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Abstract Hand gesture recognition is one of the most nat-
ural and intuitive ways to communicate between people
and machines, since it closely mimics how human inter-
act with each other. This paper presents a novel method for
real-time markerless hand gesture recognition from depth
images. The proposed method encompasses a collection
of techniques that enable the detection, segmentation and
recognition of hand gestures. A Hand detection and location
method is employed using the depth information acquired
from a depth sensor. Then, the hand is robustly segmented in
cluttered background without any marker around. A convex
shape decomposition method based on Radius Morse func-
tion is proposed for hand shape decomposition in real-time.
Hand palm, fingertips and hand skeleton are recognized
based on the hand shape decomposition and hand features.
Moreover, we present a method for recognition of two-hand
gestures. Representative experimental results demonstrate
qualitatively and quantitatively that accurate hand gesture
recognition can be achieved for real-time applications.

Keywords Hand gesture recognition · Depth image ·
Convex shape decomposition · Skeleton extraction

1 Introduction

The problem of efficient and accurate recognition of hand
gesture is theoretically interesting and challenging. Real-
time hand gesture recognition affords users the ability to
interact with computers in more natural and intuitive ways.
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Thus, it is fully used in virtual reality and computer games
[1]. Conventional hand gesture recognition systems detect
and segment hands based on the methods including employ-
ing color gloves [2], and skin color detection [3–7], both
of which have advantages and drawbacks. Other hand ges-
ture recognition systems detect and segment hands using
marker-aided methods [2, 8]. However, these methods are
inconvenient compared with markerless vision based solu-
tions. The key problem in gesture interaction is how to make
hand gesture understood by computers. Extra instruments
or sensors, such as data gloves, might be very easy to col-
lect hand state information. However, these equipments are
expensive and inconvenient to users. Thus, markerless and
vision based hand gesture interaction has many appealing
advantages.

Since Lindberg [9] published his work on scale-space
framework for geometric features detection, scale-space
feature detection has been widely applied in object recog-
nition, image processing and registering etc. Bretzner et al.
[3] and Fang et al. [10, 11] have employed scale-space fea-
ture detection method to detect blob and ridge structures
of a hand. Both of them define palm and fingers as blob
and ridges. However, the scale space feature detection is
time-consuming for real-time applications. Moreover, it is
difficult for this method to perform in cluttered background
because shapes that are similar to palm and fingers in back-
ground might interfere with the detection results. Although
Fang et al. [11] improves the detection method to reduce the
computational cost for real-time application, the accuracy of
recognition results is decreased.

A significant amount of literature has been devoted to
the problem of skin color detection and segmentation [3,
4, 7]. Lee et al. [7] use skin color segmentation for hand
AR (Augmented Reality), which requires a high accu-
racy of hand contours. They employ a skin color based
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Figure 1 Graphical illustration of the proposed hand detection and
segmentation method. a The rough hand region; b The binary region
of (a); c The segmentation threshold d1 and d2; d The two parts of the

rough hand region; e Distance Transform of d. In f, c0 and c1 demon-
strate the centers of the two parts. The line perpendicular to c0c1 is the
cut line. g presents the final hand shape after cutting.

classifier with an adaptively learned skin color histogram.
But this method needs a lot of training samples. Argyros et
al. [4] select a special color space to reduce the effect caused
by background and illumination. Moreover, a technique is
proposed that permits the avoidance of much of the burden
involved in the process of generating training data in their
work.

Depth imaging technology has advanced dramatically
over the last few years. Depth cameras offer several advan-
tages over traditional intensity sensors, working in low
light levels, being color and texture invariant and resolv-
ing silhouette ambiguities in pose [12]. Thanks to the recent
development of inexpensive depth cameras, such as Kinect
sensor, new opportunities for gesture recognition emerge.
Although there are many successful applications for human
body tracking [12] and face recognition [13], it is still an
challenge to use the low-resolution depth map for hand ges-
ture recognition. A robust hand gesture recognition system
using Kinect depth map is developed and used in some
applications successfully [8]. However, the user need to
wear a black belt, which is inconvenient. Another research
on 3D tracking of hand articulations using Kinect [14]
presents a good work on modeling a hand, but they seg-
ment the hand using skin color method, which can be easily
confused by face, bared arm and skin-liked objects. Real-
time human pose recognition from single depth images is
proposed in [12]. They present a new method to predict

Figure 2 a Height based Morse function of a hand gesture; b The
Reeb Graph.

