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Abstract: Text information contained in scene images is very helpful for high-level image understanding. In this study, the
authors propose to learn co-occurrence of local strokes for scene text recognition by using a spatiality embedded dictionary
(SED). Unlike spatial pyramid partitioning images into grids to incorporate spatial information, the authors SED associates
every codeword with a particular response region and introduces more precise spatial information for robust character
recognition. After localised soft coding and max pooling of the first layer, a sparse dictionary is learned to model co-
occurrence of several local strokes, which further improves classification performance. Experimental results on two scene
character recognition datasets ICDAR2003 and CHARS74 K demonstrate that their character recognition method outperforms
state-of-the-art methods. Besides, competitive word recognition results are also reported for four benchmark word recognition
datasets ICDAR2003, ICDAR2011, ICDAR2013 and street view text when combining their character recognition method
with a conditional random field language model.

1 Introduction

A robust scene text extraction system can be used in lots of
areas such as image retrieval, intelligent transportation,
robot vision etc. To obtain text information from scene
images, two stages are usually included: text detection and
text recognition. Text regions are localised from the whole
scene images in text detection stage. In text recognition
stage, definite text information is generated from the
cropped text blocks. In the past years, many efficient
systems have been proposed by researchers to detect scene
texts, whereas scene text recognition has not been fully
studied. In this paper, we focus on the scene text
recognition and perform two different tasks, namely scene
character recognition and scene word recognition.
Most scene text recognition techniques could be divided

into two categories: optical character recognition
(OCR)-based methods and object recognition-based methods.
OCR-based methods rely on the off-the-shelf OCR

techniques which have been highly developed in the past
decades. These methods usually focus on scene text
binarisation. For example, Chen and Yuille [1] use
Adaboost to detect texts and extend Niblack’s binarisation
method before feeding binarised texts into OCR engine.
Neumann and Matas [2] use maximally stable extremal
regions (MSER) extraction to perform scene texts binarisation.
Traditional OCR techniques are designed for scanned
documents which are usually easy to binarise. However, scene
text binarisation is difficult because of complex backgrounds,
heavy occlusions and different lighting conditions.

Object recognition-based methods [3–5] skip the
binarisation stage and each kind of scene character is
regarded as a special object. These methods firstly extract
features from one image patch which is considered as
containing a single character. Then the features are fed into
various pre-trained classifiers to obtain a label. Wang et al.
[3] choose random fern as the basic classifier and utilise
pictorial structures to recognise words. Mishra et al. [4]
train multi-class support vector machines (SVMs) to
recognise scene characters and use conditional random field
(CRF) to generate word recognition results. In our previous
work [5], we use part-based tree structure to detect
characters and also combine with a CRF to perform words
recognition. Recently, object recognition-based methods are
inspiring more and more enthusiasm from the computer
vision community for their simplicity, efficiency and
robustness. Thus, in this paper, we adopt an object
recognition-based method. Especially, we introduce the
popular coding/pooling scheme for scene text recognition.
Coding/pooling pipeline has been quite successful for

object recognition in recent years. Various coding methods
are proposed, including nearest neighbour vector
quantisation, soft assignment [6], localised soft coding [7]
and sparse coding [8]. As for pooling, average and max
pooling are frequently used. Boureau et al. compare
different coding and pooling methods thoroughly in [9, 10].
When incorporating spatial information into coding/pooling
scheme, spatial pyramid (SP) [11] and its variants [12] have
been the predominant approaches. SP usually partitions one
image into a set of regions beforehand and then codes them
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separately before concatenating the code vectors. However, as
for scene text character recognition, sizes of most character
images are usually very small so that image patches of SP
may not be able to provide more discriminative information
of character structures. Besides, rough regions division in SP
may lose the power of discriminative stroke structures which
are also divided as shown in Fig. 1a. Dropping SP and
ignoring spatial information as in [13] can bring about
character classification confusion. That is because one part of
a character may appear in another location of another
character as in Fig. 1b. Therefore when using coding/pooling
scheme for scene character recognition, it is necessary to find
a way to incorporate spatial information beyond SP.
Therefore, to overcome the drawbacks of SP for scene

character recognition, we propose to build a new type of
dictionary called spatiality embedded dictionary (SED) to
include more precise spatial information than SP. In SED,
each codeword represents a particular character stroke in a
special location. A sparse dictionary is further learned based
on SED to model co-occurrence of several local strokes for
robust character recognition as shown in Fig. 1c. Generally,
we make three contributions:

(1) We propose a new type of dictionary called spatial
embedded dictionary to include more precise spatial
information than SP for scene character recognition.
(2) Based on SED, coding can be performed locally spatially,
which alleviates computation burden and retains
discrimination power at the same time.
(3) After first-layer coding and pooling, a sparse dictionary is
learned to model co-occurrence of several local strokes to
further improve classification performance.

