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Abstract—Feature representation learning is an important
and fundamental task in multimedia and pattern recognition
research. In this paper, we propose a novel framework to
explore the hierarchical structure inside the images from the
perspective of feature representation learning, which is applied
to hierarchical image annotation. Different from the current
trend in multimedia analysis of using pre-defined features or
focusing on the end-task “flat” representation, we propose a novel
layer-wise tag-embedded deep learning (LTDL) model to learn
hierarchical features which correspond to hierarchical semantic
structures in the tag hierarchy. Unlike most existing deep learning
models, LTDL utilizes both the visual content of the image and the
hierarchical information of associated social tags. In the training
stage, the two kinds of information are fused in a bottom-up
way. Supervised training and multi-modal fusion alternate in
a layer-wise way to learn feature hierarchies. To validate the
effectiveness of LTDL, we conduct extensive experiments for
hierarchical image annotation on a large-scale public dataset.
Experimental results show that the proposed LTDL can learn
representative features with improved performances.

Index Terms—Auto-encoder, deep learning, hierarchical feature
learning, social tags.

I. INTRODUCTION

T HE performance of an artificial intelligence system is
highly dependent on the choice of data representation (or

features) [1], for different representations may entangle and
hide more or less the different explanatory factors of variations
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Fig. 1. Image and associated social tags (a), and the corresponding tag
hierarchy (b).

behind the data. Recently, feature representation has become
the focus of many application-related work [2], [3].
In the recent few years, many methods which aim at ob-

taining representation features have been developed, ranging
from hand-crafted features such as SIFT [4] and HOG [5], to
auto-learned features which are based on machine learning
methods such as PCA [6], ICA [7], sparse coding [8], etc.
These representation methods have achieved great success, and
are widely used in many research areas including computer vi-
sion and multimedia content analysis. However, these existing
methods focus on the end tasks and the feature representation
is “flat”, and the structured representation is largely ignored,
which limits the ability to analyze and handle more sophisti-
cated tasks, for the hierarchical structure of representation is
not explored enough.
Different from existing methods, in this paper, we aim to

learn the hierarchical features which represent an image with
multi-level structures. Different levels of the hierarchical fea-
tures convey different semantics. Our motivations are three-
fold. First, the hierarchical feature is more consistent with the
inherent characteristic of human cognition. Research findings
in cognitive science show that the human visual system follows
a similar hierarchical structure, with higher levels representing
more complex features [9], [10]. Developing a similar human
cognitive system has always been the pursuit of the artificial in-
telligence field. Second, the hierarchical feature represents ob-
jects in a more exquisite way. The hierarchical feature organizes
the representation into multiple levels according to the corre-
sponding semantic levels, which is more sophisticated and re-
fined for representation. Third, for the images with contextual
information, the semantics are essentially hierarchical. For ex-
ample, Fig. 1(a) shows an image with semantic tags: animal,
plant, cat, dog, and flower. Obviously, these semantic tags are
not in the same level, but compose a hierarchy. From above ob-
servation, we see that learning feature hierarchies is a promising
and important research topic for both representation learning
and image-related multimedia analysis.
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Fig. 2. Illustration of the feature hierarchy learning process.

However, it is a challenging task to gain hierarchical features
according to their corresponding semantics. In the feature hier-
archy, the relationship between the feature layers needs to be ex-
plored. Usually, the features in the lower layer compose, or are
integrated into the features in the higher layer [11], [12], which
results in the combination of lower-level features into more ab-
stract features and the formation of the feature hierarchies. It
is difficult to achieve this goal for regular shallow models due
to the limitation of local learning and curse of dimensionality
[13]. Fortunately, the recent research of deep learning [14], [15],
which attempts to model high-level abstraction in data by using
architectures composed of multiple non-linear transformations,
provides the potential for achieving our goal. However, it is still
a challenging problem to use the current deep learning based
methods for feature hierarchy learning. Most of the existing
deep learning methods only utilize the visual content informa-
tion of the images, and the learned feature hierarchies are im-
plicit (i.e., the semantics for which the feature is responsible
are unclear). Besides, although the layer-wise learning mech-
anism of deep learning fits well to the hierarchy construction,
the existing deep methods train the parameters using layer-wise
unsupervised pre-training and global fine-tuning, and there is
no supervised information between the layers. This leads to the
fact that the relationship between feature layers is implicit rather
than explicit and the property of the hierarchy is weak.
Information in the real world usually comes from multiple