3D positions of body joints from a single depth image with
training data, which proves the practical applicability of
depth information. Another type of tracking and recognition
method is based on time-of-flight (ToF) camera. By employ-
ing a ToF camera, a system, which is capable of recognizing
gestures at the finger level in real-time, is constructed
in [15–17]. A method for human full-body pose estima-
tion from ToF camera images is presented in [18]. Their
method can track various full-body movements, including
self-occlusions and estimate 3D full-body poses with a high
accuracy. However, the method based on ToF camera is hard
to provide an accurate result on hand gesture recognition
because of its low-resolution. The original depth data from
depth sensor, such as Kinect, contains a numerous occlu-
sions and uncovered areas due to the nature of the device
and environments. Several studies try to inpaint a low-
resolution depth image to achieve an qualified depth map
[19, 20].

This paper presents a novel method that segments hand
precisely based on depth information without any marker.
With the help of depth map filtering, an qualified hand con-
tour is available in real-time. Then, a new robust hand recog-
nition method is proposed. Our hand recognition method is
based on approximate convex shape decomposition which
is very useful in some graphics and vision tasks. The
method is well designed for real-time applications com-
pared with the conventional convex shape decomposition

Figure 3 a Radius based Morse function of a hand gesture; b The
Reeb Graph.
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Figure 4 Shape decomposition results with two different parameters (λ employed to specify the central point o and the threshold of shape
concavity ε). a is the original shape contour. b, c, d, e are decomposition results with different parameters where the black circle denotes the
Morse function center.

which is time-consuming. By employing this shape decom-
position method, the hand is decomposed to palm and
fingers, which are useful for gesture recognition. Fingertips
are detected using a smart method with the finger shapes
acquired from the decomposition. We provide a method
for hand skeleton extraction, which is successfully used for
single hand and two-hand gestures recognition. A simple
hand gesture dataset is collected to test the efficiency and

accuracy of our method. Initial results of this work have
been presented in [21]. The better experiment results reveal
that the employed method is very efficient.

The rest of the paper is organized as follows. In Section 2
we present the method for hand detection and segmentation.
Section 3 explains in detail the hand shape decomposition
and representation approaches. In Section 4, the proposed
two-hand gesture recognition method are demonstrated.

Figure 5 Hand shape decomposition. a The color images of some
hand gestures. The color images are only used for a better view of
the decomposition results. b The binary hand maps obtained using

the proposed hand detection and segmentation methods. c Hand
shape decomposition results. d The convex graphs of these hand
shapes.
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Figure 6 Fingertips detection results. The black circles are the detected fingertips.

Experiments and test results of the hand shape decom-
position and the hand gesture recognition are shown in
Section 5. Section 6 presents the main conclusions of this
work.

2 Hand Detection and Segmentation

The proposed hand detection scheme consists of three steps:
foreground segmentation, palm localization and hand seg-
mentation. We make several assumptions on hand gesture.
First, we assume the hand is the nearest object to the camera.
Second, we assume the distance between hand and cam-
era is in the range [0.5, 3.5] in meters. Third, we assume
the angles between hand and camera plane are constrained
by: −20◦ � αx � 20◦,−20◦ � αy � 20◦,−180◦ �
αz � 180◦, where (αx, αy, αz) are the three rotation angles
between palm plane and camera plane. It starts with thresh-
olding the depth frame to obtain the foreground F . F is
given by:

F = {(p, z (p)) |z (p) < z0 + zD} , (1)

where (p, z (p)) denotes the pixel in the depth image at cor-
dinate p with value z (p), z0 is the minimal value of the
depth image and zD is a threshold. We set zD = 100mm

to ensure that the whole hand region is extracted from the
depth frame. The detection result of the rough hand region
is shown in Fig. 1a and b. In order to detect a more precise
hand shape, we define another two thresholds d1 and d2 as
shown in Fig. 1c, where d1 + d2 = zD . Experimentally, we
set d1 = 70mm, d2 = 30mm. Then, the rough hand region
is segmented into two parts described in Fig. 1d. Distance
Transform operation is employed to calculate the distance
map of each part, which is shown in Fig. 1e. The point with
maximum distance is selected as the center of each part.
We define Rin (x, y) and Rout (x, y) as the input and output
regions of hand; define l (x, y) as the cut line function. The
accurate hand region is computed employing the following
rule:

Rout (x, y) = l (x, y) < 0 ∩ Rin (x, y) . (2)

In detail, Rin (x, y) denotes the hand region before segmen-
tation (coarse hand region); Rout (x, y) is the accurate hand

Figure 7 Skeleton Extraction results. The skeleton of each hand shape is denoted as black line segments.
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Figure 8 Some hand shapes
with same number of
components but different
skeletons.

region; l (x, y) < 0 is the half plane segmented by l. So,
the Rout (x, y) is the overlap region of l (x, y) < 0 and
Rin (x, y). Thus a more precise hand region is detected, as
shown in Fig. 1g. The cut line l is a line perpendicular to the
line segment c0c1. Then c0c1 is cut into two parts. Exper-
imentally, the intersection point of l and c0c1 is set to the
midpoint of c0c1. Thus, given the two points c0 and c1, the
cut line l is easy to compute. In Fig. 1f, c0 and c1 demon-
strate the centers of the two parts; the line perpendicular to
c0c1 is the cut line l.

Due to the nature of the depth sensor, the hand region
on the depth map may be have holes and cracks, which will
seriously affect the accuracy of hand shape decomposition.
Although some inpainting and filtering methods [20, 22, 23]
are able to get a better result, the algorithms are usually
too complex to be used in real-time applications. We just
employ some simple morphological operations to achieve
an qualified result.

3 Hand Shape Decomposition and Representation

Shape decomposition and representation is very useful
in shape analysis, shape matching, topology extraction,
collision detection and other geometric processing meth-
ods employing divide-and-conquer strategies [24]. Lien
et al. [25] propose methods to decompose polygons into
approximately convex parts. Their methods usually result
in smaller number of parts. Mi et al. [26] present meth-
ods to decompose shapes taking into account relativ-
ity to determine part boundaries and achieve a better
result. These methods are usually complicated and time-
consuming.

3.1 Radius Based Convex Shape Decomposition

We now present our main idea about convex shape decom-
position. Our method is inspired by the convex shape
decomposition idea [24], which employs the Reeb graph
and Morse functions to compute candidate cuts. However,
their algorithms compute multiple Morse functions from
a number of directions, which is inefficient. As proposed
in [24], each decomposed part may not be strictly convex,
thus a parameter ε which indicates the convex tolerance of
the decomposed parts is defined. Formally, for a shape S,
R (S, ε) is defined as a decomposition that the concavity of
every decomposed part is no more than ε. So, R (S, ε) =
∪n

i=1Pi , ∀i �=jPi ∩ Pj = ∅ and ∀i�nConcavity (Pi) � ε,
where n is the number of decomposed parts, Pi is a decom-
posed part and the degree of its concavity is denoted by
Concavity (Pi).

The Concavity (Pi) is measured by projecting the shape
contour in multiple Morse functions, which is obtained by
changing the projecting direction. As shown in Fig. 2a,
Morse function f : M → S, is constructed using the
Height Function. In Fig. 2b the Reeb graph is determined
by the changes in the number of connected components
of Morse function f−1. The Reeb graph has three nodes,
which reflects partial topological information of the shape
in Fig. 2a. However, multiple Morse functions must be com-
puted because the topological information of the shapes is
assumed to be unknown to users. This is similar to brute
force computing. In order to better use this method on hand
shape decomposition, a new Morse function is proposed as
shown in Fig. 3a. The new Morse function f is constructed
as follows: for every point p in this object, f (p) is the dis-
tance between the point p and the central point o, thus called

Figure 9 Hand segmentation
evaluation. a Accuracy with
changing d1. b Accuracy with
changing ratio r .
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Figure 10 Single hand gesture test samples. For each hand gesture, hand contour and skeleton are described. A hand shape decomposition result
is combined with each hand.