The proposed mechanism has achieved 82.7% on
ICDAR2003 scene character recognition dataset and 67.5%
on CHARS74 K dataset which outperforms state-of-the-art
methods. When the proposed method is combined with
sliding window technique and a CRF word recognition
model, our character recognition method can be applied to
word recognition. For word recognition, whole-word
recognition accuracy is used as evaluation criteria rather
than single character classification accuracy. We report
competitive results on four benchmark word recognition
datasets ICDAR2003, ICDAR2011, ICDAR2013 and street
view text (SVT).
This paper is organised as follows. Section 2 introduces the

related work of coding/pooling pipeline. Section 3 outlines
framework of the proposed method. Details of the proposed
method are presented in Section 4. Afterwards,
experimental results are given in Section 5. Finally,
conclusions are drawn in Section 6.

2 Related work

The bag-of-words model has been quite popular for image
categorisation in recent years. This representation quantises
continuous high-level image features to a histogram of
‘visual words’. The method usually consists of two parts:
coding and pooling. In this section, we mainly introduce
the commonly used coding and pooling methods. For
coding, methods like nearest neighbour vector quantisation,
soft assignment, localised soft assignment, sparse coding,
locality-constrained linear coding (LLC) are explained. For
pooling methods, average pooling and max pooling are
introduced. Besides, how SP incorporates spatial
information for the bag-of-words model is also illustrated.
To illustrate more clearly, notations are introduced as

follows. Let di di [ Rnd
( )

denote a visual codeword where
nd is the dimensionality of one codeword. Assuming there
are n codewords in the dictionary D D [ Rnd∗n( )

, then D is
represented as D = {d1, d2, …, dn}. Let fi f [ Rnd

( )
be the

ith local descriptor of an image. Let Ui (Ui∈ Rn) be the
coding coefficient vector of fi, with uij being the coefficient
with respect to codeword dj.
For nearest neighbour vector quantisation, there is only one

non-zero coding coefficient for descriptor fi. This non-zero
coefficient corresponds to the codeword which is nearest to
the descriptor according to a distance metric. In practice,
Euclidean distance is usually used as follows

uij =
1, j = argmin

a
f− da

∥∥ ∥∥, da [ D

0, otherwise

{
(1)

In soft assignment [6], the jth coding efficient for descriptor
fi represents the relative possibility of the descriptor
assigned to the jth codeword subject to all other codewords
as follows

uij =
exp −b f− dj

∥∥∥ ∥∥∥2( )
∑n

a=1 exp −b f− da
∥∥ ∥∥2( ) (2)

where β is the parameter to control the softness of assignment.
Soft assignment is further improved by Liu et al. [7] and

they propose localised soft assignment. Rather than
calculating the relative possibility of the descriptor assigned
to the jth codeword subject to all other codewords, a local
neighbourhood around the descriptor is defined first. Then
the relative possibility is calculated in the local
neighbourhood. Let NNK(fi) be the set of K nearest
neighbours for descriptor fi in dictionary D. Then the

Fig. 1 Motivation

a Rough division (lines) in SP separates discriminative strokes (rectangles)
b Discriminative part to tell ‘E’ from ‘F’ appears in another location of ‘F’ which may bring classification confusion if spatial information is ignored
c Strokes in dark grey/red rectangles cannot tell ‘B’ from ‘E’, but introducing co-occurrence of local strokes (plus light grey/green rectangles) may solve this problem
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localised soft coding is defined as follows

uij =
exp (−b× dis(fi, dj))∑K
a=1 exp (−b× dis(fi, da))

(3)

where

dis(fi, dj) = ‖fi − dj‖2, if dj [ NNK (fi)
1, otherwise

{

Sparse coding [8] represents a local descriptor fi by a linear
combination of a sparse set of basis vectors. The coefficient
vector Ui is obtained by solving an l1-norm regularised
approximation problem

U i = argmin
U

‖xi − DUi‖22 + l‖Ui‖1 (4)

LLC [14] is similar to sparse coding. The difference is that
LLC firstly introduces a penalty term to select accountable
codewords nearby the descriptor fi in Euclidean space.
Then the descriptor fi is represented with a linear
combination of selected codewords.
After all local features of an image are coded, a pooling

operation is further performed, such as average pooling and
max pooling. With average pooling, the jth component of

the pooled vector is calculated as
∑m

i=1 uij

( )
/m, where m is

the number of local features. As for max pooling, the jth
component of the pooled vector is calculated as maxiuij,
where i = 1, 2, …, m.
SP [11] incorporates spatial information by partitioning one

image into several local regions. Then coding and pooling are
conducted within every local region. After pooling, all these
pooled vectors of different local regions are connected
sequentially to form a large vector. This large vector is
regarded as the final image representation. However, as
stated in the introduction section, SP is not suitable for
scene character recognition because scene character images
are usually too small to be partitioned. Thus, it is appealing
to find an appropriate way to model spatial layout beyond
SP for scene text recognition.

3 Framework

The proposed system consists of five parts: (i) building SED;
(ii) coding and pooling based on SED; (iii) learning a sparse

dictionary to model co-occurrence of strokes; (iv) training
character detectors; and (v) word recognition based on a
CRF language model. The overall framework for scene
word recognition is given in Fig. 2. For scene character
recognition, language model is ignored and trained
character detectors are used to classify testing images directly.

