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Automatic Visual Concept Learning for
Social Event Understanding

Xiaoshan Yang, Tianzhu Zhang, Member, IEEE, Changsheng Xu, Fellow, IEEE, and
M. Shamim Hossain, Senior Member, IEEE

Abstract—Vision-based event analysis is extremely difficult due
to the various concepts (object, action, and scene) contained in
videos. Though visual concept-based event analysis has achieved
significant progress, it has two disadvantages: visual concept
is defined manually, and has only one corresponding classifier
in traditional methods. To deal with these issues, we propose a
novel automatic visual concept learning algorithm for social event
understanding in videos. First, instead of defining visual concept
manually, we propose an effective automatic concept mining
algorithm with the help of Wikipedia, N-gram Web services, and
Flickr. Then, based on the learned visual concept, we propose
a novel boosting concept learning algorithm to iteratively learn
multiple classifiers for each concept to enhance its representative
discriminability. The extensive experimental evaluations on the
collected dataset well demonstrate the effectiveness of the pro-
posed algorithm for social event understanding.
Index Terms—Event analysis, video recognition.

I. INTRODUCTION

W ITH the recent boom of smart phones, digital cam-
eras, and Social Media sites (e.g., Flickr, YouTube,

and Facebook), it is convenient for people to capture and
share social media data online, which successfully facilitates
information generation, sharing and propagation. As a result,
a popular event that is happening around us and around the
world can spread very fast, and there are substantial amounts
of events with multi-modality (e.g., images, videos, and texts)
in Internet. Most of these social events uploaded by users are
related to some specific topics, and it is time-consuming to
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manually identify or cluster them. Therefore, automatically
understanding social events from massive social media data
is important and helpful to better browse, search and monitor
social events by users or governments. However, it is difficult
to achieve this goal because the substantial amounts of events
are very complex and diverse, which makes it difficult to
mine effective information for social event understanding. For
example, for the social event “Kate and Wiliam wedding”,
videos may contain images of Kate and Wiliam together on the
wedding’s day, in an official setting (such as in the church or
waiving at the crowd from the balcony.
Recently, many researchers have proposed different methods

by using different kinds of information. In [1]–[7], media data,
such as photos, text descriptions, tags, geographical locations,
and time stamp, are adopted for social event detection (such
as, “soccer events taking place in Barcelona (Spain) and Rome
(Italy)”), which is the topic of MediaEval Benchmark.1 In [8],
the authors propose a framework to discover social events (such
as, “Larry Page and Sergey Brin founded Google Inc. in 1998”)
from unstructured text based on several existing Web sources,
such as social networks, blogs, wikis, and search engines. In
[9]–[16], videos are adopted to detect and recognize general
categories of social events, such as “Birthday party”, “Making
a sandwich” and “Rock climbing” in the popular multimedia
event detection (MED) dataset from NIST. Video based social
event understanding becomes more and more popular. How-
ever, based on the above work, we can observe that textual infor-
mation is muchmore discriminative than visual information and
achieves much better performance. As a result, more and more
researchers attempt to combine textual and visual information,
and adopt attribute as description for social event understanding
due to its simplicity and promising performance.
In this paper, we call the various event related attributes, such

as objects, actions and scenes contained in videos, as concepts.
The basic idea of traditional concept based methods is: (1) de-
fine concept based on the textual information; (2) train visual
classifier for each concept; and (3) represent each data sample
using the learned classifiers. Even though the concept based
method can show good performance, it has the following prob-
lems. (1) Concept definition: most of the previous methods de-
fine the concept manually, which may be not enough to describe
the videos. For a video, only several frames are related to a
specific concept. Let’s take the event “presidential election” in
Fig. 1 as an example. We can define a number of specific event
concepts, such as “presidential”, and “Obama talk”. However,

1[Online] Available: http://www.multimediaeval.org/
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Fig. 1. Video related to event “presidential election.” Each concept “Obama
talk” or “supporters” corresponds to only several frames of the video. Besides,
the frames corresponding to one concept, such as “Obama talk,” are different
due to illumination changes, different views, and scale variations. (The video
via YouTube under Creative Commons License.2)

each of them only corresponds to several frames of the video.
Moreover, some meaningful concepts may be ignored due to the
manual definition, such as “supporters” in Fig. 1. Therefore, the
concept definition should include all meaningful event related
concepts, such that all video frames can be represented well.
(2) Concept diversity: the traditional methods train one classi-
fier for each concept, which ignores the diversity of concept.
For some concepts, their visual images may be very complex
and diverse, and reflect different aspects of the semantic infor-
mation of a given event. As a result, only one classifier cannot
represent them very well. As shown in Fig. 1, visual images cor-
responding to concept “Obama talk” are totally different due to
illumination changes, different views, and scale variations, and
so on. Therefore, it is necessary to train multiple classifiers for
each concept to consider its diversity and enhance the represen-
tation discriminability.2
To deal with the above issues, we propose a novel automatic

