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Speeding Up Graph Regularized Sparse
Coding by Dual Gradient Ascent
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Abstract—Graph regularized Sparse Coding (GSC) considers
data relationships during Sparse Coding (SC) and thus has better
performance in certain image analysis tasks. However, it is very
time consuming. This letter aims at speeding up GSC. The al-
ternating optimization framework for GSC involves repeatedly
solving a variant of minimization referred to as GSRsub in this
letter. Traditional ways to deal with GSRsub are to generalize opti-
mization strategies for minimization to solve its primal problem
that is strongly convex but non-differentiable, thus converging
slowly. We propose that GSC can be accelerated by solving a new
dual problem of GSRsub called D-GSRsub. Compared with the
primal form and the existing dual form of GSRsub, D-GSRsub has
a strongly convex and smooth objective functionwith less variables.
Based on these properties, four dual gradient ascent strategies with
lower computational complexities are developed. Experimental
results on real-world datasets demonstrate that these strategies
can dramatically and stably speed up GSC without affecting its
performance in the corresponding image analysis tasks.

Index Terms—Graph regularized sparse coding, image classifi-
cation, image clustering.

I. INTRODUCTION

S PARSE CODING (SC) has been a popular coding tech-
nique for generating representations in image analysis.

Recent studies found that SCdoes not consider data relationships
during the coding process, thus leading to information loss. To
address this issue, Graph regularized SC (GSC) based methods
have been proposed. ScSPM [1] is a representation learning
method for image classification and uses spatial-pyramid max
pooling of SIFT sparse codes. Gao et al. [2], [3] pointed out
that SC can not encode similar SIFT features as similar sparse
codes. To reduce the loss of locality information, Laplacian
Sparse Coding (LSc) was proposed to consider the similarity
between SIFT features in ScSPM. As a holistic representation
learning method for image classification and clustering, SC fails
to consider the geometrical structure of images satisfying the
manifold assumption. GraphSC [4]was presented for preserving
the geometrical information during SC. GSC indeed improves
the performance of SC. However, the great execution time of
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GSC has been a bottleneck that restricts its practical use [5].
This letter focuses on speeding up GSC.
To solve the non-convex GSC problem, an alternating opti-

mization framework is often employed. This framework treats
GSC as two problems, Graph regularized Sparse Representation
(GSR) problem and Dictionary Update (DU) problem, and then
alternatively solves these two problems until convergence. GSR
can be separated into several subproblems with a common form
(GSRsub) that is a variant of minimization. And these sub-
problems are sequentially solved one after another. Traditional
ways of solving GSRsub focus on its primal with a strongly
convex but non-differentiable objective. Typical methods for
minimization, such as Feature-sign search (Feature-sign) algo-
rithm [6], Iterative Shrinkage-Threholding Algorithm (ISTA)
[7] and its improved version FISTA [8], can be directly extended
to the primal problem of GSRsub. Note that Feature-sign was
first proposed in [6] for SC and then modified in [2]–[4] for
GSRsub. GSRsub can also be treated as an regularized QP
( -QP) problem (see, e.g.,[9], [10]) and solved by the Cyclical
Coordinate Descent (CCD) method. Further, a dual form of
-QP (D- -QP) was also developed in [10]. In this letter, we

propose another dual problem of GSRsub (D-GSRsub) which
has two advantages over the primal problem and D- -QP: (1)
the number of variables of D-GSRsub is less than that of both
D- -QP and the primal problem, and (2) the objective function
of D-GSRsub is smooth and strongly convex. These advantages
make it possible for fast gradient ascent strategies to be applied
to D-GSRsub with lower computational complexities. In this
letter, four such strategies are applied to D-GSRsub, and their
performances are verified in image classification and clustering
experiments on real-world datasets.