Radius Function. Same as the Height based Morse function,
the Reeb graph is shown in Fig. 3b. The radius based Morse
function is efficient in hand shape decomposition due to
the fact that only one Morse function is computed for the
decomposition when the central point o is specified. The
feasibility of radius based Morse function is based on the
topological information of the hand, which is already known
to users. As we know, the topological structure of a hand can
be defined as a palm and some fingers which are outward
around the palm. Moreover, the angle of any two fingers is
less than π .

3.2 Candidate Cuts

In order to solve the problem ∀i�nConcavity (Pi) � ε,
candidate cuts that can separate a shape S with
Concavity (Si) > ε, are employed. The way to find a
shape Si with Concavity (Si) > ε is to use the Reeb graph
constructed from Radius based Morse function f . The cuts

between adjacent nodes of the Reeb graph are all candidate
cuts. All the n candidate cuts of a shape S form a candidate
cut set, denoted by C (S) = {cut1, · · · , cutn}. The final
decomposition consists of a subset of C (S), denoted by
I (S) ⊆ C (S). A binary variable is assigned to each cuti in
C (S), as is shown:

xi =
{

1 cuti ∈ I (S)

0 cuti /∈ I (S)
(3)

Thus x = (x1, x2, · · · , xn)
T is a binary vector indicat-

ing the selectivity of cuts from C (S). Each is assigned a
value to weight the cost of the cut, denoted by w (cuti).
Define w = (w (cut1) , w (cut2) , · · · , w (cutn))

T, thus a
decomposition problem is translated in to a integer linear
programming. We use the same method proposed in [24] to
solve the programming problem:

min wTx xi ∈ {0, 1} (4)

Figure 11 Two-hand gesture test samples. For each two-hand gesture, hand contours and skeletons are described. Hand shape decomposition
result is combined with each hand.
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For a given cut cuti , w (cuti) is defined as function (4):

w (cuti) = length (cuti)

dist (cuti , o) − r
(5)

where length (cuti) is the length of cuti , dist (cuti , o) is
the distance between central point o and cuti , r is the palm
radius calculated by Distance Transform of the shape. The
central point o is specified when the accurate hand region is
segmented. As shown in Fig. 1f, c0, c1 are two centers. Thus
o is calculated as following:

c0o = λ · c0c1 0 < λ < 1 (6)

Thus, The procedure of radius based convex shape decom-
position method is summarized as Algorithm 1.

Algorithm 1: Radius Based Convex Shape Decompo-
sition
Input: A Shape S
Output: Final cut set I (S)
Compute central point o;
Compute Morse Function and Reeb Graph;
Compute candidate cut set C(S);
Define n as the size of C(S);
for i = 0; i < n ; i = i + 1 do

Compute w (cuti );
Check whether cuti intersects with already
checked cuts;

Solve the linear programming problem (4) ;
Obtain final cut set I (S).

3.3 Hand Shape Decomposition

The proposed shape decomposition method is very useful,
at least in two applications. First, it’s right for shape rep-
resentation. After decomposition, since every decomposed
part is approximately convex, it can be approximately repre-
sented by its convex hull; thus, a compact representation of
original object is obtained. Such representation captures not
only all the important topological information, but also all
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Figure 13 Recognition accuracy with changing concavity.

the important geometric information of the original object.
Second, it’s easy to extract the topology of the shape. After
decomposition, if we regard each part as a node and two
nodes have an edge if and only if they are adjacent, a graph,
named convex graph [24], is obtained. Convex graph cap-
tures all important topological information of the shape,
which is useful in pattern recognition.