4 Proposed method

4.1 Building SED

4.1.1 Overview of SED: Instead of using K-means to
cluster all descriptors regardless of their positions as before,
SED performs codeword collection considering descriptors’
positions. In SED, spatial information is incorporated into
dictionary directly by reserving a local response region for
every codeword. Thus, SED can include more precise
spatial information than SP, which partitions images into
local regions and codes them sequentially. Based on SED,
coding can be performed locally spatially depending on the
spatial relationship between codeword and descriptor as
shown in Fig. 3. That can alleviate computation burden and
retain discrimination power at the same time. The procedure
of how SED incorporates spatial information is given in
Fig. 3.
The SED building process is illustrated as follows. For

better clarity, we first give out a brief statement for every
step before going into details:

(a) All character training images are scaled to the same size
and partitioned into uniform blocks.

Every character training images are normalised to the same
size height =H and width =W. Then every image is
partitioned into nh*nw blocks (dotted lines in Fig. 4a), in
which nh is the number of partitioned blocks in vertical and
nw is the number of partitioned blocks in horizontal.

(b) HOG features [15] are extracted within every block
and then connected to represent every character training
image.

For every training image, histogram of gradients (HOG)
features [15] with size of nhog dimensions are extracted
within every block and connected sequentially to form a
one-dimensional (1D) feature vector as the overall

Fig. 2 Framework of the proposed method for scene word recognition
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representations. It should be noted the 1D vector has a
dimensionality of nh * nw * nhog.

(c) Within each character category, images are clustered based
on the overall representations.

Assuming class ci (i∈ {1, 2, 3,…, Nc}, Nc is the number of
categories) has ntrain, ci training images, K-means clustering is
performed based on the above overall representations to
obtain ntrain, ci/kci centres, where kci is the parameter to
control the number of clustering centres. For every
clustering centre of class ci, we reshape the overall
representation 1D vector to 3D matrices with three
dimension sizes of nh, nw and nhog.

(d) Codewords are then extracted from the clustering centres
sequentially.

We extract sub 3D matrices with three dimension sizes of
nh,d, nw,d and nhog from the clustering centres densely (from
left to right and from top to bottom), where nh,d is the
number of blocks in vertical and nw,d is the number of
blocks in horizontal. Extraction interval is set to be nw,d/2
for horizontal and nh,d/2 for vertical. The number of
collected codewords from one clustering centre depends on
the choice of (nh,d, nw,d). These sub 3D matrices (solid
rectangle in Fig. 4a) are then stretched to 1D vectors with
sizes of nh,d * nw,d * nhog dimensions. These 1D vectors are
regarded as our codewords dj.

(e) For every codeword dj, we record a response region rj,
which is around the codeword sampling position.

To illustrate the definition of response region clearly, X–Y
coordinate is introduced and coordinates of top left corner
(green point in Fig. 4a) is regarded as coordinates of one
codeword. Then response region for codeword dj can be
represented by coordinates of the points (magenta points in
Fig. 4a) around the top left corner as rj. It should be noted
that the codeword sampling position itself should also be
included in rj. Actually, a response region (rectangle with
dotted line in Fig. 4a) can be regarded as the area covered
by patches nearby the codewords. These nearby patches,
which have codeword’s size, use points from rj as their top
left corners. We include l * l points in rj, in which l is the
side length of response points square as illustrated in Fig. 4a.

(f) We combine all codewords into the SED DSED =
(d1, r1), (d2, r2), (d3, r3), . . . , dNDSED

, rNDSED

( ){ }
, in which

NDSED
is the dictionary size and rj j = 1, 2, . . . , NDSED

( )
is the corresponding response region for codeword dj.

Assuming Ntrain images are contained in the training set,
None codewords are collected from one clustering centre,
and kci is set to be k uniformly for all ci, then the number
of codewords in the final SED is
NDSED

= Ntrain × None × (1/k). The procedure of generating
one codeword is given in Fig. 4a.

4.2 Coding and pooling

Based on SED, coding can be performed locally spatially
according to codewords’ reserved response regions, which
alleviates computation burden and retains discrimination
power at the same time.
Given a local descriptor f extracted from position (xf, yf)

of one image, only entries, whose corresponding codewords’
response regions rj contain point (xf, yf), should be coded.
The other entries are set to be zeros directly thus reducing
computation time. Localised soft assignment [7] is chosen
for its effectiveness and efficiency. Assuming the
accountable codewords [whose response regions cover point

Fig. 3 How SED incorporates spatial information? Whether to
code one entry for one descriptor or not depends on the spatial
relationship between codeword and descriptor

Only when response region of one codeword covers the descriptor’s position,
the corresponding entry should be coded

