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1. Introduction

Fractional calculus, as a classical mathematical notion, is a general-
ization of the ordinary differentiation and integration to arbitrary
non-integer order. Although fractional calculus has a long history, its
applications to physics and engineering are just a recent focus of
interest to many researchers. Compared with the classical integer-
order systems, fractional-order systems provide an excellent instru-
ment for the description of memory and hereditary properties of
various materials and processes. It would be far better if many
practical problems are described by fractional-order dynamical sys-
tems rather than integer-order ones. In fact, real-world processes
generally or most likely are fractional-order systems, such as phe-
nomenological description of viscoelastic liquids [1], diffusion and
wave propagation [2,3], colored noise [4], boundary layer effects in
ducts [5], electromagnetic waves [6], fractional kinetics 7], electrode-
electrolyte polarization [8], dielectric relaxation phenomena in poly-
meric materials [9] and fractional-order models of happiness [10]. All
of the results demonstrate the importance of fractional calculus and
motivate the development of new applications.

Since Hopfield neural network [11] was referred by Hopfield in
1984, it has attracted great attentions of many scientists and has been
applied in various realms such as pattern recognition, associative
memory and combinatorial optimization. In recent years, the research-
ers found that the fractional calculus could be well used in the study of
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neural networks. Kaslik et al. pointed out that the common capacitance
from the continuous-time integer-order Hopfield neural network can
be replaced by the fractance, giving birth to the so-called fractional-
order Hopfield neural network model [13]. In fact, the fractional-order
differentiation provides neurons with a fundamental and general
computational ability that contributes to efficient information proces-
sing, stimulus anticipation, and frequency-independent phase shifts in
oscillatory neuronal firings [ 12]. Now, a lot of results on fractional-order
Hopfield neural networks have been obtained [13-19]. The stability
and multi-stability of fractional-order Hopfield neural networks with
ring or hub structures were investigated in [13,14]. The stability of
fractional-order neural networks was fully investigated through an
energy-like function analysis in [15]. A discrete time fractional-order
Hopfield neural network was presented in [16]. The a-stability and a-
synchronization for fractional-order Hopfield neural networks were
investigated in [17]. It was pointed out that the stability in [17] was not
a-stability but Mittag-Leffler stability in [18]. Some sufficient condi-
tions are established to ensure the existence and uniqueness of the
nontrivial solution for the fractional-order Hopfield neural networks in
[19]. There were also several recent literatures discussing the topics
including chaos and chaotic synchronization in fractional-order neural
networks, which can be found in [20-23].

Note that most of the above results on the stability of fractional-
order Hopfield neural networks did not consider time delay. In
practice, because of finite switching speeds of the amplifiers, time
delay is well-known to be unavoidable and it can cause oscillations
or instabilities in dynamic systems. The stability as a very essential
topic in fractional-order systems with time delay has attracted
increasing interest in recent years [24-29]. However, there are just
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few results on the stability of fractional-order neural networks with
time delay [30-32]. A sufficient condition was established for the
uniform stability of fractional-order neural networks with time
delay in [30]. The fractional-order neural networks of two and three
neurons with time delay were discussed, and the stability condi-
tions were derived in [31], Some sufficient conditions for stability of
the fractional-order Hopfield neural networks with hub structure
and time delays were obtained, and the stability conditions of two
fractional-order Hopfield neural networks with different ring struc-
tures and time delays were derived in [32]. But, the above results of
fractional-order Hopfield neural networks with time delay did not
consider global stability.

Furthermore, the global stability is an important topic in the
fractional-order neural networks. There are few results on the global
analysis of fractional-order Hopfield neural networks. The authors
consider the global stability of fractional-order neural networks without
time delay in [17]. But, some conclusions in [17] are incorrect that lead
to unqualified results of global stability which are given in [18]. The
conditions on the global Mittag-Leffler stability are established by using
Lyapunov method for memiristor-based fractional-order neural net-
works without time delay [33]. However, to the best of our knowledge,
there is no known result concerning a theoretical global stability
analysis for fractional-order Hopfield neural networks with time delay.

Motivated by the above discussion, this paper is devoted to
presenting a theoretical global stability analysis for fractional-order
Hopfield neural networks with time delay. Firstly, a stability theorem
for linear fractional-order systems with time delay is discussed. And a
comparison theorem for a class of fractional-order systems with time
delay is shown. Then, using the contraction mapping theorem, the
existence and uniqueness of the equilibrium point for fractional-order
Hopfield neural networks with time delay are proved. Finally, the
global asymptotic stability of fractional-order neural networks with
time delay is investigated, and the corresponding conditions for global
asymptotic stability of fractional-order neural networks with time
delay are also derived by using Lyapunov method.