To use the aforementioned algorithm for hand shape
decomposition, two parameters ε and λ are specified. ε is
the threshold of shape concavity, λ is the parameter to spec-
ify the central point o. Figure 4 shows the results of shape
decomposition with different central point and shape con-
cavity. In Fig. 4b, c, d use the same threshold of shape
concavity ε = 10, and (e) ε = 4. The final parameters
are set based on a large number of experiments. With a set
of proper parameters, hand shapes extracted from real envi-
ronments using depth camera are correctly separated with
different colors as shown in Fig. 5c. In Fig. 5, row (a) is
the color images used for a better view of the hand ges-
tures; row (b) is binary images obtained by the proposed
hand detection and segmentation methods using depth infor-
mation; row (d) presents the convex graphs of these hand
shapes.

3.4 Fingertips Detection

Fingertips are detected from the result of the hand shape
decomposition. From the shape decomposition the fingers

Figure 12 Gesture definition.
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Table 1 Recognition results of the gestures for single hand performance.

Gesture Left Up Right Down B-right B-left T-left T-right All

Total 215 233 242 236 262 271 277 282 2018

Correct 203 213 227 218 237 254 245 243 1840

Accuracy 0.944 0.914 0.938 0.924 0.905 0.937 0.884 0.865 0.912

and palm are easy to find. The decomposed shape with hand
center is a palm shape and others are finger shapes. For a fin-
ger shape Sf , there is a corresponding cut denoted as cuti .
The fingertip point ttip is defined as:

ttip = {
tj |max dist

(
cuti, tj

)
, tj ∈ Sf

}
(7)

which means that the fingertip is the point on the fin-
ger shape with the maximum distance against the cut line.
Then, we define T (S) as the fingertips set of a shape
S. The validity of this method is based on the convex-
ity of the finger shape and the topological structure of a
hand. The fingertips detection results are shown in Fig. 6,
where the red contours are the recognized hand shape con-
tours, the green circles are the hand palm centers and the
black circles denote the detected fingertips in each hand
shape.

Each of the fingers has unique functional significance.
From the thumb on the radial side to the ulnar side of
the hand, the fingers are in this order: Thumb, Index fin-
ger, Middle finger, Ring finger, Little finger. With the
fingertips detection above, the number of fingers is easy
to obtain. If the number of fingers is 5, we only need
to find the Thumb or Little finger. But it’s hard to rec-
ognize the significance of each finger because some of
the hand gesture shapes are approximately symmetric.
So, the number and positions of fingers should be taken
into consideration when defining hand gestures to avoid
ambiguity.
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Figure 14 Recognition accuracy with changing αx and αy separately.

3.5 Skeleton Extraction

Skeleton can be viewed as a compact shape representation
in that the shape can be completely reconstructed from the
skeleton [27]. Some methods have been proposed for skele-
ton applications, such as human motion tracking [28] and
graph matching [29]. Although we have obtained the shape
decomposition result and its convex graph, they are not
enough to recognize complex gestures. Thus, shape skele-
ton is a good choice to help represent the hand gestures.
The proposed skeleton extraction method is based on the
results of shape decomposition and fingertips detection. For
a hand gesture shape S, we define cb as the base point of
this shape. cb is the intersection point of cut line l and line
segment joining the two points c0 and c1, which is shown in
Fig. 1f. Then, we connect the two points cb and c0. It is the
first skeleton fragment of the shape. With the final cut set
I (S), it’s easy to obtain the midpoint of each cut line seg-
ment cuti , defined as pi . And the midpoint set of a shape
S is defined as H (S). Thus, the line segment connecting
pi and the corresponding fingertip is a skeleton fragment.
Finally, we connect the hand center point c0 to each of the pi

in H (S). In this way, we simplify a shape skeleton as a set
of line segments. We add direction to each line segment of
the skeleton. Then skeleton becomes a vector set. Thus, for
a shape S, the skeleton K (S) is hierarchically defined as:

K (S) = {cbc0} ∪ {c0pi|pi ∈ H (S)}
∪ {piti|pi ∈ H (S) , ti ∈ T (S)} (8)
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Figure 15 Recognition accuracy with changing distance.
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Figure 16 The confusion matrix of the testing results.

