theorem 8.

C. Other Type-reduction and Defuzzification Methods

There exist other two type-reduction and defuzzification
methods which have been also widely used in fuzzy modeling
and control.

The first one is the uncertainty bound type-reduction and COS
defuzzification method (UB method) [56]. The formula of the
input–output mapping of the IT2 FLS using the UB method is
so complex that it is quite difficult for us to derive monotonicity
conditions for such FLS. Taking the same rule base and IT2
FSs in the above examples, the input–output mappings of the
single-input and double-input IT2 FLSs using the UB method

are plotted in Figs. 12(d) and 13(d), respectively. In Figs. 12(d)
and 13(d), IT2 FLSs using the UB method seems monotonic.
However, we can not conclude that the derived conditions can
assure the monotonicity of the IT2 FLS using the UB method.
Such an example can be found in the first column of in [57],
Fig. 5(c)]. Therefore, the monotonicity of the IT2 FLS using the
UB method is still an open problem.

Another widely used type-reduction and defuzzification
method is the Coupland–John (CJ) method proposed in [59].
The CJ method is a geometric type-reduction and defuzzifi-
cation method which is used in the Mamdani IT2 FLSs. For
analysis simplicity, only the monotonicity of the TSK IT2 FLS
is considered in this study, therefore; the monotonicity of the
IT2 FLSs using the CJ method is left for our future study.

V. SUMMARY AND DISCUSSIONS

This section first presents the summarization and extension of
our results. Then, guidelines for applying the proposed results to
modeling and control problems are provided. Finally, relation-
ships among monotonicity and other fundamental properties of
IT2 FLSs are discussed.

A. Summarization and Extension to General TSK IT2
Fuzzy Logic System

In Sections II– IV, we have derived the monotonicity condi-
tions for the IT2 FLSs using five kinds of type-reduction and
defuzzification methods. From these results, we can observe
that such conditions are almost the same and only differ in the
consequent parts, which take interval values in the KM method
but crisp values in the other four methods.

In the rule base of the IT2 FLS in Section II-B, if we re-
place the consequent interval of Rule(i1 · · · ip) by yi1 ···ip (x) =
c
i1 ···ip

1 x1 + c
i1 ···ip

2 x2 + · · · + c
i1 ···ip
p xp + c

i1 ···ip

p+1 , then the sim-
plified TSK IT2 FLS becomes general TSK IT2 FLS. Similarly,
for the general TSK IT2 FLS, we have the following conclusion:

Theorem 9: Given the KM method, the DY method, the BMM
method, the WT method, and the NT method, no matter which
one is adopted, the general TSK IT2 FLS is monotonically
increasing w.r.t xk if we have the following.

1) For any x2
k ≥ x1

k ∈ Xk, 1 ≤ l ≤ m ≤ Nk , we have
μAm

k
(x2

k )μAl
k
(x1

k ) ≥ μAm
k

(x1
k )μAl

k
(x2

k ), where μAm
k

means either μ
Ãm

k

or μÃm
k

, and μAl
k

means either μ
Ãl

k

or

μÃl
k
.

2) ∀x ∈ X, yi1 ···ik −1 ik ik + 1 ···ip (x) ≤ yi1 ···ik −1 (ik +1)ik + 1 ···ip

(x) for all the combinations of (i1 , . . . , ik−1 , ik+1 , . . . ,
ip), where ik = 1, . . . , Nk − 1.

Proof: This theorem can be proved in the similar way as
Theorems 1 and 8. In the proof process, we just need to replace
wi1 ···ip by yi1 ···ip (x). �

The derived monotonicity conditions are composed of two
parts: the antecedent part and the consequent part. The an-
tecedent monotonicity conditions are the constraints on the pa-
rameters of the antecedent IT2 FSs of fuzzy rules. The conse-
quent monotonicity conditions are on the consequent parameters
of the fuzzy rules and can be checked easily.
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B. Ordering of T1 and IT2 Fuzzy Sets in the Antecedent
Monotonicity Conditions

From the derived results in Section III, we can observe that
the antecedent parameter conditions in Theorems 3–7 arrange
the antecedent T1 FSs and IT2 FSs in the monotonicity order. In
this section, we explore the relationships between the antecedent
monotonicity conditions and the ordering of T1 and IT2 FSs.

