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Abstract Optical molecular imaging is an important technique of studies at molecular level and provides

promising tools to non-invasively delineate in vivo physiological and pathological activities at cellular and

molecular levels, and it has been widely used for diagnosing, managing diseases, metastasis detection and drug

development. From a mathematical perspective, this paper mainly focuses on the forward problem and inverse

problem in biological tissues based on the radiative transfer equation (RTE). The forward problem is accustomed

to describing photon propagation in biological tissues and the inverse problem is used to reconstruct internal

source distribution from the signal detected on the external surface. We also introduce the detailed derivation of

the RTE and Robin boundary condition and discretization of the forward problem, along with the reconstruction

methods and iterative solution algorithms summarized for the inverse problem. Finally, the current and future

challenges of optical molecular imaging are discussed. This survey aims to construct a mathematical method, a

state-of-the-art framework for optical molecular imaging, from which future research may benefit.
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1 Introduction

Molecular imaging opens up a new era that benefits from X-rays marked by the advent of medical

imaging techniques [1]. With the Human Genome Project that initiated in 1990, the understanding of

the essence of life in vivo along with the mechanisms of the occurrence and development of diseases for

prophylaxis and treatment has become imperative [2,3]. Traditional imaging methods cannot perform

the required in situ observations for the function and activity of genes and proteins, such as computed

tomography (CT), magnetic resonance imaging (MRI) and ultrasound imaging (USI). In order to resolve

these problems, molecular imaging is growing gradually and can explore specific molecules as the source

of image contrast [4,5].

Molecular imaging provides promising tools to non-invasively delineate in vivo physiological and patho-

logical activities at cellular and molecular levels, and has become an important method for biomedical

research [4,6]. The goals of molecular imaging for studying biological and medical processes as well as

diagnosing and managing diseases have improved, especially for tumorigenesis research, cancer diagnosis,
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Figure 1 Several forms of photon propagation in biological

tissues, reproduced from [10].

CCD

Imaging system

Source?

Surface density?

In
ve

rs
e 

pr
ob

le
m

Fo
rw

ar
d 

pr
ob

le
m

Figure 2 Principle diagram of optical molecular imag-

ing modalities, reproduced from [3,37].

metastasis detection, gene therapy, drug discovery and development [7–9]. Optical molecular imaging is

an important imaging technique for molecular imaging, which has been widely used in life sciences, medi-

cal research and drug development due to its unique merits such as simple operation, rapid measurement,

intuitive results, non-radioactivity, high sensitivity and low cost of equipment [5,7].

Optical molecular imaging is based on the basis of photon propagation in biological tissues. The

interaction between photons and biological tissues includes absorption, reflection, scattering, refraction

and transmission, but photon scattering predominates over absorption in biological tissues at near-infrared

and visible wavelengths. Figure 1 shows several forms of photon propagation in biological tissues.

Optical molecular imaging mainly includes diffusion optical tomography (DOT) [11–15], biolumines-

cence tomography (BLT) [16–22], fluorescence molecular tomography (FMT) [23–28] and Cerenkov lu-

minescence tomography (CLT) [29–34]. Although the four modalities as mentioned above have different

physical imaging conditions, from a mathematical perspective, the transfer equation of photon propa-

gation in biological tissues is the same in essence and it is the radiative transfer equation (RTE) that

is used to describe the photon propagation in biological tissues [35–37]. Research of the above optical

molecular imaging modalities mainly includes the forward problem and inverse problem with regards to

photon propagation in biological tissues, which can be attributed to mathematical problems as shown in

Figure 2.

The forward problem is to study the transmission model of photon propagation in complex biological

tissues, which is the physical foundation and theoretical basis of optical molecular imaging besides being

the prerequisite of source reconstruction. The intensity of the biological tissues and surface position are

obtained based on the intensity distribution in vivo and space, histology and optical parameters via the

radiative transfer equation. The inverse problem is used to develop reconstruction algorithms to retrieve

internal targets and quantitative distribution inside a phantom or a small animal from the signal detected

on the external surface associated with the anatomical structure and optical properties [20].