II. GRAPH REGULARIZED SPARSE CODING

A. Model

Data and their relationships can be modeled by a weighted
graph whose nodes are data points
and edge weight matrix represents pair-
wise relationships between data. Generally, is symmetric
and nonnegative. The idea of GSC is to incorporate the
objective of SC model with a graph regularization term:

, where are
sparse codes of and respectively, and describes their
pairwise relationship. Thus the GSC model is

(1)
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where is an overcomplete dic-
tionary with , are sparse
codes, is the graph regularization parameter and is the spar-
sity regularization parameter.

B. Optimization

The GSC model (1) is non-convex, so finding a global solu-
tion is unrealistic. However, it is feasible to attain a local min-
imum by alternatively solving two convex problems:
(i) the Graph regularized Sparse Representation (GSR)
problem: Fixing , we have

(2)

(ii) the Dictionary Update (DU) problem: Once is updated,
fix and update by solving

(3)

This letter mainly considers the optimization of GSR. The GSR
problem (2) can be split into subproblems:

where and , ,

that is, updating each sparse code individually while holding
other sparse codes fixed. Dropping the superscripts and sub-
scripts, we have the GSR subproblem (GSRsub):

(4)

Traditional ways of dealing with GSRsub are to generalize
optimization strategies for minimization to solve the primal
problem (4) which has a strongly convex but non-differentiable
objective function. Typical strategies are the Feature-sign search
(Feature-sign) algorithm [2]–[4], the ISTA algorithm [7] and its
improvement FISTA [8]. Feature-sign solves GSRsub by first
iteratively searching and refining the signs of the elements of
and then solving a least square problem based on the search re-
sult. ISTA and FISTA consider the minimization of a composite
objective function:

(5)

where and satisfy the following three assumptions [8]: (i)
is a continuous convex function; (ii)

is convex with Lipschitz continuous first-order derivatives,
i.e., , where
is the Lipchitz constant of ; (iii) Problem (5) is solvable.
Let , .
Then it is obvious that GSRsub is a special case of problem
(5) with and , where
is the spectral norm of . ISTA is a first-order method with a
sublinear global convergence rate [8]. And
FISTA1is an improved ISTA with a better global convergence
rate [8]. Here, is the iteration counter.
Except for the two strategies, inspired by other lines of work on

1To prevent confusions, we call the strategy using FISTA on the primal
problem of GSRsub as Primal FISTA (PFISTA) hereafter.

sparse representation, such as Graphical LASSO [9], [10], we
can also treat the primal problem of GSRsub as a regularized
QP ( -QP) problem:

with and , which can
be solved by the CCD algorithm [10] with convergence rate

[11]. Further, a dual problem of GSRsub can be derived
as a dual problem of -QP (D- -QP):

(see [10]) with and . Here,
is the indicator function of the ball of radius . Note

that the number of variables in D- -QP is the same as in the
primal problem of GSRsub and that the objective function of
D- -QP is still non-differentiable. In next section, we propose a
novel dual form of GSRsub whose objective function is smooth
and strongly convex with less variables.

III. DUAL GRADIENT ASCENT STRATEGIES FOR GSRSUB

A. Novel Dual Problem of GSRsub (D-GSRsub)

Let and .
We recast (4) as an equality constrained problem

Its associated Lagrangian is

where is the dual variables. Note that both and are
strictly convex, so their conjugate functions and are well
defined. Thus the dual objective function, denoted by ,
can be written as follows

This leads to a dual problem of (4): . We refer to

this problem as D-GSRsub and recast it as

(6)

where and

. Detailed derivation

of and is given in Appendix A.
Before proceeding further, we recall the following properties

of strongly convex functions, the proof of which can be found
in [12], [13].
Proposition 3.1: is strongly convex with parameter if

and only if there is a such that is
convex.
Proposition 3.2: Suppose is closed and strongly convex

with parameter . Then its conjugate is differentiable, and
is Lipschitz contin-

uous with , i.e., is smooth.
Thanks to the graph regularization term, we have .