The paper is structured as follows. In Section 2, the preliminaries
concerning fractional-order differential systems with time delay are
introduced. Some results for the stability analysis of fractional-order
systems with time delay are given in Section 3. Then, the global
asymptotic stability of fractional-order Hopfield neural networks
with time delay is investigated in Section 4. And a numerical
example is given in Section 5 to illustrate the effectiveness of the
theoretical results. Some conclusions are included in Section 6.

2. Preliminaries

Some elementary notations are introduced for the Caputo
fractional-order derivative and its properties. The main theoretical

$TY1(5) =71y (0) =knne 57 (Ya(9)+ 2
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tools for the qualitative analysis of fractional-order dynamical
systems are given in [34-36].

e=Steh, (t) dt)+kyze~52(Yo(s)+ [°
e~ g, (t) db)+a1nYn(S)+ai1 Y1(s)
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The Caputo fractional-order derivative is defined as

1 t f(”)(T)
D! =
oDef (D F(n—q)/o (t—r)q‘"“dr’

where n is an integer, n—1<qg<n and /'(-) is a Gamma function.
The Laplace transform of the Caputo fractional-order derivative is

n—1
LieD{f(t);s) =s"F(s)— ¥ s1=*1f10), n-1<q<n.
k=0

When f®(0)=0,k=1,2,....n, then
L{oDif(t); s} = sTF(s).

Some properties of the Caputo fractional-order derivative [37]
are obtained as

(1) ¢Dic=0, where c is any constant.

(2) If x(t)eC™O0,T] for T>0 and m—-1<q<meZ™", then
oDIx(0)=0.

(3) If x(t)e C'[0,T] for some T>0, q;,q, €R", q;+q, <1, then
oDI oDEx(8) = (D' T L x(0).

The following definitions will be used in this paper.

The Caputo derivative is employed in the paper, and the Adams-
Bashforth—-Moulton predictor-corrector scheme is applied to solve
the fractional-order differential equations with time delay [38].

The I; norm is defined by lx(t)l =X"_,|xi(t)|, where x(t)=
X1 (), X2(0), ..., Xn(0)) € R".

3. Some results on fractional-order systems with time delay

Some results on fractional-order systems are given in this section,
which will be used in global stability analysis of fractional-order
Hopfield neural networks with time delay. The stability analysis of
linear fractional-order systems with time delay is discussed. And a
comparison theorem for a class of fractional-order systems with time
delay is shown.

Consider the following linear fractional-order system with time
delay:

oDIX(t) = AX()+X(to), 1)

where A= (a;)n,p» X(t) = (xX1(£), X2(0), .., Xn ()T, X(t,):(Z;:lkljxj

(t — le), Z]": ]kszj(tf sz), ceey Zjn: ]kanj(t — Tnj))T.
Especially, if 7; =7j, for i=1,2, ..., n, K = (k;j),,.,, the system (1)
can be written in the following vector form:

oDIX(t) = AX(t)+ KX(t —7), )

where X(t—7) = (X1(t — 1), X2(E —T2), ..., Xn(t —Tn)) .
Taking Laplace transform [34,35] on both sides of (1), we have

e~Sth,(t) dt)+ar2Yo(s)

T12

e~y (t) dt)

722

STYn(8)— ST g, (0) = ke =5 (Y1($)+ [°, ¢, (6) dD)+an1 Y1(5)+knae 52 (Yo(s)+ O, e~Stpy(t) db)
+ar2Y2(8) + -+ knne T (Yn(s)+ O, e S p(£) dE)+annYn(s),

where Yj(s) is the Laplace transform of x;(t) with Y;(s) = L(x;(t)) and
¢i(t) 1 <i<n,te[—7,0]) is an initial value.
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We can rewrite (3) as follows:

Y1(5) di(s)
ap| | <[ =9,
Yn'(S) dn.(S)

in which

di(9)=51"1ehy (0)+kpe =57 [0 e~y (t) di+kipe =72 [0 ety (t) dt
ot kine T [0 et (b) dt

da(s) =51 1h,(0)+kare =5 [0 e=Sehy(t) di+kape =2 [ e~y (t) di
Hot ke [0 et (b) dt

du(s)= 5" 1O+ ke [0 ey dtrkie [0 e byt dt
+ - 4’knne_s‘rrm j‘?rm. 9_5[¢n(t) dt’

s —kye=St —aqy
—kp1e 5721 —ay

— klne*STm —
7k2ne—512n —dzn

—kipe =512 —ayy
sq— kzze STz (05))

A(S) =

_knleisr'" —Qp1 sl _kr12‘5‘751"2 —Qn2 _knneiw"” —Qnn

We call A(s) as the characteristic matrix of system (1) and det(A(s))
as the characteristic polynomial of A(s). The stability of system (1)
is completely determined by the distribution of eigenvalues of
det(A(s)).