This paper mainly aims to present a mathematical framework in optical molecular imaging including

the detailed forward problem and inverse problem and also provides the latest development research

status and future research ideas from which follow-up research may benefit. Firstly, we propose that

RTE can be used to describe photon propagation in biological tissues, by giving a detailed derivation

of RTE and Robin boundary condition along with discretization of the forward problem. Secondly, the

reconstruction methods and iterative solution algorithms are also briefly summarized for the inverse

problem to reconstruct internal source distribution from the signal detected on the external surface.

Finally, we discuss the current and future challenges of optical molecular imaging.

The rest of this paper is organized as follows: Section 2 presents the derivation of RTE and Robin

boundary condition and discretization of the forward problem in detail. The inverse problem mainly in-

cludes different reconstruction methods and iterative solution algorithms which are proposed in Section 3.

We draw the conclusion and provide challenges in Section 4.
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2 The forward problem

First of all, we need to identify the mathematical model to describe photon propagation in biological

tissues before studying the inverse problem or reconstruction algorithms. In 1903, Schuster first proposed

the radiative transfer equation (RTE) also known as the Boltzmann equation, which was used to describe

photon propagation in biological tissues [38–40]. However, RTE is difficult to solve and is often approxi-

mated to a diffusion equation, which provides solutions that are more computationally efficient. In this

section, we will give the detailed derivation of RTE.

2.1 The radiative transfer equation

Photon propagation in biological tissues can be precisely described by the radiative transfer equation

[36,41] as follows:

1

c

∂u(r, ŝ, t)

∂t
+ ŝ·∇u(r, ŝ, t) + μu(r, ŝ, t) = μs

∫
4π

p(ŝ′, ŝ)u(r, ŝ′, t)dΩ′ + S(r, ŝ, t), (1)

where t > 0 denotes time, c is the velocity of light in the medium, μ = μa + μs with μa and μs being the

absorption and scattering coefficients respectively, r denotes position, ŝ denotes the direction, u(r, ŝ, t)

is the radiance, and p(ŝ′, ŝ)is the normalized phase function, which indicates the probability of a single

scattering photon from direction ŝ′ into direction ŝ such that
∫
4π

p(ŝ′, ŝ)dΩ′ = 1, Ω′ denotes the solid

angle, and S(r, ŝ, t) denotes spatial and angular distribution of the light source.

The most common phase function is the Henyey-Greenstein function presented as [42]:

p(cos θ) =
1− g2

2(1 + g2 − 2g cos θ)
3/2

, (2)

where g is an anisotropy factor and the range is [−1, 1]. The radiative transfer equation relates radiance,

photon velocity, time and optical parameters. The radiance u(r, ŝ, t) is obtained by solving the radiative

transfer equation, after which the photon density Φ is also obtained, which is defined as the energy flow

per unit area per unit of time regardless of the flow direction and is written as:

Φ(r, t) =

∫
4π

u(r, ŝ, t)dΩ, (3)

where Ω is also a solid angle, but it is different from Ω′.
Photon current J is defined as the net energy flow per unit area per unit of time and is defined as:

J(r, t) =

∫
4π

ŝu(r, ŝ, t)dΩ. (4)

Evidently, it is difficult to solve the radiative transfer equation since it is an integral-differential equa-

tion and has six independent variables. Usually, the RTE is simplified in the diffusion approximation.

Therefore, we will introduce the diffusion approximation equation. Considered BLT as an example and

referred [3] for others.

2.2 Diffusion equation

The diffusion equation is obtained based on the first order approximation of the spherical harmonics

expansion by RTE. Using the spherical harmonics function, u(r, ŝ, t), s(r, ŝ, t) and p(ŝ′, ŝ) can be ex-

pressed [15]:

u(r, ŝ, t) =

∞∑
l

l∑
m=−l

(
2l + 1

4π

)1/2

ul,m(r, t)Yl,m(ŝ), (5)

S(r, ŝ, t) =

∞∑
l

l∑
m=−l

(
2l+ 1

4π

)1/2

Sl,m(r, t)Yl,m(ŝ), (6)



Leng C C, et al. Sci China Inf Sci March 2015 Vol. 58 031101:4

p(ŝ′, ŝ) =
∞∑
l

l∑
m=−l

plYl,m(ŝ)Ȳl,m(ŝ′), (7)

where Yl,m(ŝ) is the spherical harmonics function and can be expressed as:

Yl,m(ŝ) =

[(
2l+ 1

4π

)(
(l − |m|)!
(l + |m|)!

