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a b s t r a c t

In this paper, the global stability analysis of fractional-order Hopfield neural networks with time delay is
investigated. A stability theorem for linear fractional-order systems with time delay is presented. And, a
comparison theorem for a class of fractional-order systems with time delay is shown. The existence and
uniqueness of the equilibrium point for fractional-order Hopfield neural networks with time delay are
proved. Furthermore, the global asymptotic stability conditions of fractional-order neural networks with
time delay are obtained. Finally, a numerical example is given to illustrate the effectiveness of the
theoretical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus, as a classical mathematical notion, is a general-
ization of the ordinary differentiation and integration to arbitrary
non-integer order. Although fractional calculus has a long history, its
applications to physics and engineering are just a recent focus of
interest to many researchers. Compared with the classical integer-
order systems, fractional-order systems provide an excellent instru-
ment for the description of memory and hereditary properties of
various materials and processes. It would be far better if many
practical problems are described by fractional-order dynamical sys-
tems rather than integer-order ones. In fact, real-world processes
generally or most likely are fractional-order systems, such as phe-
nomenological description of viscoelastic liquids [1], diffusion and
wave propagation [2,3], colored noise [4], boundary layer effects in
ducts [5], electromagnetic waves [6], fractional kinetics [7], electrode-
electrolyte polarization [8], dielectric relaxation phenomena in poly-
meric materials [9] and fractional-order models of happiness [10]. All
of the results demonstrate the importance of fractional calculus and
motivate the development of new applications.

Since Hopfield neural network [11] was referred by Hopfield in
1984, it has attracted great attentions of many scientists and has been
applied in various realms such as pattern recognition, associative
memory and combinatorial optimization. In recent years, the research-
ers found that the fractional calculus could be well used in the study of

neural networks. Kaslik et al. pointed out that the common capacitance
from the continuous-time integer-order Hopfield neural network can
be replaced by the fractance, giving birth to the so-called fractional-
order Hopfield neural network model [13]. In fact, the fractional-order
differentiation provides neurons with a fundamental and general
computational ability that contributes to efficient information proces-
sing, stimulus anticipation, and frequency-independent phase shifts in
oscillatory neuronal firings [12]. Now, a lot of results on fractional-order
Hopfield neural networks have been obtained [13–19]. The stability
and multi-stability of fractional-order Hopfield neural networks with
ring or hub structures were investigated in [13,14]. The stability of
fractional-order neural networks was fully investigated through an
energy-like function analysis in [15]. A discrete time fractional-order
Hopfield neural network was presented in [16]. The α-stability and α-
synchronization for fractional-order Hopfield neural networks were
investigated in [17]. It was pointed out that the stability in [17] was not
α-stability but Mittag–Leffler stability in [18]. Some sufficient condi-
tions are established to ensure the existence and uniqueness of the
nontrivial solution for the fractional-order Hopfield neural networks in
[19]. There were also several recent literatures discussing the topics
including chaos and chaotic synchronization in fractional-order neural
networks, which can be found in [20–23].

Note that most of the above results on the stability of fractional-
order Hopfield neural networks did not consider time delay. In
practice, because of finite switching speeds of the amplifiers, time
delay is well-known to be unavoidable and it can cause oscillations
or instabilities in dynamic systems. The stability as a very essential
topic in fractional-order systems with time delay has attracted
increasing interest in recent years [24–29]. However, there are just
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few results on the stability of fractional-order neural networks with
time delay [30–32]. A sufficient condition was established for the
uniform stability of fractional-order neural networks with time
delay in [30]. The fractional-order neural networks of two and three
neurons with time delay were discussed, and the stability condi-
tions were derived in [31], Some sufficient conditions for stability of
the fractional-order Hopfield neural networks with hub structure
and time delays were obtained, and the stability conditions of two
fractional-order Hopfield neural networks with different ring struc-
tures and time delays were derived in [32]. But, the above results of
fractional-order Hopfield neural networks with time delay did not
consider global stability.

Furthermore, the global stability is an important topic in the
fractional-order neural networks. There are few results on the global
analysis of fractional-order Hopfield neural networks. The authors
consider the global stability of fractional-order neural networks without
time delay in [17]. But, some conclusions in [17] are incorrect that lead
to unqualified results of global stability which are given in [18]. The
conditions on the global Mittag–Leffler stability are established by using
Lyapunov method for memristor-based fractional-order neural net-
works without time delay [33]. However, to the best of our knowledge,
there is no known result concerning a theoretical global stability
analysis for fractional-order Hopfield neural networks with time delay.

Motivated by the above discussion, this paper is devoted to
presenting a theoretical global stability analysis for fractional-order
Hopfield neural networks with time delay. Firstly, a stability theorem
for linear fractional-order systems with time delay is discussed. And a
comparison theorem for a class of fractional-order systems with time
delay is shown. Then, using the contraction mapping theorem, the
existence and uniqueness of the equilibrium point for fractional-order
Hopfield neural networks with time delay are proved. Finally, the
global asymptotic stability of fractional-order neural networks with
time delay is investigated, and the corresponding conditions for global
asymptotic stability of fractional-order neural networks with time
delay are also derived by using Lyapunov method.

The paper is structured as follows. In Section 2, the preliminaries
concerning fractional-order differential systems with time delay are
introduced. Some results for the stability analysis of fractional-order
systems with time delay are given in Section 3. Then, the global
asymptotic stability of fractional-order Hopfield neural networks
with time delay is investigated in Section 4. And a numerical
example is given in Section 5 to illustrate the effectiveness of the
theoretical results. Some conclusions are included in Section 6.

2. Preliminaries

Some elementary notations are introduced for the Caputo
fractional-order derivative and its properties. The main theoretical

tools for the qualitative analysis of fractional-order dynamical
systems are given in [34–36].