If 7; =0, system (1) can be written as

oDIX(t) = AX(t)+KX(t) = MX(t), (4
where
I<11+a11 I<12+a12 k1n+a1n
_ ko1 +az ko +ax kan +azn
kni+an  knpp+apz Knn + ann

Based on the characteristic polynomial det(A(s)) and the
coefficient matrix M (z;=0), we can obtain the following
conclusions.

Theorem 3.1. If all the roots of the characteristic equation
det(A(s)) =0 for qe(0,1) have negative real parts, then the zero
solution of system (1) is Lyapunov asymptotically stable.

Proof. If all the roots of the characteristic equation det(A(s)) =0
have negative real parts for qe(0,1), then A(s) is an invertible
matrix. From Eq. (3), one has

Y(s) =A(s) " 'D(s),

where Y(s)=(Y1(5), Y2(5), ... Ya(s))", D(s) = (d(5),d2(5), ..., dn(S))".
According to the final value theorem of the Laplace transform
[39,40], one has

limX(t) = limsY(s) = limA(s) = 'D(s)s = 0.
t—o0 s—0 -0

Hence, the zero solution of system (1) is Lyapunov asymptotically
stable. The proof is completed. ©

Theorem 3.2. If qe(0,1), all the eigenvalues of M satisfy
larg(A)| > z/2 and the characteristic equation det(A(s)) =0 has no
purely imaginary roots for any t;>0,i,j=1,...,n, then the zero
solution of system (1) is Lyapunov asymptotically stable.

Proof. Because the proof of this theorem is almost as same as the
one in Theorem 2.1 of Chapter 8 in [41] or in Theorem 2.2.6 of
Chapter 2 in [42] for the classical different equations, the more
details about proof can be found in [41,42]. Here, a brief illustra-
tion is taken. If 7;=0, all the eigenvalues of M satisfy
larg(A)| > /2, that is to say that all the roots of the characteristic

equation M have negative real parts. When 7; +# 0, the character-
istics of A(s) are continuously changing with ;. Also, the char-
acteristic equation det(A(s)) = 0 has no purely imaginary roots for
any 7;>0,i,j=1,...,n, so all the roots of the characteristic
equation det(A(s))=0 have negative real parts. Then the zero
solution of system (1) is Lyapunov asymptotically stable. The proof
is completed. ©

Remark 1. In this paper, the system oDfx(t)=Ax(t)+Kx(t—7)
(A#0) is considered, and its stability is not guaranteed under
conditions that the eigenvalues of M are satisfied |arg(1)| > gz /2 in
[27]. In fact, when the eigenvalues of M are satisfied qz/2 <
larg(A)| < /2, and the characteristic equation det(A(s)) =0 has no
purely imaginary roots for any 7>0, the zero solution of
oDIx(t) = Ax(t)+ Kx(t — 7)(A # 0) has unstable situation [31].

Next, a comparison theorem for a class of fractional-order
systems with time delay is shown.

Lemma 3.3. Consider the following two fractional-order systems
with time delay:

oDIx(t) = f1(t, x(t)) +81 (. x(t — 7)),
0<qg<1,x(t)=h(t), (5)
te[—7,0],

and

{ oDIy(t) =Lt y(t) + Bt y(t—7), 0<q=<1,

YO =), te[~7,0] ©
where f(t,x(t)) and f,(t,y(t)) are Lipschitz continuous in
[0, +00) x G(G C R). Similarly, g,(t,x(t—7)) and Z,(t,y(t—7)) are
Lipschitz continuous in [—7, +00) x G(G C R).

If
F1Ex®) <fE¥(1), Bt x(t—7) <Z(t,y(t—7)), Vte[0, +00),
then
x(t) <y(t), Vtel0,+o0).

Proof. The solutions of systems (5) and (6) can be expressed in
the following form:

1/t 1 _
XO=hO+ s [ (=50 i xo) +Es M- ds. ()
and
(©) = h(O) 4 / [(t—s)"”[f (S, Y($)+8,(s, y(s— 7)) ds ®)
y - r(q) o 2 >y gZ >y .