By this fact and the convexity of , it follows
from Proposition 3.1 that is strongly convex. This, to-
gether with Proposition 3.2, implies that is differentiable
and is Lipschitz contin-

uous with , i.e., is smooth. Note that
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,where

and is the soft-thresholding
function [14]. The derivation of is given inAppendixA.
We conclude this subsection by summarizing the better prop-

erties of D-GSRsub: (i) The number of variables in D-GSRsub
is which is less than , the number of the primal variables and
the variables in D- -QP in the overcomplete dictionary setting;
(ii) is smooth with and

; Moreover, by Proposition 3.1,
is strongly convex with .

B. Dual Gradient Ascent (DGA) Strategies for GSRsub

The better properties of lead to efficient gradient ascent
strategies for D-GSRsub, i.e., gradient descent strategies for
problem (6). In this letter, we only consider four such strategies.
1) DGA with Fixed Step Size:Due to the strongly con-
vexity and smoothness of , a fixed step size

can achieve a linear con-
vergence rate [15].

2) DGA with Variable Step Size: Inspired by a kind of accel-
erated ISTA called SpaRSA [16], we employ a progressive
quadratic approximation

and in each iteration use Barzilai-Borwein (BB) method
[17] shown at the bottom of the page, with a subsequent
update procedure to choose . Hence, we have

. As shown in [18], for strongly convex ob-
jectives the convergence rate of SpaRSA is R-linear.

3) Dual FISTA (DFISTA): Recall the assumptions for ISTA
and FISTA mentioned in Section II-B. Let and

. Problem (6) is also a special case of problem
(5) with and .We use a quadratic
upper bound approximation of at , i.e.,

at th iteration. Following the rationale of FISTA [8],
we can obtain an accelerated dual ascent strategy referred
to asDual FISTA (DFISTA). Let and .
Then the updates are as follows:

where . The convergence rate
of DFISTA is [8].

4) Nesterov’s Accelerated DGA (NADGA): For problem (6),
we can employ Nesterov’s Accelerated Gradient Descent
[15] for strongly convex and smooth unconstrained cases.
This strategy starts at and iterates as follows:

where . The convergence rate of
NADGA is [15].

In summary, the discussed optimization strategies for
GSRsub, except for Feature-sign with unknown convergence
rate, arranged in the increasing order of convergence rate
are CCD, PFISTA, DFISTA, , and
NADGA. Let be the complexity to compute and
let be the iteration counter. Then the complexity of CCD
and PFISTA is respectively and

, the complexity of DFISTA
is , and the complexity of

, and NADGA is . Since
, the complexity of DFISTA, DGA , and

NADGA is lower than that of CCD and PFISTA. This indicates
that solving D-GSRsub by DFISTA, ,
and NADGA is faster than solving its primal problem by CCD
and PFISTA.

IV. EXPERIMENTS

We present two experiments on real-world datasets to com-
pare the performance of seven optimization strategies for
GSRsub in GSC based methods: Feature-sign [2]–[4], CCD
[10], PFISTA [8], DFISTA [8], 2[16],
[15] and NADGA [15]. For fair comparison, we only employ
the Lagrange dual method (LagDual) [6] for solving the DU
problem (3). All experiments are performed in Matlab R2009a
on a Lenovo Windows 7 PC with Intel Core i3-2120 CPU
(3.30 GHz) and 3.5 GB RAM. We set the maximum number of
iterations as 5000 for Feature-sign and 10000 for both CCD and
PFISTA.We use the relative change of the primal objective, i.e.,

, as stopping criteria for
both CCD and PFISTA. For the other four, we set the maximum
number of iterations as 100000, and choose the step size of the
dual variables, i.e., , as the stopping criterion
for DGA and the dual gap, i.e., , as
stopping criteria for the other three.
The first experiment is learning representations for image

clustering using GraphSC [4]. We use CMU PIE database with
68 objects and 42 images of size for each object and set

for the heat kernel weighted -nearest-neighbor graph
construction. PCA is performed on the images first to reduce the

2The key parameters are set as , and in both two
experiments. See [16] for more details.
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TABLE I
CLUSTERING RESULTS ON CMU PIE DATASET (THE CLUSTERS
NUMBER IS 60 AND THE NUMBER OF ITERATIONS IS 20.