Fig. 4 Illustration of SED

a Partitioned blocks (dotted lines), codeword (solid rectangle), sampling location (point) and response region (dotted rectangle) are shown on a clustering centre.
The dimension of codeword d1 is 2 * 2 * nhog. We give out a visible image in this figure but clustering centres are virtual 3D matrices actually
b Physical explanation of SED coding and pooling from the view of codeword, note that darker patch means higher similarity between codeword and descriptor.
For better viewing, please see the online version
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(xf, yf)] set is Df = {df, 1, df, 2, . . . , df, nf} , DSED for f,

localised soft coding is incorporated with spatial information
and modified as (5). NN(K )(f) is the K nearest neighbours of
Df in Euclidean space for descriptor f. K is set to be 5 and β
is set to be 0.1 in the experiments.
After coding, max pooling is performed over the whole

image to obtain code vector U. Max pooling is chosen
rather than average pooling because of the implied physical
meaning of coding. For every descriptor, each entry uj
represents the possibility of codeword dj appearing in the
descriptor’s position (also around codeword dj original
collecting position). Actually, codeword dj corresponds to a
special character stroke. Prior knowledge is that one stroke
structure dj always appears only once around one position
of a character image so it is reasonable to consider only the
most likely appearing location.
The coding and pooling pipeline can be reconsidered from

the view of codeword rather than the view of descriptor. For
example, in Fig. 4b, in order to calculate the d1th entry for one
‘A’ image, image patches which fall into response region of
d1 are extracted. Then similarity values between extracted
image patches and d1 are calculated (coding). Finally, the
maximal similarity value is reserved, which represents the
possibility of d1 appearing around the sampling position on
this new image.

4.3 Learning a sparse dictionary to model
co-occurrence of strokes

4.3.1 Motivation: If code vectors U are directly fed into
multi-class linear SVMs [16] for training, we are only able
to model single stroke appearing in one position not
co-occurrence of several strokes in different locations.
Selecting non-linear SVMs rather than linear SVMs may
seem to be able to model co-occurrence of strokes.
However, we find in experiments choosing non-linear SVMs
works even worst. It is perhaps because non-linear
SVMs can introduce overfitting more easily than linear
SVMs. Besides, classification based on non-linear SVMs is
time-consuming. Intuitively, modelling co-occurrence of
different stroke structures can introduce high-level semantic
information and may restrain noise. Therefore it is appealing
to find an effective way to model co-occurrence of strokes.
To model co-occurrence of several strokes, we propose to

learn a sparse dictionary DSPR =
ds, 1, ds, 2, . . . , ds,NDSPR

[ ]
[ RNDSED

×NDSPR based on the code

vectors U, where NDSED
is the size of SED DSED and NDSPR

are the number of atoms contained in sparse dictionary
DSPR. We use elastic net [17] as in [18] to learn DSPR. The
learned dictionary DSPR should be sparse. It means most
entries of ds, i [ RNDSED are zeros. The non-zero entries of
ds, i correspond to co-occurrence of some strokes, which
will be proved in the experiment section. Thus,
reconstruction coefficient w for code vector U based on
DSPR can represent appearance of co-occurrence of strokes
for one character image.

4.3.2 Learning method: Given a set of training images
represented as code vectors U set = U1, U2, U3, . . . ,

{
Ui, . . . , UNtrain

} (Ui [ RNDSED and Ntrain is the number of
training images), sparse reconstruction coefficient wi is
learned simultaneously when learning sparse dictionary
DSPR as in (6). Then given an image represented as code
vector U, sparse coefficient w is computed so that U can be
reconstructed from DSPR like (7)

min
DSPR[C,W[R

∑N
i=1

1

2
U i − DSPRwi

∥∥ ∥∥2
2 +lw wi

∥∥ ∥∥
1

( )
(6)

min
w[R

NDSPR

1

2
U − DSPRw

∥∥ ∥∥2
2 +lw w‖ ‖1 (7)

where W = [w1, w2, . . . , wNtrain
] [ RNDSPR

×Ntrain , lw is a
regularisation parameter and C is the convex set which
DSPR belongs to. The convex set C can be constructed as
follows

C = DSPR [ RNDSED
×NDSPR , s.t. ∀i, ds, i

∥∥ ∥∥
1
+ g

2
ds, i

∥∥ ∥∥2
2
≤ 1

{ }
(8)

The sparsity requirement of dictionary DSPR is achieved by
enforcing l1-norm and l2-norm on convex set C. This is
called the elastic-net [17]. In the two optimisation
problems, (7) is convex and (6) is convex with respect to
each of the two variables DSPR and W when the other one
is fixed. We use SPASM toolbox [19] to solve the two
optimisation problems. In the experiments, lw in (6) and (7)
is set to be 0.1 and γ in (8) is set to be 0.3 empirically.

4.4 Training character detectors

Coefficients W computed from character training samples in
(6) are used to train multi-class linear SVMs [16]. The
regularisation parameter is set to the best by
cross-validation on the training set.
In the test stage of character recognition, given a testing

image (scaled to H *W already), code vector U is calculated
using localised soft coding and max pooling based on DSED

as in Section 4.2. Afterwards, w are calculated using DSPR

as in (7). Finally, w is fed into pre-trained multi-class
SVMs to obtain a class label.