Subtracting Eq. (8) from Eq. (7), one has

1t _ _
YO0 = i /0 (€= )T 5(5.9(5)) — 1 (5. X(5) + B2 (5, Y5 — 7))
—Z1(5.X(s— )] ds. ©)
Take  my(t)=fH(t.y(O)—f1(t.x(1), ma(t—17)=Zo(t.Y(—7)~8;

(t,x(t—1)). It is easy to know my(t) >0, my(t—7) >0, t € [0, + o).
Then Eq. (9) can be rewritten as

t t
y(t)—x(t):%/o (t—s)q’1m1(t)ds+%/o (t—5)""my(s—7) ds.

(10)

Since t9~! is a nonnegative function, it then follows from Eq. (10)
that x(t) < y(t), Vt € [0, +o0). The proof is completed. ©

Remark 2. According to [43], if the functions fj(j:1,2) and
gj(j=1,2) are Lipschitz continuous, there is the existence of
solutions in systems (5) and (6) with Caputo fractional-order
derivative.



18 H. Wang et al. /| Neurocomputing 154 (2015) 15-23

Note that the conditions of Lemma 3.3 are very strong, hence
the following conclusion is given, which will be used in this paper.

Lemma 3.4. Consider the following the fractional-order differential
inequality with time delay:

{ oDIx(t) < —ax(t)+bx(t—7), 0<qg<1,

x(H)=h(t), te[-r,0] an

and the linear fractional-order differential systems with time delay

{ oDiy(t)= —ay(®)+by(t—1), 0<g<1,

yt)=ht), te[-7,0], (12)

where x(t) and y(t) are continuous and nonnegative in (0, +oo), and
h(t)>0,te[—7,0].
Ifa>0and b > 0, then

x(t) <y(t), Vtel0,+o0).

Proof. From system (11), there exists a nonnegative function m(t)
satisfying

oDIx(t) = —ay(t)+bx(t—7)—m(t), 0<q<1,

x(t)=h(),
te[—7,0]. (13)
According to [44], the initial value problem (13) has, on the
interval [0, kz], a unique solution that can be represented by
Xx(t) = x;-(t), and

t
Xiz(b) = / (t—5)"""Eqq(—a(t —$))p;, ds+ci:Eq1(—at?),
0
0<q<1, teli—1),it), (14

where c;; is a constant, i=1,2,...,k, and k is a greatest positive
integer. xo.(t) = h(t) and ¢;, is expressed as
bxo-(t —7)—m(t),
bx.(t —7)—m(t), T<t<?27,
(G ERE (15)

bx 1y (t—7)—m(t), (k—T)r<t<kz.

O<t<r,

Since both t7-1 and E,4(—at9) are nonnegative functions [45], due
to x(t) = x;;(t) and m(t) > 0, Eq. (14) can be written as
t
Xe0) < [ (0= Eqql~a(t - bxe(s—) ds-t cEqa(~at?),
0
0<g<1, te[(i—1)z,it]. (16)

Similarly, the solution of system (12) can be written as

t
Vir(H) = / (t—5)"""Eqq(—a(t — )by, (s — ) ds+Ci;Eq1(—at?),
0
0<qg<1, te[(i—1r,iz]. a7

Next, we will consider x(t) <y(t), te[(i—1)z,it], i=1,2,....,k. We
use the method of induction on k.

Let us first prove that x(t) < y(t) holds for k=1. If t € [0, 7], then
t—7e[—7,0] and x(t—7) =y(t—7) = h(t — 7).

According to the systems (16) and (17), we have

t
X:(t) < /0 (tfs)qflEq,q(f a(t —s)N)bh(s —7) ds+c.Eq1(—at?) =y (t).

Note that taking initial conditions into account in the systems (12)
and (13), the solution is uniquely determined since we must have
¢; = h(0). So we prove that x(t) < y(t) holds for k=1.

Next suppose that x(t) < y(t) holds for k, that is, let us assume
that for t e [(k— 1)z, k7], then one has

Xi() <y (), i=1,2,... .k
Let us prove that it will also be valid for k+1.

If the t e [kz, (k+1)7], the system (16) can be written as
t
x(t) < / (t—35)7""Eqq(—a(t—s)Hbx(s — 7) ds+Cg1 1:Eq.1(— at?),
0
= / (t—5)7"1Egq(—a(t—s))bx(s—7) ds
0

k JjT
+ Y (t=5)1""Eqq(—a(t—s)")bxj(s—7) ds
j=2J(G-Dr

t
+ [ (=97 1Eq,q( —a(t —$)D)bX 4 1)c(S = 7) dS+ g1 1)cEqa (—at?).

kt

(18)

When se[kz,t], s—te[(k—1)z,t—7] C[(k—1)7,kr]. According to
the assumed condition, we have x(s—7) < y(s—17).