The ordering of T1 FSs defined in [42], [60], and [61] is
considered. For two T1 FSs A and B in F(R) which is the set
of all the convex T1 FSs, the α-level of A and B are denoted
as Aα = [AL

α ,AR
α ] and Bα = [BL

α ,BR
α ]. Then, a fuzzy ordering

A � B exists if AL
α ≤ BL

α and AR
α ≤ BR

α are satisfied for any
α ∈ [0, 1] [42], [60], [61]. From the results in [61], the defined
order � on the set F(R) is a partial order, i.e., it is reflexive,
antisymmetric, and transitive.

We can relate the antecedent conditions in Theorems 3 and 5
to the ordering of T1 FSs as follows: 1) If the Trapezoidal T1
FSs A1 , A2 , . . . , AN in Theorem 3 have the same height, then
A1 � A2 � . . . � AN (see Fig. 3(b) and (c) for examples); and
2) the generalized Gaussian T1 FSs A1 , A2 , . . . , AN in Theorem
5 satisfy that A1 � A2 � . . . � AN (see Fig. 7 for examples).
The proof of this conclusion is straightforward and is omitted
here.

The ordering of IT2 FSs can be obtained by extending the
ordering of T1 FSs. For two IT2 FSs Ã and B̃ in F̃(R) which is
the set of all the convex IT2 FSs, a fuzzy ordering Ã � B̃ exists

if Ã � B̃ and Ã � B̃, where Ã and B̃ denote the lower MFs of

Ã and B̃, Ã and B̃ denote the upper MFs of Ã and B̃. It is easy
to prove that the defined order � on F̃(R) is still a partial order.

The relationship between the antecedent monotonicity con-
ditions in Theorems 4 and 6 and the ordering of IT2 FSs can
be derived as follows: 1) if the lower MFs of the Trapezoidal
IT2 FSs Ã1 , Ã2 , . . . , ÃN in Theorem 4 have the same height,
then Ã1 � Ã2 � . . . � ÃN (see Fig. 4(b) and (c) for exam-
ples); and 2) the generalized Gaussian IT2 FSs Ã1 , Ã2 , . . . , ÃN

in Theorem 6 satisfy that Ã1 � Ã2 � . . . � ÃN (see Fig. 8 for
examples). Again, the proof of this conclusion is omitted.

Besides the predefined ordering of FSs, there are other def-
initions, e.g., the linear orders in [15]. It is valuable to further
explore whether the derived antecedent monotonicity conditions
follow the other fuzzy orders. If so, it is necessary to define the
lattice structure and study its relationship with other orders for
IT2 FSs. This is not the focus of this study, but it will be one of
our theoretical research directions.

C. Application to Modeling Problems: Data-Driven Method

As stated in Section I, monotonicity is meaningful for many
modeling problems. This section will show how to incorporate
monotonicity into IT2 FLSs for modeling applications.

For modeling, we usually use input–output data to con-
struct IT2 FLSs to reflect the input–output mappings of real
systems. Suppose that M input–output data points (x1 , y1),
(x2 , y2), . . . , (xM , yM ) are given. To obtain satisfactory IT2
FLS, we always minimize the following function:

E =
1
2

M∑

i=1

|yo(xi ,Θ) − yi |2 (23)

TABLE VI
CONTROL RULE BASE FOR THE LIQUID LEVEL SYSTEM

where yo(xi ,Θ) is the output of the IT2 FLS, and Θ is the pa-
rameter vector of all the antecedent and consequent parameters
of the IT2 FLS.

When the monotonicity is required, the parameters of
the IT2 FLS should be constrained. From previous theorems,
the constraints on the parameters of the antecedent IT2 FSs and
the consequent interval weights can be rewritten as the following
linear-inequality:

PΘ ≥ 0. (24)

Therefore, constructing monotonic IT2 FLSs for modeling
problems can be realized by solving the following constrained
optimization problem:

{
minΘ

1
2

∑M
i=1 |yo(xi ,Θ) − yi |2

subject to PΘ ≥ 0.
(25)

Based on the previous discussion, we provide the following
guidelines for the design of monotonic IT2 FLS for modeling
problems.

1) Partition the input domains using IT2 FSs. This can be
done intuitively or by clustering algorithms under the con-
ditions in Theorems 3–6.

2) Set initial consequent weights under the second condition
in Theorems 1, 2, 8, and 9.