channels which are usually complementary to each other. Some
related research work with multiple modality information of the
images to improve the performance [16], [17] have proven this
point. In the social media platform, the images are usually asso-
ciated with social tags as shown in Fig. 1(a) and these tags indi-
cate the semantics of the image to some degree. We believe that
these tags can provide complementary information for the im-
ages and are helpful for our feature learning task. Furthermore,
the tags usually constitute a tree-like hierarchical semantic to
a certain extent and can be converted into a hierarchy by ex-
isting tools, such as WordNet [18] which groups words into sets
of synonyms and records different semantic relations between
them. Fig. 1 shows an image and the associated tags from Flickr
in (a), and the converted tag hierarchies in (b). We argue that the
hierarchical structure of the tags, which can be considered as a
special kind of modality of an image, can be utilized to improve
the feature hierarchy learning in our task. On one hand, the se-
mantic tags in each level can provide the supervised information
for each layer of features in the feature hierarchy, which makes

the meaning of the feature explicit. On the other hand, it can
provide a new fusion mechanism for multiple modalities in the
different semantic levels.
In this paper, we propose to learn feature hierarchies by uti-

lizing both the visual content information and the tag hierarchy
information, as illustrated in Fig. 2. Given the images and the
associated social tags, our system learns the feature hierarchies
which consist of multiple levels of feature representations. Each
layer of the feature corresponds to a different semantic level.
The higher the layers are, the more abstract and general the fea-
tures will be. We propose a novel Layer-wise Tag-embedded
Deep Learning (LTDL) model to integrate the social tag infor-
mation into the visual content in a layer-wise way. In our LTDL
model, the concept hierarchy is not just used to organize training
images. It is integrated into feature learning from two aspects.
Firstly, to handle the limitation of no inter-layer supervised in-
formation in the conventional deep methods, we utilize the hi-
erarchical social tags to restrict the inter-layer relationship by
learning the parameters of the deep network with layered su-
pervised methods. Each layer of the tag hierarchy is used for
supervised learning the corresponding feature layer. Secondly,
each tag layer is fused with current feature layer for learning
feature in the higher layer, which is a multimodal fusion step.
During the whole learning process, the supervised training and
the multi-modal fusion alternate in a layer-wise way.
Based on the LTDL model, we can complement the missing

tags for the images, which can be considered as a kind of hierar-
chical annotation system to annotate the images in different se-
mantic levels. We evaluate the proposed LTDL on a large-scale
corpus of over one million images. The experimental results
have demonstrated the advantage of the proposed method.
The contributions of our work can be summarized as follows.
• We are the first to propose learning features of social im-
ages in a hierarchical way, which is more refined represen-
tation than the conventional “flat” features.

• We propose a novel LTDL model that fuses the social tag
hierarchy and the visual content information seamlessly to
learn hierarchical feature representation.

• Based on the feature hierarchy of the images, we develop
a hierarchical annotation system and conduct a series of
experiments on a large-scale image dataset to validate the
effectiveness of our work.

The rest of the paper is organized as follows. In Section II,
we review the state-of-the-arts most related to our research.
In Section III, we present our proposed LTDL model. Experi-
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mental results and analysis are reported in Section IV. We con-
clude the paper with future work discussions in Section V.

II. RELATED WORK

In this section, we review the work most related to our
research, including feature learning, concept hierarchy-based
multimedia analysis, and hierarchical models.

A. Feature Learning

Feature learning is a classical problem in machine learning,
and extensive efforts have been devoted to this research area.
In this section, we briefly review three kinds of feature learning
methods: conventional feature learning, hierarchical feature
learning, and cross-modality feature learning.
Conventional feature learning is based on conventional ma-

chine learning methods, and to learn the latent representation.
One kind of methods in this category aims to find a low-rank
approximation for the raw features, including principal compo-
nent analysis (PCA) [6], independent component analysis (ICA)
[7], etc. Theymap the raw data to a lower-dimensional represen-
tation based on the assumption that the data lie (approximately)
in an underlying low-dimensional linear subspace. Another kind
of methods is based on the single-layer network, e.g., RBM,
auto-encoder, and -means clustering. Reference [19] demon-
strated that large numbers of hidden nodes and dense feature
extraction are critical for achieving high performances of these
methods. In addition, the topic model [20] can also be regarded
as a solution of feature learning, which aims to discover the ab-
stract “topics” that occur in a collection of raw data and take the
“topics” distributions as the semantic representation of the raw
data.
Some pioneering work for hierarchical feature has been done,