4.5 Word recognition model using CRF

Given a scene word image, the character recognition block
provides us lots of windows containing characters within
them, but at the same time it also produces lots of false
positives. In this section, our aim is to generate whole-word
recognition results from piles of detection windows. Thus,
we build a CRF model as in [4, 5] to combine character
detection results and linguistic models. Then word
recognition can be performed by solving an energy
minimisation problem.

uj =
exp

(−b
∥∥f− dj

∥∥2)∑K
a=1 exp (−b f− da

∥∥ ∥∥2 ) , dj [ Df and da [ NN(K)(f)

0, otherwise

⎧⎪⎨
⎪⎩ (5)
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In general, the word recognition procedure is as follows: (i)
we first perform character detection based on co-occurrence
of strokes using SED at multi-scales; (ii) then we use these
detection windows to decide the potential character
locations on which the CRF model is defined; (iii) compute
the unary and pairwise cost function based on the detection
scores, the spatial constraints and the language model; and
(iv) finally infer the most likely word using the
tree-reweighted passing (TRW-S) algorithm. Details about
the CRF language model are given below.

4.5.1 Word model: In a scene text image, there are several
potential character positions, which usually have several
character detection candidates. Each position is represented
by a random variable Xi. Let n be the total number of
potential locations. Since some potential locations might
have no characters, a non-character label e is introduced to
represent these false positives. Thus, each random variable
Xi takes a label xi [ Ce = C < e{ }. We use Cn

1 to represent
the set of all possible labelling assignments to the random
variables. Then we define a cost function E:Cn

e � R, to
map any labelling to a real number E(·) which represents
energy. E(·) is defined as a sum of unary and pairwise
terms as follows

E(x) =
∑n
i=1

Ei(xi)+ lp
∑

{i, j}[Ng

Eij(xi, xj) (9)

where x = {x1, x2, …, xn} represents the set of all the random
variables, Ei(xi) is the unary cost function, Eij(xi, xj) denotes
the pairwise cost and Ng represents the set of pairs of
neighbouring detection windows. Ng is determined by the
structure of the graphical model defined on them. lp is a
tradeoff parameter between the unary and pairwise cost and
is set to be 0.6 by cross-validation.

4.5.2 Graph construction: After applying non-maximal
suppression (NMS) on the original character detection
results, the left detection windows constitute the potential
locations. We set the overlap parameter for NMS to 0.35 in
the experiment. Then, for each location, we choose those
detection windows which are close to this location as the
candidate characters for this location. We add one node for
each potential location sequentially from left to right. The
nodes are connected by edges. Since nodes which are

spatially distant from each other would not be directly
related, we only connect nodes which are close to each
other. Fig. 5 shows the process.

4.5.3 Cost function: The unary cost Ei(xi = cj) represents
the penalty of assigning label cj to node xi. In this case, if
the detection score for a certain type of character model cj
is very high, the cost of labelling the node cj should be
small and vice versa. If the scores of all the candidate
detections are very low, it is likely for the node to take a
null label ε. To this end, we define the unary cost as follows

Ei(xi = cj) =
1− p(cj|xi), if cj = e
maxj p(cj|xi), otherwise

{
(10)

where p(cj |xi) is the probability for node xi to take label cj.
Here we use the detection scores (SVM score) to reflect the
confidence for the class. For a true window, the cost of
assigning a null label is high. On the other hand, false
positive windows with poor SVM scores are more likely to
take the null label e.
We use the pairwise cost function E(xi, xj) to incorporate

linguistic knowledge and spatial constraints. The pairwise
cost of two neighbouring nodes (xi, xj) taking labels (ci, cj)
is defined as

Eij(xi, xj) =
1− P(ci, cj), if ci = e ^ cj = e
Dij + m Si, if ci = e ^ cj = e
Dij + m Sj, if ci = e ^ cj = e
Dij + m Si, j, if ci = e ^ cj = e

⎧⎪⎪⎨
⎪⎪⎩ (11)

where P(ci, cj) refers to the bi-gram language model learnt
from the lexicon, Dij is the relative distance of the two
nodes, Si and Sj represent the maximum character detection
scores at the corresponding locations, Si, j is the larger one
of Si and Sj and μ is set to be 1.5 in the experiment. We use
the SRI language modelling toolkit [20] to learn the
probability of joint occurrence of characters in large English
dictionary with around 0.5 million words provided by
Mishra et al. [4]. The pairwise cost function means that if
the probability of joint occurrence of a character pair (ci,cj)
is large, the cost of nodes (xi, xj) taking labels (ci, cj) should
be small. Moreover, if the relative distance of the two nodes
is small, and the maximum score of the node is low, the
cost of the node taking a null label should be small.

4.5.4 Inference: After computing the unary and pairwise
cost, we use the sequential TRW-S algorithm [21] to
minimise the cost function in (9), because of its efficiency
and accuracy on our recognition problem. The TRW-S
algorithm maximises a concave lower bound on the energy.
It begins by considering a set of trees from the random field
and computes probability distributions over each tree, which
are then used to reweight the messages being passed during
loopy back propagation (BP) [22] on each tree. The algorithm
terminates when the lower bound cannot be increased further
or the maximum number of iterations has reached.