A few skeleton extraction results are shown in Fig. 7,
where the black line segments plot the skeleton of each
shape. Using this skeleton representation method, gesture
recognition is simplified as distance measure between the
gesture skeleton and predefined gesture template skeletons.
In Fig. 8a, each of the three hand shapes is decomposed
into 4 parts, but they are defined as different gestures. So,
skeleton distance is employed to distinguish them. To cal-
culate the distance between two skeletons, we encode each
vector in the skeleton vector set based on the vector direc-
tion to achieve invariance to translation and scale. Then, the
distance is easy to obtain. In the case shown in Fig. 8b, we
assume they signify the same gesture.

4 Two-Hand Gesture Recognition

Two-hand gesture recognition is an extension of single hand
gesture recognition. The number of gestures made by a hand
is limited as we know, so two-hand gestures have a lot of
room to develop. Moreover, using both hands is a more nat-
ural way for people to interact with computers. Two-hand
gesture contains not only the gesture message of each hand,
but also the relative relationship such as relative positions.
First, we assume that the two hands are the nearest object to
the camera. Second, the two hands cannot overlap with each
other from the camera view. Third, the average depth differ-
ence within two hands is less than a threshold zM = 30 mm.
Based on these assumptions, the depth image is divided into

two parts, each of which contains a hand region. In detail,
the foreground F is given by:

F = {(p, z (p)) |z (p) < z0 + zD + zM} (9)

which is similar to (1). The foreground F contains two main
parts due to the assumptions above. Then, we find the cen-
tral point of each part using distance transform method. A
cut line based on the two central points is used to cut the
original depth image into two parts. Finally, we use the pro-
posed hand detection and segmentation method, combined
with the hand shape decomposition approach, to deal with
each part.

5 Experiments

5.1 Hand Segmentation

To evaluate the hand segmentation method proposed in
this work, the accuracy of hand shape decomposition is
employed to demonstrate the quality of segmentation. This
is due to that high quality of segmentation brings accurate
decomposition result. First, we test the two thresholds d1

and d2 (see Section 2). Because we set d1 + d2 = 100mm,
we just need to test one of the two thresholds. Figure 9a
presents the accuracy with changing d1. Then, we test the
cut line l defined in Section 2. Define cx as the intersection
point of l and c0c1. The ratio r = |c0cx||c0c1| is used to determine
the line l. The test result is shown in Fig. 9b. So, the config-
uration of d1 = 70mm and r = 0.5 is the best choice and
retained in all further experiments. It should be noted that r

is set to 0.5 in Fig. 9a and d1 = 70 mm is used in Fig. 9b.

5.2 Shape Decomposition and Skeleton Representation

To assess the validity of our approach, we use real-world
depth image sequences obtained by a Kinect sensor to
test the proposed hand shape decomposition method and
skeleton representation method. Real-world depth image
sequences are employed to assess shape decomposition and
skeleton representation. Some test results are shown in
Fig. 10, where hands are correctly decomposed and skele-
ton of each hand is denoted as black line segments. Then,
two-hand gesture recognition from real-world depth images

Table 2 Comparative testing results of the method in [8] and proposed method.

Method Accuracy Running Time

Thresholding Decomposition + FEMD in [8] 90.6 % 0.5004 s

Near-convex Decomposition + FEMD in [8] 93.9 % 4.0012 s

Proposed method 91.9 % 0.026s
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Figure 17 The confusion matrix of the testing results with gestures
used in [17].

is performed. A few indicative recognizing results of the
proposed method is shown in Fig. 11, which is similar to
Fig. 10. The results demonstrate that hand shape decompo-
sition and skeleton extraction are performed as we want.

5.3 Quantitative Evaluation

We have defined a simple hand gesture dataset shown in
Fig. 12 to test our method. To test the performance of pro-
posed method, more than 2000 frames were recorded in
experiments. We first evaluate the concavity ε. The recog-
nition accuracy with changing concavity is demonstrated in
Fig. 13. The configuration of ε = 8mm is the best choice
and used in other experiments. Then we evaluate our recog-
nition method with the best configuration. Table 1 shows the
detail results of the hand gesture recognition experiments
(We use ‘b-right’ as a abbreviation of ‘bottom-right’, ‘b-left’
as a abbreviation of ‘bottom-left’, ‘t-right’ as a abbreviation
of ‘top-right’ and ‘t-left’ as a abbreviation of ‘top-left’). The
average accuracy of recognition in this experiment is about
0.912. The low accuracy of the gestures ‘top-left’ and ‘top-
right’ is caused by the difficulty of posing these gestures.
That is to say, the two angles αx and αy between hand and
camera plane become large, which significantly affect the
performance. Qualitatively, αz does not affect the perfor-
mance since the projective shape is constant with changing

αz. So, we just evaluate αx and αy using synthetic data. The
testing results are shown in Fig. 14, where the optimal angle
of αx and αy is from −20◦ to 20◦. Simultaneously changing
αx and αy is not tested since it is similar to single change
qualitatively.