especially in dictionary learning and sparse coding [8]. Refer-
ences [21] and [22] proposed a joint dictionary learning algo-
rithm to exploit the visual correlation within a group of visu-
ally similar object categories for dictionary learning where a
commonly shared dictionary and multiple category-specific dic-
tionaries are accordingly modeled. Reference [23] proposed a
novel dictionary learning method by taking advantage of hier-
archical category correlation. For each internode of the hierar-
chical category structure, a discriminative dictionary and a set
of classification models are learnt for visual categorization, and
the dictionaries in different layers are learnt to exploit the dis-
criminative visual properties of different granularity.
Cross-modality feature learning focuses on combination of

data in different modality data space. [24] learned cross-modal
correlation between visual and auditory feature spaces, and
treated such correlation as complementary information for
clustering on image-audio dataset. Reference [25] proposed a
coupled linear regression framework to deal with the problem of
cross-modal matching. Reference [26] presented a cross-modal
approach for extracting semantic relationships between con-
cepts using tagged images based on canonical correlation
analysis (CCA).
From the perspective of the depth of the model architecture,

the above methods are shallow models. Shallow models suffer
from the curse of dimensionality, and have limited capability

in learning the distributed representation in complex situations
[27].
Recently, a novel kind of deep learning framework [28],

which models the learning task by using deep architectures
composed of multi-layer nonlinear modules, rises up to the
challenges and provides a proper tool for automatic feature
learning. Typical deep models include Deep Belief Nets [29],
Deep Auto-encoder [30], Conventional Neural Network [31],
etc. Considering the strong power of feature learning from the
visual content, we integrate the concept hierarchy into the deep
model [30] to learn the feature hierarchy.

B. Concept Hierarchy

Concept hierarchy organizes the concepts into a tree struc-
ture according to their semantics, where each node represents a
semantic concept, such as WordNet [18] and LSCOM [32]. Re-
cent work on exploiting the concept hierarchy for multimedia
analysis involves a wide kinds of applications [33]–[36]. For
example, [33] proposed a semantic hierarchical classifier that
uses the semantics of image labels to extract knowledge about
the inter-class relationships and integrates it into the visual ap-
pearance learning procedure. Reference [37] processed the input
data by applying a hierarchy-based heuristics for feature se-
lection and feature aggregation. Most of the existing work on
using the concept hierarchy for image/video retrieval focused
on semantic similarity computation between query and images/
videos by integrating the concept hierarchical information. In
the method proposed by [35], given two images, their visual
nearest neighbor images are first found, and then their semantic
distance is computed as a distance between the concepts of their
neighbors. Reference [36] developed a hierarchical bilinear sim-
ilarity function for image retrieval.
Different from the existing methods which exploit the con-

cept hierarchy for end-task multimedia analysis, we embed
the concept hierarchy information into the visual content to
learn the hierarchical feature representation. To the best of our
knowledge, it is the first time that concept hierarchy is used for
learning feature hierarchies.

C. Hierarchical Models

There are a number of hierarchical models for visual recogni-
tion and multimedia analysis. Compared with the conventional
“flat” structure model, the hierarchical models handle data anal-
ysis with more than one level of parameters [38]. According
to the learning ways of the parameters, hierarchical struc-
tured models can be divided into two categories: hierarchical
Bayesian models and discriminative hierarchical models, both
of which are widely used for multimedia analysis.
Hierarchical Bayesian models represent the data within the

Bayesian framework by defining the variables in the higher
layer as prior knowledge of the variables in the lower layer.
Typical hierarchical Bayesian models include various hierar-
chical topic models [39] which address the problem of learning
topic hierarchies from data. Reference [40] utilized the Chinese
restaurant process (CRP) for multi-modal visual dictionary
learning. Similarly, [41] proposed a hierarchical topic model
based multi-modal framework for web video faceted subtopic
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retrieval. Reference [42] explored the hierarchical topic struc-
ture in the retrieved video collection and presented users with
videos organized into semantic clusters.
Different from the hierarchical Bayesian models, discrim-