The Caputo fractional-order derivative is defined as

0D
q
t f ðtÞ ¼

1
Γðn�qÞ

Z t

0

f ðnÞðτÞ
ðt�τÞq�nþ1 dτ;

where n is an integer, n�1oqrn and Γð�Þ is a Gamma function.
The Laplace transform of the Caputo fractional-order derivative is

Lf0Dq
t f ðtÞ; sg ¼ sqFðsÞ� ∑

n�1

k ¼ 0
sq�k�1f ðkÞð0Þ; n�1oqrn:

When f ðkÞð0Þ ¼ 0; k¼ 1;2;…;n, then

Lf0Dq
t f ðtÞ; sg ¼ sqFðsÞ:

Some properties of the Caputo fractional-order derivative [37]
are obtained as

(1) 0D
q
t c¼ 0, where c is any constant.

(2) If xðtÞACm½0; T� for T40 and m�1oqomAZþ , then

0D
q
t xð0Þ ¼ 0.

(3) If xðtÞAC1½0; T � for some T40, q1; q2ARþ , q1þq2r1, then

0D
q1
t 0D

q2
t xðtÞ ¼ 0D

q1 þq2
t xðtÞ.

The following definitions will be used in this paper.
The Caputo derivative is employed in the paper, and the Adams–

Bashforth–Moulton predictor–corrector scheme is applied to solve
the fractional-order differential equations with time delay [38].

The l1 norm is defined by JxðtÞJ ¼∑n
i ¼ 1jxiðtÞj, where xðtÞ ¼

ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT ARn.

3. Some results on fractional-order systems with time delay

Some results on fractional-order systems are given in this section,
which will be used in global stability analysis of fractional-order
Hopfield neural networks with time delay. The stability analysis of
linear fractional-order systems with time delay is discussed. And a
comparison theorem for a class of fractional-order systems with time
delay is shown.

Consider the following linear fractional-order system with time
delay:

0D
q
t XðtÞ ¼ AXðtÞþXðtτÞ; ð1Þ

where A¼ ðaijÞn�n, XðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT , XðtτÞ ¼ ð∑n
j ¼ 1k1jxj

ðt�τ1jÞ;∑n
j ¼ 1k2jxjðt�τ2jÞ;…;∑n

j ¼ 1knjxjðt�τnjÞÞT .
Especially, if τij ¼ τj, for i¼ 1;2;…;n, K ¼ ðkijÞn�n, the system (1)

can be written in the following vector form:

0D
q
t XðtÞ ¼ AXðtÞþKXðt�τÞ; ð2Þ

where Xðt�τÞ ¼ ðx1ðt�τ1Þ; x2ðt�τ2Þ;…; xnðt�τnÞÞT .
Taking Laplace transform [34,35] on both sides of (1), we have

where Yi(s) is the Laplace transform of xi(t) with YiðsÞ ¼ LðxiðtÞÞ and
ϕiðtÞ ð1r irn; tA ½�τ;0�Þ is an initial value.

sqY1ðsÞ�sq�1ϕ1ð0Þ ¼ k11e� sτ11 ðY1ðsÞþ
R 0
� τ11

e� stϕ1ðtÞ dtÞþk12e� sτ12 ðY2ðsÞþ
R 0
�τ12

e� stϕ2ðtÞ dtÞþa12Y2ðsÞ
þ⋯þk1ne� sτ1n ðYnðsÞþ

R 0
�τ1n

e� stϕnðtÞ dtÞþa1nYnðsÞþa11Y1ðsÞ
sqY2ðsÞ�sq�1ϕ2ð0Þ ¼ k21e� sτ21 ðY1ðsÞþ

R 0
� τ21

e� stϕ1ðtÞ dtÞþa21Y1ðsÞþk22e� sτ22 ðY2ðsÞþ
R 0
�τ22

e� stϕ2ðtÞ dtÞ
þ⋯þk2ne� sτ2n ðYnðsÞþ

R 0
�τ2n

e� stϕnðtÞ dtÞþa2nYnðsÞþa22Y2ðsÞ
⋯
sqYnðsÞ�sq�1ϕnð0Þ ¼ kn1e� sτn1 ðY1ðsÞþ

R 0
� τn1

e� stϕnðtÞ dtÞþan1Y1ðsÞþkn2e� sτn2 ðY2ðsÞþ
R 0
�τn2

e� stϕ2ðtÞ dtÞ
þan2Y2ðsÞþ⋯þknne� sτnn ðYnðsÞþ

R 0
�τnn e

� stϕnðtÞ dtÞþannYnðsÞ;

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð3Þ
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We can rewrite (3) as follows:

ΔðsÞ

Y1ðsÞ
Y2ðsÞ
⋮

YnðsÞ

0BBBB@
1CCCCA¼

d1ðsÞ
d2ðsÞ
⋮

dnðsÞ

0BBBB@
1CCCCA;

in which

d1ðsÞ ¼ sq�1ϕ1ð0Þþk11e� sτ11
R 0
�τ11

e� stϕ1ðtÞ dtþk12e� sτ12
R 0
�τ12

e� stϕ2ðtÞ dt
þ⋯þk1ne� sτ1n

R 0
�τ1n

e� stϕnðtÞ dt
d2ðsÞ ¼ sq�1ϕ2ð0Þþk21e� sτ21

R 0
�τ21

e� stϕ1ðtÞ dtþk22e� sτ22
R 0
�τ22

e� stϕ2ðtÞ dt
þ⋯þk2ne� sτ2n

R 0
�τ2n

e� stϕnðtÞ dt
⋯

dnðsÞ ¼ sq�1ϕnð0Þþkn1e� sτn1
R 0
�τn1

e� stϕ1ðtÞ dtþkn2e� sτn2
R 0
�τn2

e� stϕ2ðtÞ dt
þ⋯þknne� sτnn

R 0
�τnn e

� stϕnðtÞ dt;

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ΔðsÞ ¼

sq�k11e� sτ11 �a11 �k12e� sτ12 �a12 ⋯ �k1ne� sτ1n �a1n
�k21e� sτ21 �a21 sq�k22e� sτ22 �a22 ⋯ �k2ne� sτ2n �a2n

⋮ ⋮ ⋱ ⋮
�kn1e� sτn1 �an1 sq�kn2e� sτn2 �an2 ⋯ �knne� sτnn �ann

0BBBB@
1CCCCA:

We call ΔðsÞ as the characteristic matrix of system (1) and detðΔðsÞÞ
as the characteristic polynomial of ΔðsÞ. The stability of system (1)
is completely determined by the distribution of eigenvalues of
detðΔðsÞÞ.