)]1/2
(−1)

1
2 (m+|m|)P |m|

l (cosϑ)elmϕ, (8)

where P
|m|
l is associated with Legendre polynomials.

Substituting (5)–(7) into (1) through the derived formulas, we obtain the following diffusion equation:

1

c

∂Φ(r, t)

∂t
+ μa(r)Φ(r, t) +∇·J(r, t) = S(r, t). (9)

Multiplying both sides of (9) by ŝ and integrating it over the full 4π solid angle, we obtain the following

equation:
1

c

∂J(r, t)

∂t
+ (μa + μ′

s)J(r, t) +
1

3
∇Φ(r, t) = 0, (10)

where μ′
s = (1 − g)μs is the reduced scattering coefficient.

Light scattering dominates over-absorption in biological tissues, such that the rate of change is very

small and negligible for the photon current. According to Ficks law, we obtain the following equation:

J(r, t) = −D(r)∇Φ(r, t), (11)

where D(r) = 1
3(μa(r)+μ′

s(r))
is the optical diffusion coefficient with μa(r) being the optical absorption

coefficient and μ′
s(r) being the reduced scattering coefficient. Substituting (11) into (9), we obtain the

diffusion equation:
1

c

∂Φ(r, t)

∂t
−∇ · [D(r)∇Φ(r, t)] + μa(r)Φ(r, t) = S(r, t). (12)

In the above optical modal imaging, the energy of the source is steady for a long time, and we obtain

the following steady-state diffusion equation:

−∇ · [D(r)∇Φ(r)] + μa(r)Φ(r) = S(r) (r ∈ Ω). (13)

2.3 Boundary condition

According to the theory of differential equations, the solution of (13) requires the appropriate boundary

condition, and primarily, the Dirichlet boundary condition is exploited [43]:

Φ(r) = 0, ∀r ∈ ∂Ω, (14)

where Ω denotes the region of the biological tissue and ∂Ω denotes the boundary of the biological tissue.

Physically, this is equivalent to a perfect absorbing medium surrounding the domain. Each photon

is immediately absorbed when crossing ∂Ω and the photon density equals zero outside Ω. It is easy

to compute and implement, but the error is large between the experimental and theoretical results.

Therefore, the Robin boundary condition is presented and is the most widely used in optical imaging [43]:

Φ(r) + 2D(r)ν · ∇Φ(r) = 0, (15)

where ν is the outer unit normal to ∂Ω at r, and r ∈ R3 denotes the location vector in domain Ω.

The Robin boundary condition supposes the medium to be a non-scattering surrounding Ω, without any

internal reflection at ∂Ω.

Taking into account the mismatch between the refractive indices n for Ω and n′ for the surrounding

medium, and (15) is adjusted as:

Φ(r) + 2D(r)ν · ∇Φ(r) = R[Φ(r)− 2D(r)ν · ∇Φ(r)]. (16)



Leng C C, et al. Sci China Inf Sci March 2015 Vol. 58 031101:5

By adjusting (16), the final Robin boundary condition is given as:

Φ(r) + 2An(r;n, n
′)D(r)[ν(r) · ∇Φ(r)] = 0, (17)

where Rn is the internal reflection coefficient, An = (1+Rn)/(1−Rn) is the refractive index mismatched

between tissues and the surrounding medium, and Rn can be approximated by:

Rn≈− 1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n, (18)

where n is the refractive index. The measured quantity is represented by the outgoing photon density on

∂Ω as follows:

Q(r) = −D(r)[ν · ∇Φ(r)] =
Φ(r)

2An(r;n, n′)
(r ∈ ∂Ω). (19)

2.4 The solution of the diffusion equation

In optical molecular imaging, the solution of the forward problem is the basis for the inverse problem. In

order to study the inverse problem, we need to solve the forward problem of the diffusion equation. The

methods for the diffusion equation can be classified into three categories: analytical method, statistical

method and numerical method [12]. We do not introduce the analytical method in detail, because it is

difficult for the diffusion equation and this method is only used for regular geometry and uniform optical

parameters.

2.4.1 The statistical method

The statistical method is used to estimate the physical process and obtain the statistical law via a large

number of random samples that can be used to simulate random noise in the photon propagation process.

Monte Carlo (MC) is the most commonly used method of the statistical methods. Since Wilson et al.

first introduced the Monte Carlo method into the field of laser tissue interactions, it has been used

to solve various physical problems [44]. It is called the Gold standard, for it is widely used to simulate

photon propagation in biological tissues, and for obtaining significant physical information from biological

tissues [45–47].