inative hierarchical models represent the data by directly
transforming the variables in the lower layer to those in the
higher layer rather than defining the priors. Various trans-
forming methods such as CRF and MRF can be used. Reference
[43] proposed a hierarchical CRF model to deal with the
problem of labeling images of street scenes with several dis-
tinctive object classes. Analogously, [44] and [45] utilized
hierarchical CRF for non-rigid object detection and object
class image segmentation respectively. Reference [46] and [47]
utilized the hierarchical MRF for sonar picture segmentation
and multi-object tracking respectively.
Note that the deep learning model can also be considered as

a hierarchical model, since the deep architecture includes mul-
tiple parameters and models the data into a hierarchy. They are
widely used for visual recognition [48], image retrieval [49],
etc.
The existing hierarchical models focus on modeling the

visual content information while the corresponding hierar-
chical information of tags/concepts is ignored. Therefore, these
methods cannot be directly used in our task.

III. LEARNING FEATURE HIERARCHIES

In this section, we propose a novel Layer-wise Tag-embedded
Deep Learning (LTDL) model to seamlessly combine the vi-
sual content and the associated tag hierarchy information to gain
more representative hierarchical features. Meanwhile, we uti-
lize the hierarchical features learned by the LTDL model for the
hierarchical image annotation task.

A. Layer-Wise Tag-Embedded Deep Learning Model

A tag hierarchy (taxonomy) is a forest whose trees are de-
fined over a set of tags, and a multi-label is said
to respect a tag hierarchy if and only if is the union of one or
more paths in , where each path starts from a root but need not
terminate on a leaf [50]. For an image instance , its multi-label
is which is any subset of
the whole tag set , where belongs
to the multi-label of if and only if .
Given the image visual content feature , we divide the asso-

ciated multi-label into levels according to the tag hierarchy
to make with levels

from bottom to up. Our goal is to learn a hierarchical feature rep-
resentation with the feature in
corresponding to the tags in level , where

. Since in the tag hierarchy, the tags in the higher levels
are more abstract than those in the lower levels, the features in
the higher layers are also more abstract than those in the lower
layers in the final learned feature hierarchy.
For convenience, the symbols used in this model are sum-

marized in Table I. Since the visual content and the tag hier-
archy are with different modalities and different intrinsic data
structures in spaces, it is challenging to fuse them into a la-
tent hierarchical feature. Firstly, the low-level visual feature is

TABLE I
SUMMARY OF THE SYMBOLS

Fig. 3. Layer-wise tag-embedded deep learning model.

a “flat” vector for the image and there is no multiple representa-
tion while the tag hierarchy represents the image with multiple
levels of semantics. Secondly, it is difficult to make the features
in each layer in the learned feature hierarchy correspond to the
semantic tags in the same level, which involves the problem of
feature interpretation for each layer. Thirdly, it is challenging
to design a reasonable fusion mechanism of two kinds of struc-
tured information even if both of them are hierarchical. To the
best of our knowledge, there is no existing related work.
Towards the challenges discussed above, we design a novel

LTDL model which is shown in Fig. 3. In our model, we con-
struct a hierarchical structured model with layers, where the
variables in the top layers correspond to the feature hierar-
chies in the layers. In our model, the visual content informa-
tion and the corresponding tags are fused in a layer-wise way.
Deep learning models, which learn the feature hierarchy from

visual content by composition and decomposition of the lower-
level features, fit well to our task. On one hand, from the view
of the structure, they learn the visual features in the same layer-
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wise way, and obtain the hierarchical structure; on the other
hand, deep learning models have strong power of feature extrac-
tion [1], [27], [51]. Among these deep models, deep auto-en-
coder is an effective and easy-training model [52], based on
which we construct the visual content feature hierarchy. Dif-
ferent from the mainstream training mechanism with two sep-
arate stages of pre-training and fine-tuning in the current deep
auto-encoder model, our method trains the architecture by alter-
nating the two stages.
Note that the deep architecture has layers, which is larger

than the number of levels in the tag hierarchy. If we set equal
to , the features in the lowest layer correspond to the tags

. However, we argue that it is difficult to learn se-
mantic representation from the low-level raw features directly.
Hence, in our model, from the low-level raw feature space to
the feature space corresponding to the semantic tags ,
there are some layers of non-linear mappings, and only this can
result in the consistence of the feature with the se-
mantic tags .