From Eq. (18), we have x(t) <y(t), te[kr, (k+1)7]. This com-
pletes the proof. ©

Remark 3. According to [44], if the function ¢);, is continuous,
X(t) = x;;(t) and x(t) can be represented by

t
Xiz(t) = /O (t—=5)"""Eqq(—a(t —$)Dh;, ds+ciEq1(—at?).

In Lemma 3.4, if ¢;, is left continuous, it still has x(t) = x;,(t) except
countable points. From Eqs. (13) and (17), the same constant c;; is
used. According to [35] (see Theorem 5.15) and [44], the constant
ci; just depends on the initial conditions.

Lemma 3.5 (Zhang et al. [46]). If h(t)e C'([0, +o0),R) denotes a
continuously differentiable function, then the following inequality
holds almost everywhere:

oD{Ih(t)| < sgn(h(t)),Dfh(t), 0<q<1. (19)

4. Global stability analysis of fractional-order Hopfield neural
network with time delay

Consider the following fractional-order Hopfield neural net-
work with time delay:

n n
oDIxi(t) = —aixi(t)+ .El byf(x;(t)+ AZ] Ciigj(x;(t — 1))
j= j=
4d, i=1,2,...n, t>0, 20)

where q € (0, 1), n corresponds to the number of units in a neural
network, x(t) = (x1(t), X2(t), ..., Xa(t))" corresponds to the state vec-
tor at time t, a; >0 is the self-regulating parameters of the
neurons, f;(x;(t)) and g;(x;(t — 7)) denote, respectively, the measures
of response or activation to its incoming potentials of the unit j at
time t and t—7; by, ¢; are constants with b; denoting the synaptic
connection weight of the unit j to the unit i at time ¢, and c;
denoting the synaptic connection weight of the unit j to the unit i
at time t—7, d; is the constant control input vector.

The global stability of fractional-order neural networks with
time delay will be discussed. In order to obtain the main results,
the following assumptions are given.

Assumption 1. (A1). The neuron activation functions f;, g; are
Lipschitz continuous. That is, there exist positive constants L;
Kj,j=1,2,...,n, such that

Ifj(w) —finI < Ljlu—v], u,veR.

|gj(t) — &)l < Kjlu—vl,

Assumption 2. (A2). a;, by, ¢ Lj and K; satisfy the following
condition:

K < Asin (%ﬂ) 0<g<1,
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where K = max; < < n(ZP_1GilKi), A=miny < < n(a;— XP_ bjilLy).

Theorem 4.1. If Assumptions (A1) and (A2) hold, then there exists a
unique equilibrium point in system (20).

Proof. Taking a;x} = u¥, construct a mapping @ : R" >R", as
u*
dﬁu,- Z bUf]< >+ 2 Cugj< >+d,, 21)
where @(u) = (D;(u), Dr(u), ..., Pa(u).
Now, we show that @ is a contraction mapping on R" endowed

with the [; norm.
According to Assumption (A2), we have

n n
max <Z |Cji|Ki> < (ai_ > |bji|Li>, 1<i<n.
T<i<n\;—4 j=1

Take

6 = max

T<i<n a;

(max1 <i<n (Z}': 1 |Cji|Ki) +27-4 |bjiLi)
obviously drawn 0 < 1.

Consider two different vectors u = (uy,uo, ...
Va,...,vp)!, and we obtain

up)' and v=(vq,

Il D(u)— DV) Il = i |Di(w) — D;(v)|
i=1
Z

1 (E) )] Lals@)-s()]

n biLi+ K
p> (21 (—’ % )|uj<r>—v,-|>
J_

<0 z] Ui (O) = vi(O)|

I/\

=0llut)—v()l. 22)
So we can get
D) —DW) Il < Ollut)—v(E)l,

which implies that @(u) is a contraction mapping on R". Hence,
there exists a unique fixed point such that u* e R" i.e. du*) = u*,

uf = 2 b,,f]< >+ > cygj<u*>+d

That is
n n
—aix; + AZ] byf () + Z] Ciigj(x)+di =0,
i= i=

which means that u* =x* is an equilibrium point of system (20).
This completes the proof. ©

Theorem 4.2. If Assumptions (A1) and (A2) hold, then system (20) is
global asymptotically stable, and all the solutions of system (20)
converge to the unique equilibrium point x*,