5 Experiment

5.1 Datasets and tasks

5.1.1 Character recognition: We employ two public
scene character datasets: ICDAR2003 [23] and CHARS74 K
[24]. Both of these two datasets contain 62 character classes,
namely digits 0–9, upper English letters A–Z and lowerFig. 5 Word recognition using CRF model
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English letters a–z. All character samples are extracted from
scene images manually by datasets organisers. ICDAR2003
dataset contains 6185 training patches and 5430 testing
patches cropped from 509 scene images. It is originally
designed for robust reading competition of scene text
detection and recognition so the contained samples can
cover different conditions in natural scenes, such as heavy
occlusions, different illuminations and complex
backgrounds. Some scene character images from
ICDAR2003 testing set are shown in Fig. 6. Similarly,
CHARS74 K dataset has totally 12 503 scene character
images cropped from various natural scenes and these
images are not split into training and testing datasets.
For ICDAR2003 dataset, we use image patches from its

own training set to train character classifiers and then test
these classifiers on images from testing set. In CHARS74 K
dataset, we perform CHARS74 K-15 evaluation and split
training and testing sets referring to [25]. For both datasets,
we use character recognition accuracy to evaluate
performance as in [3, 13, 24, 26] for fair comparison.

5.1.2 Word recognition: We use the challenging public
datasets SVT [27], ICDAR2003 robust word recognition
datasets [23] and ICDAR2011 word recognition datasets
[28] to evaluate the performance of the overall word
recognition method. The SVT dataset contains images taken
from Google View Street. Since we focus on the word
recognition task, we use the SVT-WORD dataset following
the experiment protocol of [3, 27]. Totally, we obtain 647

word images in SVT dataset. For ICDAR2003 dataset, we
ignore words with less than two characters or with
non-alphanumeric characters as in [3], which results in 829
word images overall. Some scene word images from
ICDAR2003 dataset are shown in Fig. 7. We use
ICDAR2011 and ICDAR2013 datasets in the same way as
ICDAR2003 dataset.
For word recognition, we use whole-word recognition

accuracy to evaluate the performance. The proposed word
recognition method is performed with or without lexicons.
Word recognition with lexicons is known as word spotting
[27], which has been drawing lots of attention from the
research community in recent years [3–5]. It should be
noted character recognition plays a very important role in
word recognition, which means word recognition accuracy
heavily relies on character recognition accuracy. When
sliding window technique is used as in this paper, character
recognition is also referred as character detection.

5.2 Character recognition

5.2.1 Settings: All of the image patches are normalised to
W = 32 and H = 64 and partitioned into blocks with nw = 8 and
nh = 16. HOG features [15] are extracted within every block
with bin number 9, cell size of 2 × 2 pixels, block size of
2 × 2 cells. nh,d, nw,d are set to be one of 5, 6, 7.
Larger k can generate bigger dictionary which may be

beneficial for classification, but at the same time it may
result in heavier computation burden. According to our
experiments, when k rises up to a peak point for both

Fig. 6 Some scene character images from ICDAR2003 testing set

Fig. 7 Some scene word images from ICDAR2003 dataset

Fig. 8 Most discriminative strokes (in rectangles) for every
character can be localised according to the largest weights of
linear SVMs. (nh,d, nw,d) is set to be (5,5)

Fig. 9 Learned sparse dictionary DT
SPR with size of 400 for

ICDAR2003 when nh,d, nw,d = (6, 5)

a DT
SPR, red points indicate large magnitudes, whereas blue colour represents

small magnitudes
b Large non-zero entries of each row often correspond to co-occurrence of
several strokes from the same character
See online version for colour
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datasets, the classification accuracy seems to be still. To
balance classification performance and computation time, k
is set to be 20 for ICDAR2003 dataset and 1 for
CHARS74 K dataset. For parameter l, it is ideal to set
different l for different codewords as position range of
different strokes may be various intuitively. However, it is
difficult and labour-intensive to identify different l for
different codewords. Therefore in the experiments, l is set
to be 3 for both datasets directly and empirically.
When building SED, different sizes of codewords

including (nh,d, nw,d) = (7, 7), (6, 6), (7, 5), (6, 5), (5, 5) are
chosen to build different sizes of dictionaries both for
ICDAR2003 and CHARS74 K datasets. As for parameter
NDSPR

, we find its value does not have big influence on the
classification performance in a range. In the experiments,
NDSPR

is set to be 400 for both ICDAR2003 and CHARS74
K empirically as in [18].