Algorithm 1: Layer-Wise Tag-Embedded Deep Learning
Model

Input:
Low level features of images ;
Number of deep network layers L;
Number of tag hierarchy layers K;
Tag hierarchy ;
Initial weights and bias parameters , ;

Output:
The missing hierarchical tags

1 for do
2 for do

3 Greedy layer-wise pre-training by learning a
denoising auto-encoder at a time;

4 for do
5 Supervised fine-tuning the parameters from the layer

to layer ;
6 Learning the multimodal auto-encoder between the

, , and ;

From the low-level feature in the lowest layer to the
layer , each two adjacent layers constitute an auto-
encoder. In order to make the model more robust, we take the
denoising version of the auto-encoder [30]. For the adjacent
layers and , a fixed number

of components are chosen randomly, and their values are
forced to 0, while the others are left untouched and we get the
corrupted vector . Then we transform it to get the
representation

(1)

Then the latent representation is mapped back to a “recon-
structed” vector

(2)

where is the transposition of . The parameters
are optimized to minimize the recon-

struction cross-entropy

(3)

After performing this process in a layer-wised unsupervised
way from a low-level feature in the lowest layer to the
layer , we finally gain the feature vector ,
which can be considered as the preliminary latent representation
of the visual content. It then can be used for later fusion with the
tag hierarchy.
Towards the challenges of feature interpretation for each

layer and the difficulty of fusion of visual content and tag hier-
archy information, we take two steps in each layer alternately:
supervised training and multimodal fusion. Next, we introduce
the two steps for hierarchical feature learning and explain the
ideas behind the operations.
The latent presentation from the unsupervised pre-training is

completely based on themapping and reconstruction operations,
which is more abstract than the low-level visual feature. How-
ever, on one hand, this is not enough for explicit feature hier-
archy in our task. It is unclear to which semantic level in the
tag hierarchy the current feature layer corresponds if only the
low-level visual information is used, and the problem of feature
interpretation cannot be addressed. On the other hand, the con-
textual tag information can provide a way to refine the param-
eters of the nets below the current layer which results in more
representative features.
Based on the ideas discussed above, in our model, we firstly

use tags to fine-tune the parameters
from layer 0 to layer , and the cross-entropy loss is used

(4)

where is the predicted tag value of the -th dimension of
the -th sample from the feature . Based on the fine-tuned
parameters, the refined latent feature representation can be
gained by multiple non-linear mapping from bottom to up, and
we can consider that corresponds to the semantic represen-
tation of .
The semantic information is hierarchical and we fuse the vi-

sual content and the tag information in a layer-wise way. Hence
after gaining the current feature representation , we next try
to gain the higher representation . Different from the con-
ventional deep methods where only is utilized, we combine
the feature and the tag to learn a multi-modal deniosing
auto-encoder, which learns a probabilistic density of over
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the space of multi-modal inputs. Given and , the values
of are computed by

(5)

The parameters are optimized to minimize a modified recon-
struction cross-entropy

(6)

where is the “reconstructed” vector for the , and
is the “reconstructed” vector for the . They are parts of the
vector . We believe that this multi-modal fusion is valuable.
Firstly, the two modalities typically carry different kinds of in-
formation, and they are usually with complementary correla-
tional structure [16]. The multi-modal fusion can help the higher
layer feature to carry clearer semantic information. Sec-
ondly, and most importantly, when we optimize the parameters
in (6), and are optimized simultaneously, and the in-
formation in the tags will be transmitted to , which is the
target parameter to be learned in our task. In addition, as we
consider and in the same semantic layer, the merger is
reasonable.
After the fusion of feature and tags, we perform the step of

supervised training, and use the tags to fine-tune in a
supervised way the parameters which can gain the refined latent
feature .
The two steps alternate until the top layer of the network is

reached. In this way, we achieve three goals: 1) The visual con-
tent information and the tag information are fused in a layer-
wise way, and this process is natural and in accordance with
the current feature learning mechanism; 2) The final features in
multiple layers constitute a feature hierarchy. This hierarchical
feature is more representative than regular “flat” features; 3) The
feature in each layer is responsible for the corresponding tags in
the current layer, which makes the hierarchy property clearer.