3) Optimize all or part of the parameters of the IT2 FLS un-
der the first and second conditions in previous theorems.
This can be done by classical constrained nonlinear op-
timization algorithms, e.g., the penalty function method,
or through evolutionary computation algorithms, such as
genetic algorithms, particle swarm algorithms, etc.

D. Application to Control Problems

As mentioned in Section I, in many control problems, the con-
trol signal should be monotonic with respect to the error and/or
the change of error. This section will show how the proposed
monotonicity results can be applied to control problems.

Take the control of a liquid level in a tank for example. As-
sume that the required liquid level is yd and that the real liquid
level is y(t). The error is defined as e = yd − y(t), and the
change of error is denoted as ė. We use the IT2 FLS whose
inputs are e and ė to generate the control signal u. The control
rule base for this application is shown in Table VI.4

From our experience, the larger e and ė are, the greater the
control signal should be. Hence, the output u of the IT2 FLS
should be monotonically increasing w.r.t. e and ė. To ensure
that u is monotonically increasing w.r.t. e, we can set Ne, ZRe ,
and Pe to meet the first condition in the previous theorems and

4In this table, N means Negative, ZR means Zero, and P means positive.
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u1j ≤ u2j ≤ u3j (j = 1, 2, 3). In a similar way, to ensure that
u is monotonically increasing w.r.t. ė, we can set Nė, ZRė ,
and Pė to meet the first condition in the previous theorems and
ui1 ≤ ui2 ≤ ui3 (i = 1, 2, 3). To design sound fuzzy rule base
for the fuzzy controller, the FSs and weights in the rule table
need to comply with such constraints.

E. Other Fundamental Properties of IT2 Fuzzy Logic System

Besides the monotonicity, there are several other fundamental
properties of IT2 FLSs investigated by researchers recently, such
as the continuity, smoothness, adaptiveness, novelty, stability,
and robustness [43], [52], [57], [58], [62]–[68].

In [57], Wu and Mendel have studied the continuity of the
input–output mappings of FLSs, including T1 FLSs and IT2
FLSs. They showed that, to obtain a continuous input–output
mapping, the lower MFs should cover every input domain. An-
other concept related to continuity is smoothness which requires
that both the IT2 FLS and its derivative are continuous. There-
fore, the issue of smoothness is more difficult than the study on
continuity. So far, there are no results to guarantee the smooth-
ness of IT2 FLSs. From Figs. 10–13, we can observe that the
Gaussian FLSs are more smoother than the Trapezoidal FLSs.
However, this fact still needs to be proved theoretically.

As studied in [58] by Wu, adaptiveness and novelty are two
fundamental differences between IT2 FLSs and T1 FLSs. Wu
has also demonstrated that only the IT2 FLSs using the KM
method have the properties of adaptiveness and novelty.

Stability and robustness are another two important theoret-
ical issues for IT2 FLSs, especially for IT2 fuzzy controllers.
There have been many studies on the stability of IT2 FLSs [52],
[62]–[66], whereas only a few researchers have investigated the
robustness of IT2 FLSs [43], [67], [68]. More works need to be
done on the robustness of IT2 FLSs.

These fundamental studies can not only deepen our the-
oretical understanding of IT2 FLSs but guide us to choose
and design appropriate IT2 FLSs for modeling and control
applications as well.

VI. CONCLUSION

In real-world applications, specific physical structure knowl-
edge about systems may be difficult to obtain, but some quali-
tative knowledge (e.g., monotonicity) may be obvious for engi-
neers. Hence, it is quite important for engineers to incorporate
such qualitative knowledge into system design. We have, in

this paper, addressed incorporating the monotonicity property
into IT2 FLSs, and we have presented sufficient monotonicity
conditions on the parameters of IT2 FLSs—the conditions on
the antecedent IT2 FSs and the consequent weights—to ensure
the monotonicity between their inputs and outputs. We have
also provided the guidelines for applying the derived conditions
to modeling and control problems. In our future work, we will
study how to apply the proposed theoretical results to real-world
modeling and control applications.

APPENDIX A

PROOF OF LEMMA 1

We only prove that yn
l (x1) ≤ yn

l (x2), where x1 = (x1 , . . . ,
x1

k , . . . , xp) ≤ x2 = (x1 , . . . , x
2
k , . . . , xp).