Proof. We first consider that all the solutions of system (20) will
converge to the unique equilibrium point x*.
Assume that y(£) = (y1(£),¥(t), ....y,(t)) and x(t) = (x1(£), x2(0),
..,Xn(t)) are any two solutions of system (20) with the different
initial conditions. Take e;(t) = y;(t) —x;(t), then e;(t—7) =y;(t—7)—
X,’(t—T),i: 1,2,...,1’1
According to system (20), one has

oDlei(t) = —aei(t)+ fl bii(f;(vi(6) —f(x;(£))
j=

+ 3 g -) -5 23)
Jj=

Based on Lemma 3.5, e,(t) satisfies

oD lei(t)] < sgn(ei(t),Dfei(t), 0<g<1.

Let V()= Y>"_,lei(t)l, then V(t—7)=Y"_lei(t—1)|.
Calculating the fractional-order derivatives of V(t) along the
solutions of system (20), and using Lemma 3.5, one can get

DIV = 3 (oDllei)
< 3 sanie)De

= il Sgn(ei(f)){ —a;ei(t)+ _%l by (fi(v;() —f(x;(£))
1= 1=

+ _il Cij(gj(y;(t — 7)) — gj(x;(t — T)))}
Jj=

<3 (—ai|ei(r)+ 2 ibiLle )+ ¥ |c,-,-1<j||e]-<t—r)>
J= J=

Z Z Ic;iKillei(t—7)|

i=1 ]*

I
I M=

(ailei(f)l + _;l ijiLilei(f)|>

1

i (_a1+ > |b]lL|>|el(t)|+ z i G;iKillei(t —7)]

i=1 i=1j=1
< —AV(O+KV(t—1),

i

where I? =MmaX; <i< n(z;'l: 1|Cji|Ki)v A= minl <i< n(ai - Z]n: 1 |bji|Li)‘
Consider the following system:

oDIW(t) = — AW(t)+KW(t—1), (24)

where W(t)>0(W(t)eR), and take the same initial conditions
with V(t).
Using Lemma 3.4, we have

O0<V(@t)<W() (Vtel0, +00)).

Note that there exists a unique zero equilibrium point in system (24).
When

= . /qrm

K < Asin (7) 0<qg<1,

the characteristic equation det(A(s))=0 of system (24) has no

purely imaginary roots for any 7. When 7 =0, we obtain

K<lsm(2)</1 0<qg<1,

thenK <4, 0< q < 1. According to Theorem 3.2, the zero solution
of system (24) is global Lyapunov asymptotically stable.

Because 0 < V(t) < W(t), V(t) is global Lyapunov asymptotically
stable, ie., V(t)-0(t—+oc). Then V(t)=3!_,let)|—0, and
lej(t)]—0, which means that all the solutions of system (20)
converge to the some one.

According to Theorem 4.1, the equilibrium point x*(t) is unique
equilibrium point in system (20). That is to say, x*(t) also is a
solution of system (20). Take x(t) = x*(t), then one has

Iy(t)—x* ()l >0 (£ +00).

That is, x*(t) is uniformly attractive. Any different solution of
system (20) converges to the x*(t).

Next, consider boundedness of all the solutions of system (20).
Without loss of generality, assume that a solution of system (20) is
X(t) = (x1.(£), X2(0), ... Xn(D).

Let 7 =7 and V(t) =>7_4Ixi(t), then V(t T)=y1_ Xt =)l
Similarly, calculating the fractional-order derivatives of V(t) along
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the solutions of system (20), and using Lemma 3.5, one has
—~ n
oDIV(t) = '21<0D‘3 Xi(t)))
1=

< ;1 sgn(x;(£))oDy xi(t)

b sgn(x,-(t)){ —ax+ 3 b0+ 3 gt-m)+ di}
J= J=

i=1

IA

n n n
AZI <—ai|Xi(f)|+ ‘21 |biiL;11x; ()] + AZ] ICij1<j||Xj(f—T)|+d>
i= Jj= J=

Il
I ™M=

n n n
1 <—ailxi(f)|+ AZ] ijiLiIIXi(f)l) + ‘21 _21 |ciKillxi(t —7)| +d
j= i=1j=

i

n n n n
21 <_ai+ .21 |bjiLi|> X+ X X lGiKillxit—2)+d
j=

i= i=1j=1
< WO +RV(t—71)+d, (25)

where K =max; ;- n(Xf = 11GilKy), A=ming <i<n(ai— X7 1bjilly)
and d = maxq < ;< ,|dj|-
Consider the following system:

oDIW(t) = — AW (t) + KW (t —7)+d

where W(t)>O0(W(t)eR), and take the same initial conditions
with V(t).
Due to Lemma 3.4, we have

0<V(t)y<W(t) (Vtel0, +o0)).