B. Modeling Task
In many cases, there is only visual information of the im-

ages and the associated tags are absent. For these images, our
LTDL model combining the associated tag hierarchy can gen-
erate missing tags in a hierarchical way, which can be viewed
as hierarchical image annotation.
The modeling task of hierarchical image annotation based on

the tag hierarchy is defined as follows: for an image instance ,
our goal is to predict its multi-label , and meanwhile to meet
conditions that every data instance is labeled with a (possibly
empty) set of tag nodes, and whenever an instance is labeled
with a certain node , it is also labeled with all the nodes on the
path from the root of the tree down to the node .
Based on the trained deep architecture, for an image with

the low-level feature , we firstly map it into the feature space
through multiple non-linear transformation from

Fig. 4. Annotation results from the prediction probability (a), multi-path la-
belling, and partial-path labelling (b).

the layer to in an unsupervised layer-wise
way. Then for the learned features
in each layer, we can generate the corresponding tags

. The probability of the -th
component is predicted by

(7)

where denotes the weights between the tag and the fea-
ture , and it is trained in the supervised fine-tuning stage by
(4). Based on the prediction probabilities, we can get the anno-
tation tags for each layer by selecting the tags with maximum
probability for each layer. Note that, in the prediction process,
since the tags are missing, the multi-modal fusion step in the
training set is not conducted in the test set.
In order to make the annotation results meet the condition that

if an instance is labeled with the node , it should also be labeled
with the parent of node PAR( ), we generate the hierarchical
tags by labeling the parents of labeled nodes recursively until
reaching the top layer. Fig. 4 shows an example for our method.
Fig. 4(a) shows the annotation results from the prediction prob-
ability, and the nodes , , are labeled for the instance. Ac-
cording to the condition, we also label the node (parent of
node ) and node (parent of node ), and it is in the same
way for node , which is shown in Fig. 4(b). This method is
named multi-path labeling and partial-labeling in some related
literature [53], for the instance can be labeled with nodes be-
longing to more than one path or a path that does not end on a
leaf in the forest. Note that other than multi-path labeling and
partial-labeling, it seems that the method of finding the path in
the hierarchy with the highest score is alternative choice. How-
ever, this method will transfer the hierarchical classification into
regular classification, where each class is a path, and the classic
H-loss evaluation is not applicable for it.
Different from the conventional “flat” image annotation

methods, our model can generate the tags in different levels
according to different latent features and the tag hierarchy,
which makes the annotation more refined.
Note that the hierarchical feature learning is the core focus

in this paper, and the hierarchical feature learned in the model
can be applied to a range of multimedia tasks. Hierarchical tag
generation is one of the most common and important tasks. As
the features are utilized in different ways in different application
circumstances, the modeling task is application-dependence or
data-dependence, and the configuration of the prediction needs
to be designed carefully.
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Fig. 5. Two examples of tag hierarchy of our dataset.

The proposed Layer-wise Tag-embedded Deep Learning
(LTDL) model is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we evaluate the proposed LTDL model on a
large-scale image dataset for hierarchical image annotation. In
the experiments, we use two kinds of metrics for the evaluation:
multi-class AUC (Area Under an ROC Curve) [54] which is di-
rectly based on the prediction probabilities, and the hierarchical
loss which is based on the explicit annotation results.

A. Dataset

We conduct a series of experiments on ImageNet [55], which
is a large-scale ontology of images organized according to the
WordNet hierarchy. Each concept in the hierarchy is depicted
as hundreds of thousands of images collected from the Web.
We used a subset of ImageNet with 1,000 concepts which were
used for ILSVRC 2013.1
We construct a 3-layers concept hierarchy, where the 1,000

concepts are modeled as the leaf nodes. We remove the isolated
nodes (the depth is less than 3). The final hierarchy consists of
1,137 concepts, including 55 concepts in the top layer (sup-cate-
gories), 180 concepts in the middle layer (mid-categories), and
902 concepts in the lowest layer (sub-categories). Among the
hierarchy, two examples of the tag hierarchy of the dataset are
shown in Fig. 5. This corresponds to a total of 1,106,500 training
images, 45,100 validation images, and 50,000 test images. For
each image instance, there are three tags (one for each layer)
and they constitute a tree with a single path from the top layer
to the bottom layer.