The effect of varying the distance of the hand from the
depth sensor is considered in Fig. 15. The experiments
are performed with real-world sequences. The accuracy
increases as the depth increases until the average depth is
about 1.5 m. Then, it declines with an increasing speed.
From the plot, the effective distance is from 0.5m to 3.5 m

and the optimal distance is from 0.5 m to 2.5 m, in which
region the accuracy is higher than 0.9.

5.4 Comparisons

5.4.1 Comparison to Geometry-based Method

We also compare the proposed method with the previ-
ous work. This experiments are based on the same dataset
provided in [8], which includes 10 gestures denoted as
‘1’,‘2’,· · · ,‘10’ and 100 cases of each gesture. Although
each of the cases consists of a color image and a depth map,
we just use the depth map which is the only requirement
in our method. The confusion matrix of the testing results
based on the dataset using the proposed method is shown
in Fig. 16. The mean accuracy is about 91.9 %. Compared
with [8], our method is much more efficient for real-time
applications, which is shown in Table 2.

5.4.2 Comparison to Classification-based Method

ToF camera provides range data which is similar to the
depth image from Kinect sensor. In [17], hand features
are extracted after segmentation from range data and
used for training and classification. We employ real-world
depth sequences from Kinect sensor to test the gestures
(Gestures are denoted by IDs from 1 to 9, which are
EnumOne, EnumTwo, EnumThree, EnumFour, EnumFive,
Stop, Fist, OkLeft, OkRight.) used in [17] and the results
is shown in Fig. 17. Each gesture is given 100 cases. The
overall accuracy is about 0.941 which is very close to the
accuracy 0.939 provided in [17]. However, their method

Table 3 Comparative recognition results of the method in [10] and proposed method.

Method Gesture Left Right Up Down Open Close All

Total 215 242 233 236 146 127 1199

Method in [10] Correct 192 221 217 203 131 119 1083

Accuracy 0.893 0.913 0.933 0.860 0.897 0.937 0.903

Our method Correct 203 227 213 218 141 123 1125

Accuracy 0.944 0.938 0.914 0.924 0.965 0.969 0.938
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needs training process, which is more complex. In general,
classification-based methods usually employ appearance
features for training and classification. So, these methods
are not easy to extend. On the contrary, our system is
easy to add new gestures by providing the template gesture
skeletons.

5.4.3 Comparison to Color-based Method

Because there is no ground truth data to compare the pro-
posed depth-based method with color-based methods, depth
and color sequences which are synchronously generated
from Kinect sensor are used in further experiments. We
implement the method proposed in [10] where scale-space
feature detection is integrated into gesture recognition and
six gestures in Table 3 are used for quantitative evalua-
tion. In Table 3 we can find that we achieve an accuracy of
0.938 compared with the accuracy of 0.903 obtained by the
method in [10].

6 Conclusions

Real-time markerless hand gesture recognition has a wide
range of applications, such as virtual interaction, robot con-
trol and other kinds of electrical applications. In this paper,
we have proposed an efficient method for hand gesture
recognition. Hand shapes are detected and segmented from
low-resolution depth images which are obtained from a
depth sensor. An radius based convex shape decomposition
method is introduced at the same time to decompose hand
shapes. With the shape decomposition result, fingertips
are easily detected. The shape decomposition and finger-
tips detection, combined with the skeleton extraction, have
address the accuracy and efficiency problems of hand ges-
ture recognition to a certain extent. Extensive experimental
results demonstrate accuracy, efficiency and robustness of
our method.
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