Note that

yn
l (x) =

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)wi1 ···ip

∑N1
i1 =1 · · ·

∑Np

ip =1 fi1 ···ip (x)

=

∑N1
i1 =1 · · ·

∑Np

ip =1 wi1 ···ip
∏p

j=1 μ
A

i j
j

(xj )
∑N1

i1 =1 · · ·
∑Np

ip =1
∏p

j=1 μ
A

i j
j

(xj )
(26)

where
∏p

j=1 μ
A

i j
j

(xj ) means either
∏p

j=1 μ
Ã

i j
j

(xj ) or
∏p

j=1 μ
Ã

i j
j

(xj ).

The expression of yn
l (x) can be rewritten, as (27),

shown at the bottom of the page where M =
∏p

j = 1,
j �= k

Nk , v =

v(i1 , . . . , ik−1 , ik+1 , . . . , ip) is a combination of
i1 , . . . , ik−1 , ik+1 , . . . , ip , and αv = αv (i1 ,...,ik −1 ,ik + 1 ,...,ip ) =∏p

j = 1,
j �= k

μ
A

i j
j

(xj ).

Then, we have

yn
l (x2) − yn

l (x1)

=

∑M
s=1 αs ∑Nk

l=1 wslμAl
k
(x2

k )
∑M

s=1 αs
∑Nk

l=1 μAl
k
(x2

k )
−

∑M
t=1 αt ∑Nk

m=1 wtm μAm
k

(x1
k )

∑M
t=1 αt

∑Nk
m=1 μAm

k
(x1

k )

=
1
ε

[
M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m=1

wslμAl
k
(x2

k )μAm
k

(x1
k )

−
M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m=1

wtm μAl
k
(x2

k )μAm
k

(x1
k )

]

(28)

yn
l (x) =

∑N1
i1 =1 · · ·

∑Nk −1
ik −1 =1

∑Nk + 1
ik + 1 =1 · · ·

∑Np

ip =1

[ ∏p

j = 1,
j �= k

μ
A

i j
j

(xj )
∑Nk

ik =1 wi1 ···ip μ
A

i k
k

(xk )
]

∑N1
i1 =1 · · ·

∑Nk −1
ik −1 =1

∑Nk + 1
ik + 1 =1 · · ·

∑Np

ip =1

[ ∏p

j = 1,
j �= k

μ
A

i j
j

(xj )
∑Nk

ik =1 μ
A

i k
k

(xk )
]

=

∑M
v=1 αv

∑Nk

ik =1 wvik μ
A

i k
k

(xk )
∑M

v=1 αv
∑Nk

ik =1 μ
A

i k
k

(xk )
(27)
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where ε =
[ ∑M

s=1 αs
∑Nk

l=1 μAl
k
(x2

k )
][ ∑M

t=1 αt
∑Nk

m=1 μAm
k

(x1
k )

]
> 0.

Consider the following fact:

M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m=1

wtm μAl
k
(x2

k )μAm
k

(x1
k )

=
M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m=1

wsm μAl
k
(x2

k )μAm
k

(x1
k ). (29)

Substituting (29) into (28) leads to

yn
l (x2) − yn

l (x1)

=
1
ε

[ M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m=1

(wsl − wsm )μAl
k
(x2

k )μAm
k

(x1
k )

]

=
1
ε

[ M∑

s=1

M∑

t=1

αsαt
Nk∑

l=1

Nk∑

m= l+1

(wsm −wsl)
(

μAm
k

(x2
k )μAl

k
(x1

k )

− μAl
k
(x2

k )μAm
k

(x1
k )

)]

. (30)

From the first condition, we have

μAm
k

(x2
k )μAl

k
(x1

k ) − μAl
k
(x2

k )μAm
k

(x1
k ) ≥ 0. (31)

From the second condition, for m > l

wsm − wsl ≥ 0. (32)

From (30), (31), and (32), we have yn
l (x2) ≥ yn

l (x1).
In the similar way, we can also obtain that yn

r (x2) ≥ yn
r (x1).

Therefore, this lemma holds.

APPENDIX B

PROOF OF THEOREM 1

To begin, let us consider the following fact: If a1 ≤ b1 , a2 ≤
b2 , . . . , an ≤ bn , then min{a1 , a2 , . . . , an} ≤ min{b1 , b2 , . . . ,
bn}, and max{a1 , a2 , . . . , an} ≤ max {b1 , b2 , . . . , bn}.