visual concept learning method for social event understanding
in videos. Social events considered in this paper are specific
public events, such as “Concert of Shakira in Kiev 2011”, which
are much more complex and diverse than the conventional
events defined in the MED dataset. Fig. 2 shows the main steps
of the proposed algorithm, which includes automatic concept
mining and boosted concept learning.3
Automatic concept mining. First, we collect an auxiliary

image set with corresponding text descriptions from Flickr.4
Then, based on the text information, we automatically extract
compact semantic phrase segments as concepts. In our imple-
mentation, the phrase segments are learned by considering both
words stickiness and visual representativeness. The stickiness
of phrase segments is measured according to the key phrases
value extracted from Wikipedia5 and the Microsoft N-gram
services.6 The visual representativeness is measured according
to the visual similarity of images returned from Flickr when a

2[Online] Available: https://www.youtube.com/watch?v=SLQsdW4AySE
3[Online] Available: https://drive.google.com/file/d/0B0os9Ds-

fRuirVVZsV05wZEJxT2M/view?usp=sharing
4[Online] Available: http://www.flickr.com/
5[Online] Available: http://www.wikipedia.org/
6[Online] Available: http://web-ngram.research.microsoft.com/

phrase segment is used as the search query. The finalist of our
concepts is the selected subset of phrase segments with large
stickiness and visual representativeness.
Boosted concept learning. The basic idea is to integrate the

concept classifier learning process in a boosting framework.
Each iteration of boosting begins by learning a classifier for
each concept according to the instance weights assigned by the
previous step. Then, the learned classifier is applied to the in-
stances to obtain their representations. Finally, the resulting fea-
ture representation is applied to learn a new weak classifier and
the new weights of instances are updated by using the classi-
fication scores. Based on the above procedure, it is clear that
the instances are iteratively reused with different weights to
learn multiple classifiers to enhance the representation discrim-
inability of each concept.
Compared with the existing methods, our contributions are

three-fold.
1. To avoid defining concept manually, we propose an auto-

matic visual concept mining method for social event un-
derstanding in videos by taking the advantages of the so-
cial media sites (Flickr andWikipedia) and the cloud-based
Web N-gram service platform provided by Microsoft.

2. Different from the traditional concept representation only
based on single classifiers, we propose a boosted concept
learning algorithm to iteratively learn multiple classifiers
to enhance the representation discriminability of each con-
cept. As a result, the learned representation can model dif-
ferent aspects of visual concepts.

3. Extensive experimental results demonstrate the effective-
ness of our boosted concept learning algorithm for social
event understanding.

The rest of the paper is organized as follows. In Section II, we
summarize the work most related to this paper. The proposed
automatic concept mining is described in detail in Section III,
while the boosted concept learning method is presented in
Section IV. Experimental results are reported and analyzed in
Section V. Finally, we conclude the paper with future work in
Section VI.

II. RELATED WORK

In this section, we review the related work about event anal-
ysis, attribute concept, and knowledge transfer, which are the
three areas most related to our algorithm.
Event Analysis: Recently, many methods have been proposed

for vision based event detection and recognition [16]–[18], [12].
There are two methods more related to ours by leveraging on
auxiliary dataset. In [19], Domain SelectionMachine (DSM) for
event recognition in videos is proposed by leveraging on web
images. Compared with our algorithm, this method is based on
only visual features without considering the context information
of videos and images, while our method uses video descriptions
to mine visual concepts. The event recognition problem is done
in [9], where visual features and text descriptions are used to
understand video event, and videos with only visual content are
tested. Though the video descriptions are used, the previously
labeled “atomic event” dataset are needed while we endeavor to
mine visual concepts automatically.
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Fig. 2. Our proposed social event understanding framework including automatic concept mining and boosted concept learning. For automatic concept mining,
we collect an auxiliary image set with corresponding text descriptions from Flickr. Based on the text information, we automatically extract compact semantic
phrase segments as concepts with the help of Wikipedia, Microsoft N-gram services, and Flickr. For boosted concept learning, the basic idea is to integrate the
concept classifier learning process in a boosting framework to iteratively learn multiple classifiers to model concept diversity. Given a test video, multiple concept
classifiers are applied to create concept descriptors. Then, the test video is recognized using these concept descriptors. (Videos via YouTube and images via Flickr
under Creative Commons License.)