5.2.2 Results and discussion: If we use SED code
vectors U to train multi-class linear SVMs directly, the
classification performance is shown in Fig. 10. Left figure
is for ICDAR2003 dataset and right figure is for
CHARS74 K dataset. It can be seen that bigger SED brings
about better performance perhaps because bigger SED
includes more discriminative character strokes. However
when SED size reaches a level, classification performance
seems to be still. When (nh,d, nw,d) is set to be (5, 5), the
most discriminative codewords for every character can be
localised according to the largest weights of trained SVMs.
These discriminative codewords correspond to character
discriminative strokes as shown in Fig. 8. It can be seen
from Fig. 8 that these strokes are intuitively discriminative
for character classification.
When for (nh,d, nw,d) is set to be (6, 5) and co-occurrence of

different strokes is incorporated, the learned sparse dictionary
DSPR from ICDAR2003 training set with size of 400 is shown
in Fig. 9. It can be seen that DSPR is very sparse as desired.
Large non-zero entries of rows in DT

SPR often correspond to
different strokes of one kind character and zero entries refer
to irrelevant strokes. Owing to the implied high-level
semantic information contained in DSPR, reconstruction
coefficient w based on DSPR in (7) can represent
co-occurrence of strokes on an image. Thus, if
reconstruction coefficient w is used to train multi-class linear
SVMs, we are able to introduce co-occurrence of strokes
for scene character recognition as stated in Section 4.3.

Superiority of modelling co-occurrence of strokes over
using SED for direct classification is shown in Fig. 10. It
should be noted that sizes of SED depend on codewords’
size (nh,d, nw,d) as stated in step (f) of Section 4.1. Sizes of
all sparse dictionaries DSPR are set to be 400. From Fig. 10,
we can see that modelling co-occurrence of strokes by
learning a sparse dictionary always works better than only
modelling single stroke’s appearance based on SED. That
proves the usefulness of high-level semantic information.
With the growth of SED size in a range, the performance of
modelling co-occurrence of strokes becomes better. That is
probably because larger SED contains more potential
strokes which may co-occur.

5.2.3 Comparison with other algorithms: In recent
years, researchers have mainly focused their attention on
feature representation in the field of scene character
recognition. For instance, Campos et al. [24] compare
different features for scene character recognition. Newell
and Griffin [29] propose two extensions of the HOG
descriptor to include features at multiple scales and
demonstrate superiority of these new features over HOG for
robust character recognition. Coates et al. [26] introduce
unsupervised feature learning using a variant K-means
clustering and report promising character recognition
results. Yi et al. [13] generate global HOG (GHOG) by
computing HOG descriptor from global sampling for scene
character recognition and they experimentally prove
superiority of GHOG over coding/pooling method.
However, in [13], they do not find a way to incorporate
spatial information into the coding/pooling pipeline.
To include strokes of different aspect ratios meanwhile,

different sizes of codewords [(nh,d, nw,d) = (7, 7), (6, 6), (7,
5), (6, 5), (5, 5)] are incorporated in SED for both
ICDAR2003 and CHARS74 K datasets. A sparse dictionary
DSPR with size of 400 is further learned for both datasets.
The classification performance of our system is shown in
Table 1. Experimental results outperform state-of-the-art
methods. Especially for ICDAR2003 dataset, we only use
training samples from ICDAR2003 training set rather than
introducing other training samples to avoid overfitting as in
[26, 30].
It can also be seen from Table 1 that by incorporating

co-occurrence of strokes rather than simply using single
stroke, 0.7 and 0.4% classification improvement are realised
on ICDAR2003 and CHARS74 K, respectively. The

Fig. 10 Superiority of co-occurrence of strokes over single stroke: left figure is for ICDAR2003 dataset and right figure is for CHARS74 K.
Choices of (nh,d, nw,d) are labelled in both figures
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improvements are not very significant perhaps because
representation based on our SED is already strong.
Compared with [13] which uses HOG and non-linear
SVMs, we use more simpler linear SVMs and obtain
inspiring 6.7% improvement on ICDAR2003 testing
dataset, which demonstrates the representation power of
co-occurrence of strokes based on SED. However,
performance of our system on CHARS74 K dataset is still
not satisfying perhaps because of the large font variations.
Generally, when recognising samples from ICDAR2003

testing dataset, the proposed method takes about 0.3 s on
average to classify a character image on personal computer
with Intel (R) Core (TM) i5-3210M central processing unit
2.50 GHz if (nh,d, nw,d) is set to be (7, 7) (NDSED

is equal to
795) and NDSPR

is set to be 400.

5.3 Word recognition

5.3.1 Settings: Different from character recognition, the
performance of word recognition is evaluated using
whole-word recognition accuracy. In this paper, the word
recognition procedure can be regarded as a combination of
character recognition, sliding window technique and
language model. The processing settings and details are as
follows.
First, when training character detectors for word

recognition, we only use training samples from
ICDAR2003 dataset to build the SED. To accelerate speed
of the sliding window classification procedure, only
codeword size nw,d = 5, nh,d = 5 is used. k is set to be 20.
Totally, we obtain NDSED

= 3900 codewords in this SED.
Then based on SED, a sparse dictionary DSPR with size of