According to the property of Caputo fractional-order deriva-
tives, we obtain
DI W(t)—d) = —AW(t)—d)+ KW (t—7)—d), (26)

where d =d/(A-K).
Take W (t) = W(t)—d, then system (26) becomes

oDIW(t) = — AW (t) + KW (t —1). 27)
When
K < Asin (%T), 0<g<1,

the characteristic equation det(A(s))=0 of system (27) has no
purely imaginary roots for any 7. When 7=0, we have

I?</lsin<q7”>s/1, 0<qg<1,

then K <,0 < g < 1. According to Theorem 3.2, the zero solution
of system (27) is global Lyapunov asymptotically stable.

le (0]
o

Fig. 1. A simple example of |e;(s)|'s trajectory.

Hence,
W(t)—d—>0 (t— +o0).

For 0 < W(t) and Ve >0, where ¢ is a sufficiently small number,
we get

W) <d+e.

Because
0<V(t)y<W(t)<d+e,
one has

0< V) <d. (28)

By the preceding condition V(t) = > < d, with t - + oo,
one has Ix(t)l <d, where llell € ; norm. The boundedness of the
solution x(t) is given.

To sum up, all solutions of system (20) are bounded, and they
converge to the unique equilibrium point x*. So the system (20) is
global asymptotically stable. This completes the proof. ©

Remark 4. For Eq. (23), according to Caputo fractional-order
derivative, if |e;(t)| is differentiable function almost everywhere,
then Dfe;(t)] < sgn(e;(t)),Dfei(t) is established almost every-
where in Lemma 3.5. Next we will discuss if |e;(t)| is indifferenti-
able function almost everywhere, then Lemma 3.5 is also right.

If the |e;(t)| is indifferentiable function almost everywhere, the
indifferentiable points are at |e;(s)| =0, s € £2, where £2 c [0, +o0)
is not differentiable set. The indifferentiable points like points A
and B are shown in Fig. 1. That is to say, |e;(s)|=0 almost
everywhere at 2. Based on the Lusin Theorem [47], the r(s)=0
is obtained which |e;(s)| = r(s) is almost everywhere at £2. Then

1 el
9\e.(F)| —
oDt lei®)l =TA- )y G2
1 lei(®)l’ 1 r'(t)
I'A-q)Jioget—11 Tra—g)ot—o7 %"
T [ el

TTA-Joget—01""

Here, the indifferentiable almost everywhere function |e;(t)| also
satisfies Lemma 3.5.

Remark 5. Smoothing the |e;(s)|(s € £2) is taken in Theorem 4.2, in
fact, this is a generality method for indifferentiable functions. In
addition, e;(t) is continuously differentiable function and asymp-
totically stable in Eq. (23), then |e;(t)| is always differentiable
almost everywhere. And the indifferentiable points of |e;(s)| can be
computed as Eg‘;%C;(n > 2) at most, where C}, is a combinatorial
number.

Remark 6. The boundedness of all the solutions of system (20)
need to be considered. According to Eqs. (21) and (23), if the d; is
unbounded external input, the unique equilibrium point exists
Xx* =00, and all the solutions of system (20) still converge to the
unique equilibrium point x*. However, the unique equilibrium
point x* = co is meaningless for the neural network.

Remark 7. According to Assumptions (A2), it can conclude the
following condition which is given in [30]:

n n
max 2 |Cji|K,' < min (a;)— max 2 |bﬁ|L,‘
IT<isn\;=Tq l<i<n T<isn\;=4

n
< min <ai— z |bji|Li>-
it

1<i<n

So the conditions of Theorem 4.2 are more general than their
results.
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Remark 8. Due to Assumptions (A1) and (A2), system (20) is
global asymptotically stability, and the stability conditions do not
contain delay 7. So stability conditions of system (20) are inde-
pendent on the initial conditions and time delay.

5. Simulation

In this section, a numerical simulation is given by using
MATLAB to illustrate the theoretical results of the paper. Without
loss of generality, the initial conditions with random and periodic
functions in the example are used. In addition, to solve the
fractional-order differential equations with time delay, step-
length h=0.01 in the Adams-Bashforth-Moulton predictor—cor-
rector scheme is taken.