B. Experimental Setting

To test the effectiveness of our LTDL model for generating
missing tags, we conduct experiments based on the constructed

1[Online]. Available: http://www.image-net.org/challenges/LSVRC/2013/
index

tag hierarchy. In order to improve the performance of hierar-
chical image annotation, we make our model based on the fea-
tures learned from the convolutional neural network [56]. In our
experiments, Deep Convolutional Activation Features of [57]
are used as input, where the center only option is selected.
For the parameter setting, we set and . The

corruption level for the lowest layer is 0.1, for themiddle 0.2 and
for the top layer 0.3. In the training stage, the stochastic gradient
decent method is used in the supervised fine-tuning stage, and
as in the classic setting, we set the learning rate as 0.1.
For comparison, we compare our model with both global

“flat” methods and hierarchical methods. For comparison with
global “flat” methods, deep auto-encoder is used. Since there
are 3 (layer 3, layer 4, and layer 5) layers in the feature hier-
archies in our network, to be fair, we compare our model with
the same deep non-linearmodulars (Auto-encoder) and different
layers, and the tag hierarchy is not used, including Stacked De-
noising Auto-encoder (SDA) with 3 layers (SDA-3), 4 layers
(SDA-4), and 5 layers (SDA-5). In the global “flat” methods, we
predict the probabilities of the whole tags (three layers) simul-
taneously. Also, we compare our proposed LTDL model with
two typical kinds of hierarchical methods: top-down approaches
and bottom-up approaches [58]. For the top-down approach, we
compare with the method analogous to [59]. In the experiment,
we recursively split the set of possible labels according to the
tag hierarchy and logistic regression (H-LR) is used. For the
hierarchical bottom-up (H-BU) approach, we use deep auto-en-
coder to predict the probabilities of the tags in the bottom layer
(sub-categories), and then infer the mid-categories and sup-cat-
egories based on the tag hierarchy, where the probability of the
node in the middle and top layer is the sum of probabilities of
its children.
Note that there are many methods for image annotation.

Especially, [56] proposed to use deep convolutional neural
networks for image classification and achieved a good result.
However, in this paper, we do not conduct comparative ex-
periments with them due to the following reasons: 1) these
models deal with conventional image classification instead of
hierarchical image annotation, thus the problem to be solved is
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Fig. 6. AUC results for the whole categories and the categories in three layers, respectively. (a) AUC scores of the whole categories. (b) AUC scores of sub-
categories. (c) AUC scores of mid-categories. (d) AUC scores of sup-categories.

different from ours; 2) we focus on investigating the usefulness
of tag hierarchy information for hierarchical feature learning
and our model is built on the SDA (i.e., SDA + tag hierarchy),
thus we think that the comparison should be conducted with
SDA, rather than CNN [56]. The effects of the network archi-
tecture cannot be eliminated if we compare with a model with
a different architecture.

C. Mutli-Class AUC Evaluation

The quality of a hierarchical image annotation will be evalu-
ated with the metric of multi-class AUC, which is directly based
on the prediction probabilities. In our experiments, we show the
multi-class AUC for each layer as well as the average results for
the whole categories.
For each layer, we first compute the two-class for

the pair of tags and , which is computed as follows: for all
the examples with class labels and , the prediction results
are ranked in increasing sequences according to the prediction
probabilities (take the sample with tag as positive sample,
and take that with tag as negative sample), and then
is calculated by the following equation:

(8)

where and are the number of positive and negative sam-
ples respectively, and , where is the
rank position of the -th positive example in the ranked list.
The higher the positive examples are ranked (with higher prob-
ability of being a positive example), the higher the term will
be. Therefore, AUC measures the quality of ranking, which is a
more elegant metric in our problem than accuracy.
Multi-class AUC [60] is a muti-class generalization of the

two-class AUC, which calculates the overall performance by
averaging the two-class AUC over all pairs of classes

(9)

Fig. 7. Average hierarchical loss for different models.

Fig. 8. Example image and associated ground-truth tags (a) and the annotation
results from LTDL model (b).

where is the number of classes in the current layer, and
, which is the measure of sep-

arability between classes and .
The experimental results of the whole average AUC and the

separate AUC scores for each layer in the tag hierarchy are
shown in Fig. 6. Although the AUC score of the H-BU method
is slightly better than our method for the sup-categories, on
the whole, LTDL outperforms other methods. From the exper-
iments, we can draw the following conclusions: 1) Compared
with the global “flat”methods without using the tag information,
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Fig. 9. Plot of the average values contained for the H-loss mistake distribution over hierarchy levels. (a) SDA-3. (b) SDA-4. (c) SDA-5. (d) H-TD. (e) LTDL.
(f) H-BU.