If τij ¼ 0, system (1) can be written as

0D
q
t XðtÞ ¼ AXðtÞþKXðtÞ ¼MXðtÞ; ð4Þ

where

M¼

k11þa11 k12þa12 ⋯ k1nþa1n
k21þa21 k22þa22 ⋯ k2nþa2n

⋮ ⋮ ⋱ ⋮
kn1þan1 kn2þan2 ⋯ knnþann

0BBBB@
1CCCCA:

Based on the characteristic polynomial detðΔðsÞÞ and the
coefficient matrix M ðτij ¼ 0Þ, we can obtain the following
conclusions.

Theorem 3.1. If all the roots of the characteristic equation
detðΔðsÞÞ ¼ 0 for qAð0;1Þ have negative real parts, then the zero
solution of system (1) is Lyapunov asymptotically stable.

Proof. If all the roots of the characteristic equation detðΔðsÞÞ ¼ 0
have negative real parts for qAð0;1Þ, then ΔðsÞ is an invertible
matrix. From Eq. (3), one has

YðsÞ ¼ΔðsÞ�1DðsÞ;
where YðsÞ ¼ ðY1ðsÞ;Y2ðsÞ;…;YnðsÞÞT , DðsÞ ¼ ðd1ðsÞ;d2ðsÞ;…; dnðsÞÞT .
According to the final value theorem of the Laplace transform
[39,40], one has

lim
t-1

XðtÞ ¼ lim
s-0

sYðsÞ ¼ lim
s-0

ΔðsÞ�1DðsÞs¼ 0:

Hence, the zero solution of system (1) is Lyapunov asymptotically
stable. The proof is completed. □

Theorem 3.2. If qA ð0;1Þ, all the eigenvalues of M satisfy
jargðλÞj4π=2 and the characteristic equation detðΔðsÞÞ ¼ 0 has no
purely imaginary roots for any τij40; i; j¼ 1;…;n, then the zero
solution of system (1) is Lyapunov asymptotically stable.

Proof. Because the proof of this theorem is almost as same as the
one in Theorem 2.1 of Chapter 8 in [41] or in Theorem 2.2.6 of
Chapter 2 in [42] for the classical different equations, the more
details about proof can be found in [41,42]. Here, a brief illustra-
tion is taken. If τij ¼ 0, all the eigenvalues of M satisfy
jargðλÞj4π=2, that is to say that all the roots of the characteristic

equation M have negative real parts. When τija0, the character-
istics of ΔðsÞ are continuously changing with τij. Also, the char-
acteristic equation detðΔðsÞÞ ¼ 0 has no purely imaginary roots for
any τij40; i; j¼ 1;…;n, so all the roots of the characteristic
equation detðΔðsÞÞ ¼ 0 have negative real parts. Then the zero
solution of system (1) is Lyapunov asymptotically stable. The proof
is completed. □

Remark 1. In this paper, the system 0D
q
t xðtÞ ¼ AxðtÞþKxðt�τÞ

ðAa0Þ is considered, and its stability is not guaranteed under
conditions that the eigenvalues of M are satisfied jargðλÞj4qπ=2 in
[27]. In fact, when the eigenvalues of M are satisfied qπ=2o
jargðλÞjrπ=2, and the characteristic equation detðΔðsÞÞ ¼ 0 has no
purely imaginary roots for any τ40, the zero solution of

0D
q
t xðtÞ ¼ AxðtÞþKxðt�τÞðAa0Þ has unstable situation [31].

Next, a comparison theorem for a class of fractional-order
systems with time delay is shown.

Lemma 3.3. Consider the following two fractional-order systems
with time delay:

0D
q
t xðtÞ ¼ f 1ðt; xðtÞÞþg1ðt; xðt�τÞÞ;

0oqr1; xðtÞ ¼ hðtÞ;
tA ½�τ;0�;

8><>: ð5Þ

and

0D
q
t yðtÞ ¼ f 2ðt; yðtÞÞþg2ðt; yðt�τÞÞ; 0oqr1;

yðtÞ ¼ hðtÞ; tA ½�τ;0�;

(
ð6Þ

where f 1ðt; xðtÞÞ and f 2ðt; yðtÞÞ are Lipschitz continuous in
½0; þ1Þ � GðG� RÞ. Similarly, g1ðt; xðt�τÞÞ and g2ðt; yðt�τÞÞ are
Lipschitz continuous in ½�τ; þ1Þ � GðG� RÞ.