The teams of Tian and Wang cooperated to develop the Molecular Optical Simulation Environments

(MOSE) based on the MC method, which can simulate photon propagation in biological tissues1). The

basic principle of MC includes: for random variable u, there is a probability density function p(u) that

defines the distribution of u over the interval [a, b], for ∀x ∈ [a, b], ∃ξ ∈ [0, 1], there is the following

equation: ∫ x

a

p(u)du = F (x) = ξ. (20)

By the direct or indirect method, we can obtain x and ξ, which is a random sampling with regards to

variable u. However, the MC method is statistical in nature and relies on calculating the propagation of

a large number of photons. This method needs a large amount of computational time.

2.4.2 The numerical method

It is difficult to obtain the analytical solution for statistical methods and statistical methods need a large

amount of computational time. The numerical methods are the most commonly used for a solution of

the diffusion equation, which mainly includes the finite difference method, finite element method (FEM),

finite volume method, boundary element method and meshless method [43,48–54]. Of all of the numerical

methods, the finite element method can deal with the domain of arbitrary geometry and has been widely

used in optical molecular imaging. The following will introduce how to discretize the diffusion equation

with the finite element method.

1) http://www.mosetm.net/.
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2.4.3 Discretization

By using the Galerkin method and combining with the Robin boundary condition (17), Eq. (13) can be

equivalently represented as the following weak form [3,43]:

∫
Ω

(D(r)(∇Φ(r)) · (∇Ψ(r)) + μa(r)Φ(r)Ψ(r))dr +

∫
∂Ω

1

2An(r;n, n′)
Φ(r)Ψ(r)dr

=

∫
Ω

S(r)Ψ(r)dr (∀Ψ(r) ∈ H1(Ω)), (21)

where H1(Ω) is the Sobolev space and Ψ(r) denotes an arbitrary test function.

According to the standard finite element method, the region of Ω can be discretized into Ne non-

overlapping subdomains (elements) Ω(l) (l = 1, 2, . . . , Ne) and with Nn vertex nodes, such that Ω =

UNe

l=1Ω
(l). Then, the photon density Φ(r) can be approximated with a polynomial function [3]:

Φ(r) ≈ Φh(r) =

Nn∑
k=1

φkϕk(r), r ∈ Ω, (22)

where φk is the nodal value of Φ(r) on the k-th node Nk, and ϕk(r) is the nodal basis function with

support from element Ω(l), which is supp(ϕk(r)) = UNk∈Ω(l)Ω(l).

Similarly, the source density S(r) is approximated as:

S(r) ≈ Sh(r) =

Nn∑
k=1

skγk(r), r ∈ Ω, (23)

where sk are the values of S(r), and γk(r) are the interpolation basis functions. Using the nodal basis

function ϕk(r) as the test function and substituting (22) and (23) into (21), the linear matrix equation

can be obtained as follows:

([K] + [C] + [B]){Φ} = [M ]{Φ} = [F ]{S}, (24)

where the components of the matrices K, C, B and F are given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kij =
∫
Ω D(r)(∇ϕi(r)) · (∇ϕj(r))dr,

cij =
∫
Ω μa(r)ϕi(r)ϕj(r)dr,

bij =
∫
∂Ω

ϕi(r)ϕj(r)/2A(r;n, n
′)dr,

fij =
∫
Ω
ϕi(r)γj(r)dr.

(25)

[M ] = [K]+ [C]+ [B] is a symmetrical positive definite and invertible matrix, and F is the source weight

matrix. Thus, Eq. (24) can be transformed as [55]:

Φ = M−1FS. (26)

Note that only a partial photon on the boundary can be captured in Φ, which is partitioned into mea-

surable boundary data Φm and other immeasurable Φu. Only the source density Sp in the permissible

source region is taken into account. By removing the rows associated with Φu and retaining those rows

corresponding to Sp in M−1F , the linear relationship is established as follows:

ASp = Φm, (27)

where A is an ill-conditioned matrix.