our model integrating the tag information into the visual con-
tent learns more representative features, which is reflected in the
higher AUC scores. The tags are helpful for improving the fea-
ture learning, and the layer-wise fusionmechanism in our model
is effective; 2) The multi-class AUC is based on the probabili-
ties of the tags in each layer and not dependent on the taxonomy
information. However, in the H-LR and H-BUmethods, the lex-
ical taxonomy of tag hierarchy is utilized in the process of gen-
erating prediction probabilities, while in our LTDL model, the
probabilities are generated by the learned hierarchical features
absolutely, which demonstrates the more representative ability
of our learned feature hierarchies.

D. Hierarchical Loss Evaluation
We also evaluate the methods with the metric of hierarchical

loss [53] that considers the taxonomical structure to measure the
discrepancy between the predicted multilabel
and the true multilabel . The leading idea
underlying our hierarchical loss function is: if a parent class has
been predicted wrongly, then errors in the children should not
be taken into account. The loss is defined as

(10)

where are fixed cost efficients, which are set
as 1 (uniform H-loss) in our experiments, and denotes
the set of ancestors of .
The average hierarchical loss for different models can be

found in Fig. 7. From the results, we can see that our LTDL
outperforms the other methods. Despite all this, we find that
sometimes LTDL fails to deliver correct results. Especially,
compared with hierarchical methods, LTDL may give the anno-
tation results that the predicted tag in sup-level is semantically
inconsistent with that in mid-level, and the tag in mid-level
is semantically inconsistent that in sub-level. Fig. 8 shows an
image and associated ground-truth tags (a), and the annotation
results from our LTDL model (b), where the other irrelevant
tags are omitted. The tags filled with green are the predicted
tags directly from the corresponding learned features, and the
tags with an orange box are annotated tags through multipath
labeling and partial-labeling step. In this case, the LTDL
predicts the wrong tags for each layer, and the tags “reptile,
reptilian”, “marsupial, pouched mammal”, “Rock beauty, Holo-
canthus tricolor” are not in the same trees. This not only leads
to high H-loss (4 in this case), but means that the semantics
of the predicted tags in each layer are very different. We think
that this phenomenon is caused by the missing prior on tag
relationships. Although the layer-wise supervised training and
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multimodal fusion are used in the model, the finer granular
relationships between tags are not embedded.
In order to get insight into the distribution of mistakes across

the different hierarchy layers, we also evaluate the H-loss mis-
takes made at each layer as [53]. The nodes makes an H-loss
mistake if

(11)

Further on, we consider the false positive (FP) and false negative
(FN) mistakes. Node makes a false positive if

(12)

and makes a false negative if

(13)

Fig. 9 shows the distribution across the hierarchical layers of
the two kinds of mistakes in our experiments. From the results,
we can see that our LTDL model makes fewer mistakes and
achieves better performance. Besides, we find that the number
of false positive mistakes is bigger than that of the false negative
mistakes, which results from the fact that our predicted multi-
label is multi-path trees or partial-path trees while the true multi-
label is a single-path tree.

V. CONCLUSION
In this paper, we propose a novel idea to explore the intrinsic

hierarchical structure for images from the perspective of feature
learning. Different from the current trend in multimedia analysis
of using pre-defined features or focusing on the end-task “flat”
representation, we propose a novel Layer-wise Tag-embedded
Deep Learning (LTDL) model to learn the hierarchical features
which correspond to hierarchical semantic structures in tag hi-
erarchies. In the model, the supervised training and the multi-
modal fusion alternate in a layer-wise way.
Based on the LTDL model, we develop a hierarchical image

annotation system, which generates the tags in a hierarchical
way. We evaluate the effectiveness of the model on the public
large-scale ImageNet dataset. The experimental results have
demonstrated the effectiveness of the LTDL model.
For the future work, firstly, we will investigate the methods

that make the property of feature hierarchy more explicit with
better feature interpretation. Secondly, since the tags in the tag
hierarchies have not only the inter-layer relationship, but also
the intra-layer relationship, we will improve our methods so
as to address the relationship between tags in the same layer.
Thirdly, the idea and model should be evaluated in more social
media tasks and applications, and we will investigate in partic-
ular whether the derived feature hierarchies are helpful to ad-
dress other multimedia applications, such as social image man-
agement, structural image retrieval, etc.
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