If

f 1ðt; xðtÞÞr f 2ðt; yðtÞÞ; g1ðt; xðt�τÞÞrg2ðt; yðt�τÞÞ; 8 tA ½0; þ1Þ;
then

xðtÞryðtÞ; 8 tA ½0; þ1Þ:

Proof. The solutions of systems (5) and (6) can be expressed in
the following form:

xðtÞ ¼ hð0Þþ 1
ΓðqÞ

Z t

0
t�sÞq�1½f 1ðs; xðsÞÞþg1ðs; xðs�τÞÞ� ds;
�

ð7Þ

and

yðtÞ ¼ hð0Þþ 1
ΓðqÞ

Z t

0
ðt�sÞq�1½f 2ðs; yðsÞÞþg2ðs; yðs�τÞÞ� ds: ð8Þ

Subtracting Eq. (8) from Eq. (7), one has

yðtÞ�xðtÞ ¼ 1
ΓðqÞ

Z t

0
ðt�sÞq�1½f 2ðs; yðsÞÞ� f 1ðs; xðsÞÞþg2ðs; yðs�τÞÞ

�g1ðs; xðs�τÞÞ� ds: ð9Þ
Take m1ðtÞ ¼ f 2ðt; yðtÞÞ� f 1ðt; xðtÞÞ, m2ðt�τÞ ¼ g2ðt; yðt�τÞÞ�g1
ðt; xðt�τÞÞ. It is easy to know m1ðtÞZ0, m2ðt�τÞZ0, tA ½0; þ1Þ.

Then Eq. (9) can be rewritten as

yðtÞ�xðtÞ ¼ 1
ΓðqÞ

Z t

0
ðt�sÞq�1m1ðtÞ dsþ

1
ΓðqÞ

Z t

0
ðt�sÞq�1m2ðs�τÞ ds:

ð10Þ
Since tq�1 is a nonnegative function, it then follows from Eq. (10)
that xðtÞryðtÞ; 8 tA ½0; þ1Þ. The proof is completed. □

Remark 2. According to [43], if the functions f jðj¼ 1;2Þ and
gjðj¼ 1;2Þ are Lipschitz continuous, there is the existence of
solutions in systems (5) and (6) with Caputo fractional-order
derivative.

H. Wang et al. / Neurocomputing 154 (2015) 15–23 17



Note that the conditions of Lemma 3.3 are very strong, hence
the following conclusion is given, which will be used in this paper.

Lemma 3.4. Consider the following the fractional-order differential
inequality with time delay:

0D
q
t xðtÞr�axðtÞþbxðt�τÞ; 0oqr1;

xðtÞ ¼ hðtÞ; tA ½�τ;0�;

(
ð11Þ

and the linear fractional-order differential systems with time delay

0D
q
t yðtÞ ¼ �ayðtÞþbyðt�τÞ; 0oqr1;

yðtÞ ¼ hðtÞ; tA ½�τ;0�;

(
ð12Þ

where x(t) and y(t) are continuous and nonnegative in ð0; þ1Þ, and
hðtÞZ0; tA ½�τ;0�.

If a40 and b40, then

xðtÞryðtÞ; 8 tA ½0; þ1Þ:

Proof. From system (11), there exists a nonnegative function m(t)
satisfying

0D
q
t xðtÞ ¼ �ayðtÞþbxðt�τÞ�mðtÞ; 0oqr1;

xðtÞ ¼ hðtÞ;

(
tA ½�τ;0�: ð13Þ
According to [44], the initial value problem (13) has, on the
interval ½0; kτ�, a unique solution that can be represented by
xðtÞ ¼ xiτðtÞ, and

xiτðtÞ ¼
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞϕiτ dsþciτEq;1ð�atqÞ;

0oqr1; tA ½ði�1Þτ; iτ�; ð14Þ
where ciτ is a constant, i¼ 1;2;…; k, and k is a greatest positive
integer. x0τðtÞ ¼ hðtÞ and ϕiτ is expressed as

ϕiτðtÞ ¼

bx0τðt�τÞ�mðtÞ; 0otrτ;
bxτðt�τÞ�mðtÞ; τotr2τ;
⋮
bxðk�1Þτðt�τÞ�mðtÞ; ðk�1Þτotrkτ:

8>>>><>>>>: ð15Þ

Since both tq�1 and Eq;qð�atqÞ are nonnegative functions [45], due
to xðtÞ ¼ xiτðtÞ and mðtÞZ0, Eq. (14) can be written as

xiτðtÞr
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞbxiτðs�τÞ dsþciτEq;1ð�atqÞ;

0oqr1; tA ½ði�1Þτ; iτ�: ð16Þ
Similarly, the solution of system (12) can be written as

yiτðtÞ ¼
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞbyiτðs�τÞ dsþciτEq;1ð�atqÞ;

0oqr1; tA ½ði�1Þτ; iτ�: ð17Þ
Next, we will consider xðtÞryðtÞ, tA ½ði�1Þτ; iτ�, i¼ 1;2;…; k. We
use the method of induction on k.

Let us first prove that xðtÞryðtÞ holds for k¼1. If tA ½0; τ�, then
t�τA ½�τ;0� and xðt�τÞ ¼ yðt�τÞ ¼ hðt�τÞ.

According to the systems (16) and (17), we have

xτðtÞr
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞbhðs�τÞ dsþcτEq;1ð�atqÞ ¼ yτðtÞ:

Note that taking initial conditions into account in the systems (12)
and (13), the solution is uniquely determined since we must have
cτ ¼ hð0Þ. So we prove that xðtÞryðtÞ holds for k¼1.

Next suppose that xðtÞryðtÞ holds for k, that is, let us assume
that for tA ½ðk�1Þτ; kτ�, then one has

xiτðtÞryiτðtÞ; i¼ 1;2;…; k:

Let us prove that it will also be valid for kþ1.

If the tA ½kτ; ðkþ1Þτ�, the system (16) can be written as

xðtÞr
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞbxðs�τÞ dsþcðkþ1ÞτEq;1ð�atqÞ;

¼
Z τ

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞbxτðs�τÞ ds

þ ∑
k

j ¼ 2

Z jτ

ðj�1Þτ
ðt�sÞq�1Eq;qð�aðt�sÞqÞbxjτðs�τÞ ds

þ
Z t

kτ
ðt�sÞq�1Eq;qð�aðt�sÞqÞbxðkþ1Þτðs�τÞ dsþcðkþ1ÞτEq;1ð�atqÞ:

ð18Þ
When sA ½kτ; t�, s�τA ½ðk�1Þτ; t�τ� � ½ðk�1Þτ; kτ�. According to
the assumed condition, we have xðs�τÞryðs�τÞ.