THE BEST RESULTS ARE MARKED IN BOLDFACE.)

dimensionality to 100. The dictionary size is set as 200. By con-
ducting the cross validation described in [4], and
are adopted. The threshold values for stopping criteria of CCD,
PFISTA and are , and , respec-
tively and the threshold value for dual gap is .
Clustering is carried out with the clusters number 60, and

10 tests are conducted. The average performances after 20 it-
erations, evaluated by the accuracy, normalized mutual infor-
mation (NMI) [4] and CPU time, are reported in Table I. It is
observed that the results support our analysis in Section III-B.
Compared with solving the primal problem by Feature-sign,
CCD and PFISTA, solving D-GSRsub by the given four strate-
gies dramatically reduces the execution time of GSC. Precisely,
the CPU time used by ,

and is almost the same.
takes a little more CPU time than the

former three. The accuracy shows that the given four dual gra-
dient ascent strategies even improve the clustering performance.
The objective values in the third column suggest that solving
D-GSRsub in our parameters setting may lead to a different
local minimum of GSC.
The second experiment is learning representations for image

classification by using LScSPM [2], [3].We select the first to the
20th classes with total 2548 images from Caltech 256 dataset
and follow the parameter setting in [2] to extract SIFT features.
It should be noted that, for the feasibility of comparison, we ran-
domly sample 10000SIFT features for training a dic-
tionary byGSC, and employ histogram intersection [2]weighted
-nearest-neighbor graph to model the similarity between SIFT
features. is adopted for graph construction. By following
the setting in [2], and are used. The threshold
values for stopping criteria of CCD, PFISTA and
are , and , respectively. The threshold value
for dual gap is . In inference, we use the learned dictionary
to encode each SIFT feature by solving aGSRsub (4). Finally,we
generate a representation for each image by spatial-pyramidmax
pooling the corresponding SIFT sparse codes. In classification,
we randomly select 60 images from each class and use their
representations to train a linear SVM classifier. We then carry
out classification on the others. 10 tests are conducted, and the
average performances after 50 iterations are reported in Table II.
The performances of the seven strategies are evaluated by the ac-
curacy, the CPU time for training the dictionary by GSC and the
average CPU time for inferring a representation for one image.
The objective values of GSC model are also reported. Table II
shows that the accuracy of the seven strategies is almost the
same, but , ,

TABLE II
CLASSIFICATION RESULTS ON 20 CLASSES OF CALTECH 256 (THE

NUMBER OF ITERATIONS IS 50. THE LAST COLUMN SHOWS AVERAGE
CPU TIME FOR INFERRING A REPRESENTATION FOR ONE IMAGE.

THE BEST RESULTS ARE MARKED IN BOLDFACE.)

and which solve
D-GSRsub consume less time in training and inference. Further,

is the fastest one in training, and
NADGA is the fastest one in inference.

V. CONCLUSION

In this letter, we proposed to speed up GSC by solving a novel
dual problem of GSRsub (D-GSRsub) which is smooth and
strongly convex with less variables, compared with its primal
problem and the existing dual form (D- -QP). Based on this
dual form, four efficient gradient ascent strategies forD-GSRsub
have been introduced to speed up GSC. Image classification and
clustering experiments on two real-world datasets are conducted
to illustrate the fast and stable performance of the four strategies.

APPENDIX A
DERIVATION OF , AND

It is easy to verify that the conjugate of is

By Proposition 3.2 and the strong convexity of , it follows that

The necessary and sufficient condition for to be the optimal
point of the above optimization problem is that the subgradient
of its objective function equals to 0, that is,

(7)

where . Thus, for all , either or
. If then

and , so
. If then . Conversely, if

we set when and
when , then (7) holds. This

implies that
Substituting into

gives the desired expression of .)
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