From Lemma 1, ∀ x1 = (x1 , . . . , x
1
k , . . . , xp) ≤ x2 =

(x1 , . . . , x
2
k , . . . , xp), we have yn

l (x1) ≤ yn
l (x2) and

yn
r (x1) ≤ yn

r (x2) (n = 1, . . . ,K). Then, from the afore-
mentioned fact, we can derive that

yl(x1) = minK
n=1y

n
l (x1) ≤ minK

n=1y
n
l (x2) = yl(x2) (33)

yr (x1) = maxK
n=1y

n
r (x1) ≤ maxK

n=1y
n
r (x2) = yr (x2). (34)

From (10), (33), and (34), we have

yo(x1) =
1
2
[yl(x1) + yr (x1)]

≤ 1
2
[yl(x2) + yr (x)2 ] = yo(x2) (35)

which means this theorem holds.

APPENDIX C

PROOF OF LEMMA 2

For T1 FS Al , let Sl
1 = {x|x ≤ al}, Sl

2 = {x|al < x ≤
bl}, Sl

3 = {x|bl < x ≤ cl}, Sl
4 = {x|cl < x < dl}, Sl

5 = {x|
x ≥ dl}.

For T1 FS Ar , let Sr
1 = {x|x ≤ ar}, Sr

2 = {x|ar < x ≤
br}, Sr

3 = {x|br < x ≤ cr}, Sr
4 = {x|cr < x < dr}, Sr

5 ={x
|x ≥ dr}.

Denote R1 = Sl
1 ∪ Sr

1 , R2 = Sl
5 ∪ Sr

5 , R3 =Sl
2 ∩ Sr

2 , R4 =
Sl

3 ∩ Sr
2 , R5 = Sl

3 ∩ Sr
3 , R6 = Sl

4 ∩ Sr
2 , R7 = Sl

4 ∩ Sr
3 , and

R8 = Sl
4 ∩ Sr

4 . Note that some Ri may be empty set.
As shown in Fig. 2, the input domain X = R1 ∪ R2 ∪ R3 ∪

R4 ∪ R5 ∪ R6 ∪ R7 ∪ R8 .
1) If x1 or x2 ∈ R1 , then μAr (x1) = 0; as a result,

μAr (x2)μAl (x1) ≥ μAr (x1)μAl (x2).
2) If x1 or x2 ∈ R2 , then μAl (x2) = 0; as a result,

μAr (x2)μAl (x1) ≥ μAr (x1)μAl (x2).
If x1 and x2 do not lie in R1 ∪ R2 , i.e. x1 , x2 ∈

[ar , dl ] = R3 ∪ R4 ∪ R5 ∪ R6 ∪ R7 ∪ R8 , then μAl (x2) > 0
and μAl (x1) > 0. Therefore, in order to prove that
μAr (x2)μAl (x1) ≥ μAr (x1)μAl (x2), we just need to prove the
following equation:

μAr (x2)
μAl (x2)

− μAr (x1)
μAl (x1)

≥ 0, ∀x2 ≥ x1 (36)

which implies that μA r (x)
μ

A l (x) is monotonically increasing w.r.t. x

in [ar , dl ].
Because μAr (x) and μAl (x) are continuous, we only need

to prove that μA r (x)
μ

A l (x) is monotonically increasing w.r.t. x in
R3 , R4 , R5 , R6 , R7 , and R8 , respectively. In any one of these
six regions, μAl (x) and μAr (x) are differentiable. Therefore, in
each region

μAr (x)
μAl (x)

is monotonically increasing

⇔ d

dx

(
μAr (x)
μAl (x)

)

≥ 0

⇔ dμAr (x)
dx

μAl (x) − dμAl (x)
dx

μAr (x) ≥ 0.