From Eq. (18), we have xðtÞryðtÞ, tA ½kτ; ðkþ1Þτ�. This com-
pletes the proof. □

Remark 3. According to [44], if the function ϕiτ is continuous,
xðtÞ ¼ xiτðtÞ and x(t) can be represented by

xiτðtÞ ¼
Z t

0
ðt�sÞq�1Eq;qð�aðt�sÞqÞϕiτ dsþciτEq;1ð�atqÞ:

In Lemma 3.4, if ϕiτ is left continuous, it still has xðtÞ ¼ xiτðtÞ except
countable points. From Eqs. (13) and (17), the same constant ciτ is
used. According to [35] (see Theorem 5.15) and [44], the constant
ciτ just depends on the initial conditions.

Lemma 3.5 (Zhang et al. [46]). If hðtÞAC1ð½0; þ1Þ;RÞ denotes a
continuously differentiable function, then the following inequality
holds almost everywhere:

0D
q
t jhðtÞjrsgnðhðtÞÞ0Dq

t hðtÞ; 0oqr1: ð19Þ

4. Global stability analysis of fractional-order Hopfield neural
network with time delay

Consider the following fractional-order Hopfield neural net-
work with time delay:

0D
q
t xiðtÞ ¼ �aixiðtÞþ ∑

n

j ¼ 1
bijf jðxjðtÞÞþ ∑

n

j ¼ 1
cijgjðxjðt�τÞÞ

þdi; i¼ 1;2;…;n; t40; ð20Þ

where qA ð0;1Þ, n corresponds to the number of units in a neural
network, xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT corresponds to the state vec-
tor at time t, ai40 is the self-regulating parameters of the
neurons, f jðxjðtÞÞ and gjðxjðt�τÞÞ denote, respectively, the measures
of response or activation to its incoming potentials of the unit j at
time t and t�τ; bij, cij are constants with bij denoting the synaptic
connection weight of the unit j to the unit i at time t , and cij
denoting the synaptic connection weight of the unit j to the unit i
at time t�τ, di is the constant control input vector.

The global stability of fractional-order neural networks with
time delay will be discussed. In order to obtain the main results,
the following assumptions are given.

Assumption 1. (A1). The neuron activation functions fj, gj are
Lipschitz continuous. That is, there exist positive constants Lj,
Kj; j¼ 1;2;…;n, such that

jf jðuÞ� f jðvÞjoLjju�vj; jgjðuÞ�gjðvÞjoKjju�vj; u; vAR:

Assumption 2. (A2). ai, bij, cij, Lj and Kj satisfy the following
condition:

bKoλ sin
qπ
2

� �
; 0oqr1;
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where bK ¼max1r irnð∑n
j ¼ 1jcjijKiÞ, λ¼min1r irnðai�∑n

j ¼ 1jbjijLiÞ.

Theorem 4.1. If Assumptions (A1) and (A2) hold, then there exists a
unique equilibrium point in system (20).

Proof. Taking aixni ¼ un

i , construct a mapping Φ : Rn-Rn, as

Φiui ¼ ∑
n

j ¼ 1
bijf j

un

j

aj

 !
þ ∑

n

j ¼ 1
cijgj

un

j

aj

 !
þ bdi ; ð21Þ

where ΦðuÞ ¼ ðΦ1ðuÞ;Φ2ðuÞ;…;ΦnðuÞÞT .
Now, we show that Φ is a contraction mapping on Rn endowed

with the l1 norm.
According to Assumption (A2), we have

max
1r irn

∑
n

j ¼ 1
jcjijKi

 !
o ai� ∑

n

j ¼ 1
jbjijLi

 !
; 1r irn:

Take

θ¼ max
1r irn

max1r irn ∑n
j ¼ 1jcjijKi

� �
þ∑n

j ¼ 1jbjijLi
ai

0@ 1A;

obviously drawn θo1.
Consider two different vectors u¼ ðu1;u2;…;unÞT and v¼ ðv1;

v2;…; vnÞT , and we obtain

JΦðuÞ�ΦðvÞJ ¼ ∑
n

i ¼ 1
ΦiðuÞ�ΦiðvÞj
��

¼ ∑
n

i ¼ 1
∑
n

j ¼ 1
bij f j

uj

aj

� �
� f j

vj
aj

� �� �
þ ∑

n

j ¼ 1
cij gj

uj

aj

� �
�gj

vj
aj

� �� ������
�����

r ∑
n

i ¼ 1
∑
n

j ¼ 1

bijLjþcijKj

ai

� �
ujðtÞ�vjjÞ
�� 

rθ ∑
n

i ¼ 1
juiðtÞ�viðtÞj

¼ θJuðtÞ�vðtÞJ : ð22Þ

So we can get

JΦðuÞ�ΦðvÞJoθJuðtÞ�vðtÞJ ;
which implies that ΦðuÞ is a contraction mapping on Rn. Hence,
there exists a unique fixed point such that unARn i.e. ΦðunÞ ¼ un,

un

i ¼ ∑
n

j ¼ 1
bijf j

un

j

aj

 !
þ ∑

n

j ¼ 1
cijgj

un

j

aj

 !
þ bdi :

That is

�aix
n

i þ ∑
n

j ¼ 1
bijf jðxnj Þþ ∑

n

j ¼ 1
cijgjðxnj Þþdi ¼ 0;

which means that un ¼ xn is an equilibrium point of system (20).
This completes the proof. □

Theorem 4.2. If Assumptions (A1) and (A2) hold, then system (20) is
global asymptotically stable, and all the solutions of system (20)
converge to the unique equilibrium point xn.