A fractional-order Hopfield neural network of four neurons
with time delay is given as follows:

The neural network parameters of system (29) are chosen as
q=0.96,7=3,d;=03,d,=-02,d3=-0.1,ds =04,

-3 0 0 0 1 -12 05 03
Ao 0 -4 0 0 B_ -04 08 -04 -1
0 0 -25 0 71 04 -01 -01 1.1
0 0 0 —-3.8 -02 04 -58 04
a

0.6
== periodic initial value
05} 1

04§

x,(t)

0.6

T T T
——random initial value
‘ - = periodic initial value:

04

0271 v

X4(t)

-0.2

-04

-0.6

5 10 15 20 25
t(s)

and
0.1 —-05 0.15 —-0.2
c— 0.3 0.1 -025 -05
| -01 015 0.1 0.1
-04 02 -04 -0.15

The initial values of xq(t), X2(£), x3(t) and x4(t) are chosen as
x1(6) = hy(0), X2(t) = ha(t), X3(t) = h3(t) and x4(t) = ha(t), te[-7,0],
where h;(t) (i=1,2,3,4) is a random function. Here, h;(t)
(i=1,2,3,4) is chosen as white Gaussian noise. Furthermore* the
other initial values of X1 (t), X(t) and X3(t) are chosen as X1 (t) = h(t),
Xa(t)=hy(t), X3(t)=hs(t) and X4(t)=ha(t), te[—7,0], where
hi(t) (i=1,2,3,4) is a periodic function. Take h{(t) = h3(t) = | sin (t)|
and h;(t) = h4(t) = | cos (t)]. The unique equilibrium point of system
(29) is x* = (0.2582, —0.0871,0.0561, 0.0978). The convergent beha-
viors of system (29) are shown in Fig. 2.

0hX1(t) = —a1X1(t)+ b1 Sin (X1 () + b1z Sin (x2(£)) + b3 sin (X3(£)) + b14 Sin (x4(£)) + ¢11 tanh(x; (t — 7))
+ciptanh(xy(t — 7))+ cyztanh(xs(t — 7)) + ciatanh(x4(t — 7))+ d4

ohX2(t) = —azx,(t) +byy sin (X1 (t)) + ba Sin (x2(t)) + b3 sin (X3(t)) + bag Sin (x4(t)) + ¢21 tanh(xq (t — 7))
+Coptanh(xy(t — 7))+ cxztanh(x3(t — 7)) + castanh(x4(t — 7)) +d,

0hX3() = —asx3(t)+ b3y sin (x;(t))+ b3y sin (x2(t)) + b3z sin (X3(£)) + b4 sin (x4(f)) + c31 tanh(x; (t — 7))
+ C32tanh(x2(t —1T))+C33 tanh(X3(t —-7))+ 634tanh(x4(t —7))+ ds

o0pXa(t) = — a4X4(£)+bygy Sin (X1 (£)) +bgz Sin (X2(£)) + bys sin (X3(1)) + bag sin (x4(1)) + 41 tanh(x; (t— 7))
+cgptanh(xy(t — 7))+ cgztanh(x3(t — 7))+ caatanh(x4(t — 7))+ dy

(29)

6. Conclusion

In this paper, the global stability analysis for fractional-order
Hopfield neural networks with time delay has been investigated. A
stability theorem for linear fractional-order systems with time delay
has been discussed. Furthermore, a comparison theorem for a class of
fractional-order systems with time delay has been given. And the
existence and uniqueness of the equilibrium point for the fractional-

b

0.5
04
0.3
0.2
0.1

—random initial value

== periodic initial value’

T

x,(t)

-0.1
-0.2|]
-0.3
-0.4
05|

0.4
0.35
0.3
0.25 |
02t
0.15 !
0.1 Ha
0.05

——random initial value
== periodic initial value

—T ==

x,(t)

-0.05
-0.1
0

5 10 15 20 25
t(s)

Fig. 2. The convergent behaviors of system (29). (a) The convergent behaviors of x;(t). (b) The convergent behaviors of x,(t). (c) The convergent behaviors of x5(t). (d) The

convergent behaviors of x4(t).
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order Hopfield neural networks with time delay have been proved by
using the contraction mapping theorem. Finally, based on the above
the results on the fractional-order systems with time delay, global
asymptotic stability of fractional-order neural networks with time
delay have been investigated, and the corresponding conditions for
global asymptotic stability of fractional-order neural networks with
time delay have been derived by using Lyapunov method.

There are some potential research directions that could be
considered for the future works. Note that many stability condi-
tions about fractional-order neural networks with time delay in
the previously works and this paper are sufficient. So the sufficient
and necessary stability condition of fractional-order neural net-
works with time delay will be studied in the future.
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