From the previous discussion, when x ∈ [ar , dl ], to prove
that μAr (x2)μAl (x1) ≥ μAr (x1)μAl (x2), we just need to de-

rive that dμA r (x)
dx μAl (x) − dμ

A l (x)
dx μAr (x) ≥ 0 in each region

Ri (i = 3, 4, 5, 6, 7, 8).
3) In the region R3 = Sl

2 ∩ Sr
2 , we have

dμAr (x)
dx

μAl (x) − dμAl (x)
dx

μAr (x)

=
hr

br − ar

hl(x − al)
bl − al

− hl

bl − al

hr (x − ar )
br − ar

=
hrhl [ar − al ]

(br − ar )(bl − al)
. (37)

Since al ≤ ar , ar < br and al < bl , we can conclude that
dμA r (x)

dx μAl (x) − dμ
A l (x)
dx μAr (x) ≥ 0.
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4) In the regions R4 , R5 , R6 , R7 , we have

In each region, dμA r (x)
dx ≥ 0 and

dμ
A l (x)
dx ≤ 0. Consequently,

dμA r (x)
dx μAl (x) − dμ

A l (x)
dx μAr (x) ≥ 0.

5) In the region R8 = Sl
4 ∩ Sr

4 , we have

dμAr (x)
dx

μAl (x) − dμAl (x)
dx

μAr (x)

=
hr

cr − dr

hl(x − dl)
cl − dl

− hl

cl − dl

hr (x − dr )
cr − dr

=
hrhl [dr − dl ]

(cr − dr )(cl − dl)
. (38)

Since dl ≤ dr , cr < dr and cl < dl , we can conclude that
dμA r (x)

dx μAl (x) − dμ
A l (x)
dx μAr (x) ≥ 0.

From the previous discussions, this lemma holds.

APPENDIX D

PROOF OF THEOREM 4

To begin, consider the following fact existing in the definition:
For the Trapezoidal IT2 FS μÃ (x) = μÃ (x, a, b, c, d, a, b, c,

d, h), its parameters satisfy that a ≤ a, b ≤ b, c ≤ c, d ≤ d.
To prove this theorem, we just need to consider the following

four cases.
Case 1: μAm = μ

Ãm and μAl = μ
Ãl .

From the parameter constraints and the condition that al ≤
am , bl ≤ b

m
, cl ≤ cm , d

l ≤ dm , we obtain al ≤ am , bl ≤
bm , cl ≤ cm , dl ≤ dm . Then, from Lemma 2, we have
μ

Am (x2)μ
Al (x1) ≥ μ

Am (x1)μ
Al (x2) for any x2 ≥ x1 ∈ X .

Case 2: μAm = μ
Ãm and μAl = μÃl .

From the parameter constraint and the condition that al ≤
am , bl ≤ b

m
, cl ≤ cm , d

l ≤ dm , we obtain al ≤ am , b
l ≤

bm , cl ≤ cm , d
l ≤ dm . Then, from Lemma 2, we have

μ
Am (x2)μAl (x1) ≥ μ

Am (x1)μAl (x2) for any x2 ≥ x1 ∈ X .
Case 3: μAm = μÃm and μAl = μ

Ãl .
From the parameter constraint and the condition that al ≤

am , bl ≤ b
m

, cl ≤ cm , d
l ≤ dm , we obtain al ≤ am , bl ≤

b
m

, cl ≤ cm , dl ≤ d
m

. Then, from Lemma 2, we have
μAm (x2)μ

Al (x1) ≥ μAm (x1)μ
Al (x2) for any x2 ≥ x1 ∈ X .

Case 4: μAm = μÃm and μAl = μÃl

From the parameter constraint and the condition that al ≤
am , bl ≤ b

m
, cl ≤ cm , d

l ≤ dm , we obtain al ≤ am , b
l ≤

b
m

, cl ≤ cm , d
l ≤ d

m
. Then, from Lemma 2, we have

μAm (x2)μAl (x1) ≥ μAm (x1)μAl (x2) for any x2 ≥ x1 ∈ X .

APPENDIX E

PROOF OF LEMMA 3

For T1 FS Al , let Sl
1 = {x|x ≤ al}, Sl

2 = {x|al < x ≤
bl}, Sl

3 = {x|x > bl}.
For T1 FS Ar , let Sr

1 = {x|x ≤ ar}, Sr
2 = {x|ar < x ≤

br}, and Sr
3 = {x|x > br}.

Denote R1 = Sl
1 ∩ Sr

1 , R2 = Sl
2 ∩ Sr

1 , R3 =Sl
2 ∩ Sr

2 , R4 =
Sl

3 ∩ Sr
1 , R5 = Sl

3 ∩ Sr
2 , and R6 = Sl

3 ∩ Sr
3 . For some cases,

some Ris may also be empty sets.