Proof. We first consider that all the solutions of system (20) will
converge to the unique equilibrium point xn.

Assume that yðtÞ ¼ ðy1ðtÞ; y2ðtÞ;…; ynðtÞÞ and xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;
…; xnðtÞÞ are any two solutions of system (20) with the different
initial conditions. Take eiðtÞ ¼ yiðtÞ�xiðtÞ, then eiðt�τÞ ¼ yiðt�τÞ�
xiðt�τÞ; i¼ 1;2;…;n.

According to system (20), one has

0D
q
t eiðtÞ ¼ �aieiðtÞþ ∑

n

j ¼ 1
bijðf jðyjðtÞÞ� f jðxjðtÞÞÞ

þ ∑
n

j ¼ 1
cijðgjðyjðt�τÞÞ�gjðxjðt�τÞÞÞ: ð23Þ

Based on Lemma 3.5, ei(t) satisfies

0D
q
t jeiðtÞjrsgnðeiðtÞÞ0Dq

t eiðtÞ; 0oqr1:

Let VðtÞ ¼∑n
i ¼ 1jeiðtÞj, then Vðt�τÞ ¼∑n

i ¼ 1jeiðt�τÞj.
Calculating the fractional-order derivatives of V(t) along the

solutions of system (20), and using Lemma 3.5, one can get

0D
q
t VðtÞ ¼ ∑

n

i ¼ 1
ð0Dq

t jeiðtÞjÞ

r ∑
n

i ¼ 1
sgnðeiðtÞÞ0Dq

t eiðtÞ

¼ ∑
n

i ¼ 1
sgnðeiðtÞÞ �aieiðtÞþ ∑

n

j ¼ 1
bijðf jðyjðtÞÞ� f jðxjðtÞÞÞ

(

þ ∑
n

j ¼ 1
cijðgjðyjðt�τÞÞ�gjðxjðt�τÞÞÞ

)

r ∑
n

i ¼ 1
�aijeiðtÞjþ ∑

n

j ¼ 1
jbijLjjjejðtÞjþ ∑

n

j ¼ 1
jcijKjjjejðt�τÞj

 !

¼ ∑
n

i ¼ 1
�aijeiðtÞjþ ∑

n

j ¼ 1
jbjiLijjeiðtÞj

 !
þ ∑

n

i ¼ 1
∑
n

j ¼ 1
jcjiKijjeiðt�τÞj

¼ ∑
n

i ¼ 1
�aiþ ∑

n

j ¼ 1
jbjiLij

 !
jeiðtÞjþ ∑

n

i ¼ 1
∑
n

j ¼ 1
jcjiKijjeiðt�τÞj

r�λVðtÞþ bKVðt�τÞ;
where bK ¼max1r irnð∑n

j ¼ 1jcjijKiÞ, λ¼min1r irnðai�∑n
j ¼ 1jbjijLiÞ.

Consider the following system:

0D
q
t WðtÞ ¼ �λWðtÞþ bKWðt�τÞ; ð24Þ

where WðtÞZ0ðWðtÞARÞ, and take the same initial conditions
with V(t).

Using Lemma 3.4, we have

0oVðtÞrWðtÞ ð8 tA ½0; þ1ÞÞ:
Note that there exists a unique zero equilibrium point in system (24).

When

bKoλ sin
qπ
2

� �
; 0oqr1;

the characteristic equation detðΔðsÞÞ ¼ 0 of system (24) has no
purely imaginary roots for any τ. When τ¼ 0, we obtain

bKoλ sin
qπ
2

� �
rλ; 0oqr1;

then bKoλ; 0oqr1. According to Theorem 3.2, the zero solution
of system (24) is global Lyapunov asymptotically stable.

Because 0oV ðtÞrWðtÞ, V(t) is global Lyapunov asymptotically
stable, i.e., VðtÞ-0ðt-þ1Þ. Then V ðtÞ ¼∑n

i ¼ 1jeiðtÞj-0, and
jeiðtÞj-0, which means that all the solutions of system (20)
converge to the some one.

According to Theorem 4.1, the equilibrium point xnðtÞ is unique
equilibrium point in system (20). That is to say, xnðtÞ also is a
solution of system (20). Take xðtÞ ¼ xnðtÞ, then one has

JyðtÞ�xnðtÞJ-0 ðt-þ1Þ:
That is, xnðtÞ is uniformly attractive. Any different solution of
system (20) converges to the xnðtÞ.

Next, consider boundedness of all the solutions of system (20).
Without loss of generality, assume that a solution of system (20) is
xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT .

Let τij ¼ τ and bV ðtÞ ¼∑n
i ¼ 1jxiðtÞj, then bV ðt�τÞ ¼∑n

i ¼ 1jxiðt�τÞj.
Similarly, calculating the fractional-order derivatives of bV ðtÞ along
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the solutions of system (20), and using Lemma 3.5, one has

0D
q
t
bV ðtÞ ¼ ∑

n

i ¼ 1
ð0Dq

t jxiðtÞjÞ

r ∑
n

i ¼ 1
sgnðxiðtÞÞ0Dq

t xiðtÞ

¼ ∑
n

i ¼ 1
sgnðxiðtÞÞ �aixiðtÞþ ∑

n

j ¼ 1
bijf jðxjðtÞþ ∑

n

j ¼ 1
cijgjðxjðt�τÞÞþdi

( )

r ∑
n

i ¼ 1
�aijxiðtÞjþ ∑

n

j ¼ 1
jbijLjjjxjðtÞjþ ∑

n

j ¼ 1
jcijKjjjxjðt�τÞjþd

 !