NDSPR
= 400 is learned as in (6). Construction coefficients

of samples from ICDAR2003 training set are calculated as
in (7) and used to train character detectors.
Then given a scene text image, the width is scaled to 64 and

height is calculated according to the aspect ratio. We extract
sliding windows sequentially with the following six sizes:
(i) height = 64, width = 64; (ii) height = 64, width = 48; (iii)
height = 64, width = 80; (iv) height = 48, width = 48; (v)
height = 48, width = 32; and (vi) height = 48, width = 64.
Extracting steps are set to be 1/4 × height for vertical and
1/4 × width for horizontal. All sliding windows are then
scaled to height = 64, width = 32. Within each window,
SED code vector is computed referring to Section 4.2.
Construction coefficients are calculated based on the
learned sparse dictionary DSPR as in (7) and then fed into
the pre-trained linear SVMs to obtain a classification score.
Finally, after performing character detection at

multi-scales, a CRF model is built on the character
detection results. NMS is performed to select potential
locations. For each potential location, at most five candidate
characters are reserved according to SVM scores. We add
one node for each position and connect the neighbouring
ones from left to right. Then word recognition is performed
by solving the energy minimisation problem in (9).

5.3.2 Results and discussion: We evaluate the proposed
system on ICDAR2003, ICDAR2011, ICDAR2013 and SVT
datasets. Bi-gram language model learnt from the lexicon
with 0.5 million words is adopted on all four datasets.
Word spotting [27], which refers to spotting word in a
small lexicon, is conducted on ICDAR2003, ICDAR11 and
SVT datasets. For ICDAR dataset, we evaluate performance
using a lexicon created from all the words in the test set
[ICDAR03(full), ICDAR11(full)], and with lexicon
consisting of the ground truth words plus 50 random words
from the test set [ICDAR03(50), ICDAR11(50)]. For SVT
dataset, we use the lexicon provided by Wang et al. [3].
Similar to [3, 4], we use the inferred result to retrieve the
word with the smallest edit distance in the lexicon. Results
of our method are compared with state-of-the-art methods
as shown in Table 2. Besides, we also report word
recognition results without lexicons on all four datasets in
Table 3.

Table 1 Character recognition results on ICDAR2003 and
CHARS74 K datasets, %

Algorithms ICDAR2003 CHARS74
K-15

HOG+NN [3] 51.5 58
SYNTH+ FERNS [3] 52 47
NATIVE + FERNS [3] 64 54
MSER [31] 67 –
global HOG [13] 76 62
co-HOG [30] 79.4 –
coates method [26] 81.7 –
geometrical blur + SVM [24] – 53
multiple Kernel learning [24] – 55
HOG columns [29] – 66.5
our method (single stroke) 82.0 67.1
our method (co-occurrence of
strokes)

82.7 67.5

Table 2 Word recognition rates of the proposed method and recent state-of-the-art methods on ICDAR2003, ICDAR2011 and SVT. The
results on ICDAR03(50), ICDAR11(50) and SVT are acquired by retrieving the ones with the smallest edit distance in the lexicon of 50
words, whereas for ICDAR03(FULL) and ICDAR11(FULL), the lexicon contains all the ground truth words in the test set

Methods ICDAR03(FULL) ICDAR03(50) ICDAR11(FULL) ICDAR11(50) SVT

ABBYY9.0 [32] 55 56 – – 35
SYNTH+ PLEX [3] 62 76 – – 57
method in [4] – 81.78 – – 73.26
method in [33] 67.79 81.78 – – 73.26
deep CNN [34] 84 90 – – 70
TSM [5] 79.30 87.44 82.87 87.04 73.51
method in [35] – 89.69 – – 77.28
photo OCR [36] – – – – 90.39
our method 80.46 88.06 82.19 87.52 75.89

Table 3 Word recognition rates of the proposed method on
ICDAR2003, ICDAR2011, ICDAR2013 and SVT without lexicons

Method ICDAR03 ICDAR11 ICDAR13 SVT

our method 41.98 43.09 43.17 26.12
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It can be seen from Table 2 that our word recognition
results can be compared with the latest published
algorithms. As we use the similar word model as in [4, 5],
the results are quite convincing. This good performance of
word recognition relies on character detection accuracy. It
further demonstrates the effectiveness of learning
co-occurrence of strokes based on SED for robust character
recognition. However, our method is still inferior to deep
neural network [36] probably because of the limited
training samples. Results from Table 3 are not satisfactory
as expected. That is perhaps because our word recognition
model is still simple. In our opinion, that is also the reason
why most published methods mainly focus their attention
on word spotting not open vocabulary recognition.
Some images which our system cannot recognise with

lexicons are shown in Fig. 11. According to our
observation, that is usually because of poor resolution,
severe contaminations and heavy occlusions. Under these
conditions, pre-trained character detectors often do not work
well. Thus, when combined with the language model, the
word recognition results are not satisfying.

6 Conclusion

This paper proposes to learn co-occurrence of strokes for
scene text recognition. We build a new dictionary named
SED, in which each codeword represents a local stroke.
Based on SED, a sparse dictionary is further learned to
model co-occurrence of local strokes for scene character
classification. Experimental results of robust character
recognition outperform state-of-the-art algorithms. When
combining with a CRF word recognition model, the word
recognition results can be compared with the latest
published methods.
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