Leng C C, et al. Sci China Inf Sci March 2015 Vol. 58 031101:7

2.5 Modified strategy for the forward problem

In mathematics, the reconstruction problem of optical molecular imaging is an underdetermined and

ill-posed problem, owing to insufficient measurement and a highly diffusive nature of photon propagation

in tissues. The challenging difficulties of optical molecular imaging are depiction of photon propagation

accurately in the forward problem and fusion multi-modality information more effectively [56]. Therefore,

many methods have been developed in the forward problem to reduce the ill-posed problem to improve

accuracy and efficiency for reconstruction, which mainly includes a priori information and an improved

finite element method.

2.5.1 A priori information

The uniqueness that sources can be uniquely and accurately reconstructed by incorporating a priori

information to alleviate an ill-posed problem was first proven by Wang et al. [21]. The multispectral

measurement [57–61] and permissible source region [62–65] are commonly used as a priori information

to improve reconstruction. In addition, we give a concise derivation of (13) and (17) by fusing a priori

information and taking the permissible source region as an example. In a practical experiment, the light is

separated into κ bands τ1, τ2, . . . , τκ using appropriate filters with τq = [λq−1, λq), q = 1, 2, . . . , κ− 1, τκ =

[λκ−1, λκ]. Based on the finite element theory, Eqs. (13) and (17) can be formulated into a matrix form

on the single-band τq as follows [62]:

(Kk(τq) + Ck(τq) +Bk(τq))Φk(τq) = Fk(τq)Sk(τq). (28)

Let Mk(τq) = Kk(τq) + Ck(τq) +Bk(τq), where Mk(τq) is a positive definite matrix.

Thus, we have:

Φk(τq) = M−1
k (τq)Fk(τq)Sk(τq), (29)

by substituting Ak(τq) into (29), the following linear relationship is obtained:

Ak(τq)Sk(τq) = Φk(τq), (30)

where Ak(τq) = M−1
k (τq)Fk(τq).

Multispectral methods can enhance the stability of the solution by increasing the measurable infor-

mation and in turn impose some limitations in practical applications such as increased signal acquisition

time and a high computational cost [66,67]. The permissible source region strategy is incorporated to

regularize the problem by limiting the reconstruction region into a small area, which in turn improves

the location accuracy of the reconstructed source and reduces the computational cost. However, both

the size and position of the permissible source region have significant impact on reconstruction results in

practical applications [67].

2.5.2 Improved finite element method

The finite element method has been widely used to deal with the arbitrary geometrical domain that

utilizes a tetrahedron as the basic element for describing complex geometry and performing the local mesh

refinement. The improved finite element methods have been exploited to improve solution accuracy of the

forward problem in optical molecular imaging. Normally, the finer the discretization mesh, the better will

be the spatial resolution. However, the quality of the reconstruction depends on the discretization of the

support domain, and a too fine mesh may exacerbate the cost [20,58]. Hence, some novel improved finite

element methods were introduced into optical molecular imaging reconstruction, such as the adaptive

finite element method [54,68–70], multilevel adaptive finite element method [71,72] and hybrid model

adaptive finite element method [73,74].

In order to further test the discretization ability of the improved finite element method, we also give

the following matrix form of (13) and (17) based on the adaptive hp-finite element method (hp-FEM) as

follows [69]:

MkΦk = FkSk. (31)
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We need to rearrange (31) and it can be reduced to:

(M11
k −M12

k (M22
k )−1(M12

k )T)Φm
k = (F 11

k −M12
k (M22

k )−1F 21
k )Sper

k . (32)

Then, Eq. (32) can be rewritten as:

AkS
per
k = Φm

k , (33)

where Ak = (M11
k −M12

k (M22
k )−1(M12

k )T)−1(F 11
k −M12

k (M22
k )−1F 21

k ), Φm
k represents the nodal photon

density on the boundary ∂Ω and Sper
k are the source values of the permissible source region. The multilevel

strategy was also fused into the finite element algorithm to improve stability and robustness.

3 The inverse problem

According to the forward problem, we obtain the linear relationship equation ASp = Φm. To alleviate the

ill-posedness, the regularization methods and iterative solution methods are introduced which improve

reconstruction reliability and efficiency.

3.1 The regularization method

The regularization method is most commonly used to solve ill-posedness enhancing numerical stabili-

ty. Based on the regularization method, the solution for (27) determines source power density Sp by

minimizing the following objective function as follows:

J(Sp) = min
sp

‖ASp − Φm‖2 + λT (Sp), (34)

where T (Sp) is the regularization term and λ is the regularization parameter. Some regularization terms

T (Sp) are used such as ‖Sp‖1, ‖Sp‖2, ‖Sp‖1/2, ‖Sp‖TV etc.