¼ ∑
n

i ¼ 1
�aijxiðtÞjþ ∑

n

j ¼ 1
jbjiLijjxiðtÞj

 !
þ ∑

n

i ¼ 1
∑
n

j ¼ 1
jcjiKijjxiðt�τÞjþd

¼ ∑
n

i ¼ 1
�aiþ ∑

n

j ¼ 1
jbjiLij

 !
jxiðtÞjþ ∑

n

i ¼ 1
∑
n

j ¼ 1
jcjiKijjxiðt�τÞjþd

r�λbV ðtÞþ bKVðt�τÞþd; ð25Þ
where bK ¼max1r irnð∑n

j ¼ 1jcjijKiÞ, λ¼min1r irnðai�∑n
j ¼ 1jbjijLiÞ

and d¼max1r irn∣di∣.
Consider the following system:

0D
q
t W ðtÞ ¼ �λW ðtÞþ bKW ðt�τÞþd

where W ðtÞZ0ðW ðtÞARÞ, and take the same initial conditions
with bV ðtÞ.

Due to Lemma 3.4, we have

0o bV ðtÞrW ðtÞ ð8 tA ½0; þ1ÞÞ:

According to the property of Caputo fractional-order deriva-
tives, we obtain

0D
q
t ðW ðtÞ� ~dÞ ¼ �λðW ðtÞ� ~dÞþ bK ðW ðt�τÞ� ~dÞ; ð26Þ

where ~d ¼ d=ðλ� bK Þ.
Take Ŵ ðtÞ ¼W ðtÞ� ~d, then system (26) becomes

0D
q
t Ŵ ðtÞ ¼ �λŴ ðtÞþ bKŴ ðt�τÞ: ð27Þ

When

bKoλ sin
qπ
2

� �
; 0oqr1;

the characteristic equation detðΔðsÞÞ ¼ 0 of system (27) has no
purely imaginary roots for any τ. When τ¼0, we have

bKoλ sin
qπ
2

� �
rλ; 0oqr1;

then bKoλ;0oqr1. According to Theorem 3.2, the zero solution
of system (27) is global Lyapunov asymptotically stable.

Hence,

W ðtÞ� ~d-0 ðt-þ1Þ:
For 0oW ðtÞ and 8ϵ40, where ϵ is a sufficiently small number,
we get

W ðtÞo ~dþϵ:

Because

0o bV ðtÞrW ðtÞo ~dþϵ;

one has

0o bV ðtÞr ~d: ð28Þ

By the preceding condition bV ðtÞ ¼∑n
i ¼ 1jxiðtÞjr ~d, with t-þ1,

one has JxðtÞJr ~d, where J�JA l1 norm. The boundedness of the
solution x(t) is given.

To sum up, all solutions of system (20) are bounded, and they
converge to the unique equilibrium point xn. So the system (20) is
global asymptotically stable. This completes the proof. □

Remark 4. For Eq. (23), according to Caputo fractional-order
derivative, if jeiðtÞj is differentiable function almost everywhere,
then 0D

q
t jeiðtÞjrsgnðeiðtÞÞ0Dq

t eiðtÞ is established almost every-
where in Lemma 3.5. Next we will discuss if jeiðtÞj is indifferenti-
able function almost everywhere, then Lemma 3.5 is also right.

If the jeiðtÞj is indifferentiable function almost everywhere, the
indifferentiable points are at jeiðsÞj ¼ 0, sAΩ, where Ω� ½0; þ1Þ
is not differentiable set. The indifferentiable points like points A
and B are shown in Fig. 1. That is to say, jeiðsÞj ¼ 0 almost
everywhere at Ω. Based on the Lusin Theorem [47], the rðsÞ � 0
is obtained which jeiðsÞj ¼ rðsÞ is almost everywhere at Ω. Then

0D
q
t jeiðtÞj ¼

1
Γð1�qÞ

Z t

0

jeiðtÞj0
ðt�τÞq dτ

¼ 1
Γð1�qÞ

Z
½0;t�=Ω

jeiðtÞj0
ðt�τÞq dτþ

1
Γð1�qÞ

Z
Ω

r0ðtÞ
ðt�τÞq dτ

¼ 1
Γð1�qÞ

Z
½0;t�=Ω

jeiðtÞj0
ðt�τÞq dτ:

Here, the indifferentiable almost everywhere function jeiðtÞj also
satisfies Lemma 3.5.

Remark 5. Smoothing the jeiðsÞjðsAΩÞ is taken in Theorem 4.2, in
fact, this is a generality method for indifferentiable functions. In
addition, ei(t) is continuously differentiable function and asymp-
totically stable in Eq. (23), then jeiðtÞj is always differentiable
almost everywhere. And the indifferentiable points of jeiðsÞj can be
computed as ∑n�2

i ¼ 1C
i
nðn42Þ at most, where Cn

i is a combinatorial
number.

Remark 6. The boundedness of all the solutions of system (20)
need to be considered. According to Eqs. (21) and (23), if the di is
unbounded external input, the unique equilibrium point exists
xn ¼1, and all the solutions of system (20) still converge to the
unique equilibrium point xn. However, the unique equilibrium
point xn ¼1 is meaningless for the neural network.

Remark 7. According to Assumptions (A2), it can conclude the
following condition which is given in [30]:

max
1r irn

∑
n

j ¼ 1
jcjijKi

 !
o min

1r irn
ðaiÞ� max

1r irn
∑
n

j ¼ 1
jbjijLi

 !

o min
1r irn

ai� ∑
n

j ¼ 1
jbjijLi

 !
:

So the conditions of Theorem 4.2 are more general than their
results.