As shown in Fig. 6, the input domain X = R1 ∪ R2 ∪ R3 ∪
R4 ∪ R5 ∪ R6 . In any one of these six regions, μAl (x) and
μAr (x) are continuous and differentiable. Consequently, from
the discussion in the proof of Lemma 2 in Appendix C, to prove
that μAr (x2)μAl (x1) ≥ μAr (x1)μAl (x2) for any x2 ≥ x1 is

equivalent to showing that dμA r (x)
dx μAl (x) − dμ

A l (x)
dx μAr (x) ≥

0 in each region.
1) x ∈ R1 = Sl

1 ∩ Sr
1 .

dμAr (x)
dx

μAl (x) − dμAl (x)
dx

μAr (x)

=
−hr (x − ar )μAr (x)

(σr )2 μAl (x) − −hl(x − al)μAl (x)
(σl)2 μAr (x)

=
μAr (x)μAl (x)[(σr )2hl − (σl)2hr ]x

(σr )2 ∗ (σl)2

+
μAr (x)μAl (x)[(σl)2hrar − (σr )2hlal ]

(σr )2 ∗ (σl)2 . (39)

Since al ≤ ar and (σr )2hl = (σl)2hr , we can conclude that
dμA r (x)

dx μAl (x) − dμ
A l (x)
dx μAr (x) ≥ 0.

2) In the regions R2 , R3 , R4 , and R5 , we have

In each region, dμA r (x)
dx ≥ 0 and

dμ
A l (x)
dx ≤ 0. Consequently,

dμA r (x)
dx μAl (x) − dμ

A l (x)
dx μAr (x) ≥ 0.

3) x ∈ R6 = Sl
3 ∩ Sr

3 .

dμAr (x)
dx

μAl (x) − dμAl (x)
dx

μAr (x)

=
−hr (x − br )μAr (x)

(σr )2 μAl (x) − −hl(x − bl)μAl (x)
(σl)2 μAr (x)

=
μAr (x)μAl (x)[(σr )2hl − (σl)2hr ]x

(σr )2 ∗ (σl)2

+
μAr (x)μAl (x)[(σl)2hrbr − (σr )2hlbl ]

(σr )2 ∗ (σl)2 . (40)

Since bl ≤ br and (σr )2hl = (σl)2hr , we can conclude that
dμA r (x)

dx μAl (x) − dμ
A l (x)
dx μAr (x) ≥ 0.

From the previous discussions, this lemma holds.

APPENDIX F

PROOF OF THEOREM 6

To begin, consider the following fact in the definition: for the
generalized Gaussian IT2 FS μÃ (x) = μÃ (x, a, b, a, b, σ, σ, h),
its parameters satisfy that a ≤ a, b ≤ b, σ ≤ σ.

Again, to prove this theorem, we just need to prove the fol-
lowing four cases.

Case 1: μAm = μ
Ãm and μAl = μ

Ãl

From the parameter constraints and the condition that

al ≤ am , b
l ≤ bm , σl = σm = σ, hl = hm , we obtain al ≤

am , bl ≤ bm , (σm )2hl = (σl)2hm . Then, from Lemma 3, we
have μ

Am (x2)μ
Al (x1) ≥ μ

Am (x1)μ
Al (x2) for any x2 ≥ x1 ∈

X .
Case 2: μAm = μ

Ãm and μAl = μÃl .

From the condition that al ≤ am , b
l ≤ bm , σl = σm =

σ, σl = σm = σ, hm = σ 2

σ 2 and the fact that the height of μÃl
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is 1, we obtain al ≤ am , b
l ≤ bm , (σm )2 ∗ 1 = (σl)2hm . Then,

from Lemma 3, we have μ
Am (x2)μAl (x1) ≥ μ

Am (x1)μAl (x2)
for any x2 ≥ x1 ∈ X .

Case 3: μAm = μÃm and μAl = μ
Ãl .

From the condition that al ≤ am , b
l ≤ bm , σl = σm =

σ, σl = σm = σ, hl = σ 2

σ 2 and the fact that the height of μÃm

is 1, we obtain al ≤ am , bl ≤ b
m

, (σm )2hl = (σl)2 ∗ 1. Then,
from Lemma 3, we have μAm (x2)μ

Al (x1) ≥ μAm (x1)μ
Al (x2)

for any x2 ≥ x1 ∈ X .
Case 4: μAm = μÃm and μAl = μÃl .