The popular method is Tikhonov regularization (l2-norm) used to improve reconstruction accuracy [75],

which can produce an over-smoothed solution and loss some localized features during the reconstruction

process [76–78]. To enhance the reconstruction efficiency, the sparse regularization methods have been

proposed that were inspired by the ideas behind the compressed sensing (CS) theory [79]. Many sparse

regularization methods have been presented to solve the optical molecular imaging reconstruction prob-

lems in recent years [80–87] that acquire comparative reconstruction results, where high quality images

are reconstructed from a small amount of measurements. However, the sparse regularization method may

sparsify the source distribution, which degrades image quality [88].

In addition, the total variation regularization (TV) methods have also received increasing attention in

optical molecular imaging. The TV method was first introduced by Rudin et al. [89] for image denoising.

Now, TV regularization has been widely used for image processing and image reconstruction, such as

MR image reconstruction [90] and photoacoustic tomography (PAT) [91]. The TV method is applied in

PAT based on the finite element method scheme, which is easier to implement. For source reconstruction

of optical molecular imaging, the source density is assumed to be stable when photons are collected [88].

TV regularization is effective for source reconstruction because the source distribution can be considered

nearly piecewise constant. Some different TV regularization methods are presented that could be used

for reconstruction and improvement of the reconstruction results [92–95].

3.2 The iterative solution method

In order to further improve the accuracy and efficiency for reconstruction, it is essential to use the iterative

solution method to obtain meaningful solutions. The optimization problems of the objective function in

(34) are solved by using the following iterative solution methods to improve the accuracy and efficiency for

reconstruction such as the Newton method [96], conjugate gradient method [85,97], augmented Lagrangian

method [98], primal-dual interior-point method [99], iterative shrinkage method [100,101], Split Bregman

method [88,102–104], projection method [86,95,105] and probability method [76,106]. In order to test

the performance of the regularization methods and iterative solution methods, Figure 3 has been given
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Figure 3 Fluorescent yield reconstruction results via the IS L1 method ((a) and (d)), the StOMP method ((b) and (e))

and the proposed method ((c) and (f)) for triple spherical fluorescent sources and 12 measurement data sets corrupted by

5% Gaussian noise. The first row ((a), (b) and (c)) shows the 3D views of the reconstruction results and the second row

shows the corresponding slice images in the z = 0 plane. The red circles in the slice images denote the real locations of the

fluorescent sources, reproduced from [86].

depicting the experimental results of the subspace pursuit method that has been employed for solving

the sparse regularization.

Figure 3 shows the fluorescence molecular tomography results to validate the reconstruction accuracy

by incorporating sparse regularization with the adaptive subspace pursuit solution method [86]. By

comparing the L1-norm with the iterated shrinkage (IS L1) method and stagewise orthogonal matching

pursuit (StOMP) method, the 3D view of the reconstructed source results is shown in Figure 3. These

results benefited from the backtracking and sparsity adaptive strategies. The red circles in the slice

images denote the real locations of the fluorescent sources.

4 Conclusion

In this paper, we propose the framework of the mathematical method for optical molecular imaging that

provide stronger theoretical base. We predominantly introduced the forward problem and inverse problem

in biological tissues based on the radiative transfer equation. In addition, the detailed derivation of RTE,

Robin boundary condition and discretization of the forward problem have been stated. The reconstruction

methods and iterative solution methods were also briefly summarized for the inverse problem.

Optical molecular imaging is an important imaging technique, which plays important roles in in vivo

physiological and pathological activities at cellular and molecular levels and there have been some notable

reports in optical molecular imaging. However, there still remain difficulties to be solved for optical

molecular imaging which are as follows:

1. Depiction of photon propagation in the forward problem accurately by fusing a priori information,

sensitive data acquisition and advanced finite element methods;

2. Reconstruction of source distribution using an advanced reconstruction model and iterative solution
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method robustly and efficiently;

3. Fusion of multi-modality information with different optical modalities to enhance reconstruction

quality effectively.

In summary, optical molecular imaging is a powerful tool, and has a promising future in detection of

physiological and pathological activities at cellular and molecular levels.
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