0

t

|e
i(t)

| A B

Fig. 1. A simple example of jeiðsÞj's trajectory.
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Remark 8. Due to Assumptions (A1) and (A2), system (20) is
global asymptotically stability, and the stability conditions do not
contain delay τ. So stability conditions of system (20) are inde-
pendent on the initial conditions and time delay.

5. Simulation

In this section, a numerical simulation is given by using
MATLAB to illustrate the theoretical results of the paper. Without
loss of generality, the initial conditions with random and periodic
functions in the example are used. In addition, to solve the
fractional-order differential equations with time delay, step-
length h¼0.01 in the Adams–Bashforth–Moulton predictor–cor-
rector scheme is taken.

A fractional-order Hopfield neural network of four neurons
with time delay is given as follows:

The neural network parameters of system (29) are chosen as
q¼0.96, τ¼ 3, d1 ¼ 0:3, d2 ¼ �0:2, d3 ¼ �0:1, d4 ¼ 0:4,

A¼

�3 0 0 0
0 �4 0 0
0 0 �2:5 0
0 0 0 �3:8

0BBB@
1CCCA;B¼

1 �1:2 0:5 0:3
�0:4 0:8 �0:4 �1
0:4 �0:1 �0:1 1:1
�0:2 0:4 �5:8 0:4

0BBB@
1CCCA

and

C ¼

0:1 �0:5 0:15 �0:2
0:3 0:1 �0:25 �0:5
�0:1 0:15 0:1 0:1
�0:4 0:2 �0:4 �0:15

0BBB@
1CCCA:

The initial values of x1ðtÞ, x2ðtÞ, x3ðtÞ and x4ðtÞ are chosen as
x1ðtÞ ¼ ~h1ðtÞ, x2ðtÞ ¼ ~h2ðtÞ, x3ðtÞ ¼ ~h3ðtÞ and x4ðtÞ ¼ ~h4ðtÞ, tA ½�τ;0�,
where ~hiðtÞ ði¼ 1;2;3;4Þ is a random function. Here, ~hiðtÞ
ði¼ 1;2;3;4Þ is chosen as white Gaussian noise. Furthermore, the
other initial values of bx1ðtÞ, bx2ðtÞ and bx3ðtÞ are chosen as bx1ðtÞ ¼ bh1ðtÞ,bx2ðtÞ ¼ bh2ðtÞ, bx3ðtÞ ¼ bh3ðtÞ and bx4ðtÞ ¼ bh4ðtÞ, tA ½�τ;0�, wherebhiðtÞ ði¼ 1;2;3;4Þ is a periodic function. Take bh1ðtÞ ¼ bh3ðtÞ ¼ j sin ðtÞj
and bh2ðtÞ ¼ bh4ðtÞ ¼ j cos ðtÞj. The unique equilibrium point of system
(29) is xn ¼ ð0:2582; �0:0871;0:0561;0:0978Þ. The convergent beha-
viors of system (29) are shown in Fig. 2.

6. Conclusion

In this paper, the global stability analysis for fractional-order
Hopfield neural networks with time delay has been investigated. A
stability theorem for linear fractional-order systems with time delay
has been discussed. Furthermore, a comparison theorem for a class of
fractional-order systems with time delay has been given. And the
existence and uniqueness of the equilibrium point for the fractional-

0
t
Dx1ðtÞ ¼ �a1x1ðtÞþb11 sin ðx1ðtÞÞþb12 sin ðx2ðtÞÞþb13 sin ðx3ðtÞÞþb14 sin ðx4ðtÞÞþc11tanhðx1ðt�τÞÞ
þc12tanhðx2ðt�τÞÞþc13tanhðx3ðt�τÞÞþc14tanhðx4ðt�τÞÞþd1

0
t
Dx2ðtÞ ¼ �a2x2ðtÞþb21 sin ðx1ðtÞÞþb22 sin ðx2ðtÞÞþb23 sin ðx3ðtÞÞþb24 sin ðx4ðtÞÞþc21tanhðx1ðt�τÞÞ
þc22tanhðx2ðt�τÞÞþc23tanhðx3ðt�τÞÞþc24tanhðx4ðt�τÞÞþd2

0
t
Dx3ðtÞ ¼ �a3x3ðtÞþb31 sin ðx1ðtÞÞþb32 sin ðx2ðtÞÞþb33 sin ðx3ðtÞÞþb34 sin ðx4ðtÞÞþc31tanhðx1ðt�τÞÞ
þc32tanhðx2ðt�τÞÞþc33tanhðx3ðt�τÞÞþc34tanhðx4ðt�τÞÞþd3

0
t
Dx4ðtÞ ¼ �a4x4ðtÞþb41 sin ðx1ðtÞÞþb42 sin ðx2ðtÞÞþb43 sin ðx3ðtÞÞþb44 sin ðx4ðtÞÞþc41tanhðx1ðt�τÞÞ
þc42tanhðx2ðt�τÞÞþc43tanhðx3ðt�τÞÞþc44tanhðx4ðt�τÞÞþd4

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð29Þ
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Fig. 2. The convergent behaviors of system (29). (a) The convergent behaviors of x1ðtÞ. (b) The convergent behaviors of x2ðtÞ. (c) The convergent behaviors of x3ðtÞ. (d) The
convergent behaviors of x4ðtÞ.
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order Hopfield neural networks with time delay have been proved by
using the contraction mapping theorem. Finally, based on the above
the results on the fractional-order systems with time delay, global
asymptotic stability of fractional-order neural networks with time
delay have been investigated, and the corresponding conditions for
global asymptotic stability of fractional-order neural networks with
time delay have been derived by using Lyapunov method.

There are some potential research directions that could be
considered for the future works. Note that many stability condi-
tions about fractional-order neural networks with time delay in
the previously works and this paper are sufficient. So the sufficient
and necessary stability condition of fractional-order neural net-
works with time delay will be studied in the future.
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