From the condition that al ≤ am , b
l ≤ bm , σl = σm and the

fact that the heights of μÃm and μÃl are 1, we obtain al ≤
am , b

l ≤ b
m

, (σm )2 ∗ 1 = (σl)2 ∗ 1. Then, from Lemma 3, we
have μAm (x2)μAl (x1) ≥ μAm (x1)μAl (x2) for any x2 ≥ x1 ∈
X .

APPENDIX G

PROOF OF THEOREM 7

As Ã1 , Ã2 , · · · , ÃN satisfy the first condition in Theorem 1,
then, ∀x2 ≥ x1 ∈ X, m ≥ l, we have

μ
Ãm (x2)μ

Âl (x
1) ≥ μ

Ãm (x1)μ
Ãl (x

2) (41)

μ
Ãm (x2)μÃl (x1) ≥ μ

Ãm (x1)μÃl (x2) (42)

μÃm (x2)μ
Ãl (x

1) ≥ μÃm (x1)μ
Ãl (x

2) (43)

μÃm (x2)μÃl (x1) ≥ μÃm (x1)μÃl (x2). (44)

Then

μAm (x2)μAl (x1)

=[(1−η)μÃm (x2)+ημ
Ãm (x2)]∗[(1−η)μÃl (x1)+ημ

Ãl (x
1)]

= (1 − η)2μÃm (x2)μÃl (x1) + η(1 − η)μÃm (x2)μ
Ãl (x

1)

+ η(1 − η)μ
Ãm (x2)μÃl (x1) + η2μ

Ãm (x2)μ
Ãl (x

1)

≥ (1 − η)2μÃl (x2)μÃm (x1) + η(1 − η)μÃl (x2)μ
Ãm (x1)

+ η(1 − η)μ
Ãl (x

2)μÃm (x1) + η2μ
Ãl (x

2)μ
Ãm (x1)

=[(1−η)μÃm (x1)+ημ
Ãm (x1)]∗[(1−η)μÃl (x2)+ημ

Ãl (x
2)]

= μAm (x1)μAl (x2). (45)

Therefore, the first condition in Theorem 2 can be met. Hence,
this theorem holds.

APPENDIX H

PROOF OF THEOREM 8

A. Proof of the Monotonicity of IT2 Fuzzy Logic System Using
the Du-Ying Method

From Lemma 1, ∀x1 =(x1 , . . . , x
1
k , . . . , xp) ≤ x2 =(x1 , . . . ,

x2
k , . . . , xp), we have yn (x1) ≤ yn (x2) (n = 1, · · · ,K). Then,

we can derive that

yo(x1) =
1
K

K∑

n=1

yn (x1) ≤ 1
K

K∑

n=1

yn (x2) = yo(x2). (46)

B. Proof of the Monotonicity of IT2 Fuzzy Logic System Using
the Begian–Melek–Mendel Method

From Lemma 1, ∀ x1 = (x1 , . . . , x
1
k , . . . , xp) ≤ x2 =(x1 ,

. . . , x2
k , . . . , xp), we have y1(x1) ≤ y1(x2) and yK (x1) ≤

yK (x2). Then, we can derive that

yo(x1) = αy1(x1) + βyK (x1)

≤ αy1(x2) + βyK (x2) = yo(x2). (47)

C. Proof of the Monotonicity of IT2 Fuzzy Logic System Using
the Wu–Tan Method

From the assumption that η1
j (xj ) = η2

j (xj ) = · · · =
η

Nj

j (xj ) = ηj , we can conclude that the input–output mapping
of the IT2 FLS using the WT method is equal to input–output
mapping of the T1 FLS whose antecedent T1 FSs are obtained
as

μ
A

i j
j

(xj ) = (1 − ηj )μÃ
i j
j

(xj ) + ηjμÃ
i j
j

(xj ), j = 1, . . . , p.

(48)
As the antecedent IT2 FSs for the kth input variable satisfy

the first condition in Theorem 1 and η1
k (xk ) = η2

k (xk ) = · · · =
ηNk

k (xk ) = ηk , from Theorem 7, the embedded T1 FSs satisfy
the first condition in Theorem 2.

From Theorem 2, the equivalent T1 FLS is monotonically
increasing w.r.t xk , which means that the IT2 FLS using the WT
method is also monotonically increasing w.r.t xk .
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