Attribute Concept: The concept in our work can be seemed as
visual attribute which is used in object recognition, action recog-
nition. In [20], a detection method for unseen object classes is
proposed based on a human specified high-level descriptor of
target objects. More recently, a ranking function is learned for
each attribute of object to model the relative attributes in [21]. It
has been suggested in [22], that proper usage of semantic con-
cepts is likely to improve video analysis. In [23], [10], [24],
concept based event representation and natural languages sum-
marization method is studied. In [11], [13], semantic labels of
external videos are used as attributes to characterize video com-
plex properties. The method in [25]is more related to our work
at attribute concept mining, where the associations between ob-
ject classes and attributes are determined using semantic relat-
edness. Compared with our automatic concept mining method,
their attributes are mined for general objects.
Knowledge Transfer:Many methods have been proposed for

knowledge transfer between different domains. Most of the ex-
isting methods are designed to improve classification accuracies
for unlabeled instances in target domain by leveraging on the la-
beled instances in source domain [26], [27]. In multimedia com-
munity, there are also several algorithms [14], [28], [29]. In [29],
the authors use a graph to model the distribution discrepancy
problem of the social stream between Twitter and YouTube. In
our work, the image set collected from Flickr is source domain,
which is combined with the frames in video set (target domain)
for concept learning. Different from above mentioned domain
transfer methods, the image set in our method are related to the
video set by video descriptions and image meta data, such as
tags, tiles and descriptions.

III. AUTOMATIC CONCEPT MINING

Different from conventional concept based event analysis
methods where concept labels are defined manually, we attempt

to automatically mine visual concepts from text descriptions.
Our visual concepts are obtained by the following two steps.
Firstly, we segment text descriptions into semantic phrases
with the help of Wikipedia and N-gram web services. Then we
use social media site Flickr to pick out a subset of these phrase
segments as our visual concepts for event understanding.

A. Description Segmentation

Given text description of a video, the problem of de-
scription segmentation is to split into non-overlapping
and consecutive segments. Specifically, this can be denoted as
the expression . Here, each seg-
ment is a compact semantic unit. This kind of semantic units
are more expressive than single word, and contain much more
compact semantic information than the whole sentence. Practi-
cally, the descriptions of a given video could be segmented into
many phrase segments. Any two or three words could construct
a phrase segment. However, we want to find some valid phrases
which probably denote an object, a celebrity or a building name
related to event. The description segmentation problem can be
formulated as an optimization problem.

(1)

where is a function that measures the stickiness of a seg-
ment. The high stickiness score of a segment indicates the
high probability of being a celebrity, a building name or an
object. It is worth to note that the summation in Eq. (1) will
not make the stickiness of each segment be high, because all
these segments are not independent. If the stickiness of a spe-
cific segment is enhanced by adding or removing one word,
the stickiness of the adjacent segments will probably be de-
creased. Specifically, given the text description of a video,
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the formulation Eq. (1) in Section III-A aims to split into
non-overlapping and consecutive segments. Practically, the
and the words contained in each segment are all unknown

before solving Eq. (1). For a specific word in , it will be as-
signed to a segment which can contribute larger stickiness value
to the summarization. Thus, through solving Eq. (1), we obtain

segments which have the highest stickiness value compared
with any other kinds of consecutive word groups. Though many
segments which do not contain much useful information will be
generated by this method, the solutions of Eq. (1) give us the
clues for choosing concepts as illustrated in Section III-B. As
illustrated in Section III-B, the event concepts can be the seg-
ments with higher stickiness scores. One idea of computing
is to count the appearance of segment in a very large corpus. The
other one is to look up the segments in a knowledge base where
valid segments are more easily recognized. Wikipedia can be
exploited for this purpose, which is by far the largest online en-
cyclopedia in the World WideWeb. Specifically, to compute the
stickiness score, we adopt two large corpus. One is the docu-
ment collection in the World Wide Web indexed by Microsoft
Bing, which provides a good estimate of the statistics of com-
monly used phrases in English. The other one is a dictionary
extracted from Wikipedia. If a segment matches any entry in
the dictionary, it has a higher prior probability of being a valid
phrase for concept. Here, the stickiness function is defined
as

(2)

where is the probability that appears as the anchor
text in the Wikipedia articles that contain . can be ob-
tained by using the Wikipedia Keyphraseness dataset created in
[30]. The will be assigned to zero if does not appear
in the Keyphraseness dataset. denotes the symmetric
conditional probability for N-grams ( in our experiment).

is defined to measure the “cohesiveness” of a segment
by considering all possible bi-

nary segmentations.

(3)
Here, denotes the prior probability of the word sequence

derived from Microsoft Web N-Gram service.
The item in Eq. (2) is used to prefer longer segments.
Here, denotes the number of words contained in .

(4)

B. Concept Selection

The phrase segments for text descriptions illustrated in
Section III-A are obtained by only considering the text infor-
mation. These segments may be useful to explain a specific
event, but they probably cannot be used for visual information
for event analysis. Now, we introduce how to select the visual
concepts from these segments considering both textual and
visual information. The probability of a segment to be

selected as a concept is computed by a product of segment
stickiness and visual representativeness as in Eq. (5).

(5)

Here, is the segment stickiness computed in
Section III-A, is the visual representativeness
which is defined as the effectiveness of segment by describing
the visual content of the videos according to [31]. Specifically,

is computed as the visual similarities of returned
images from Flickr when segment is used as search
query. As shown in Eq. (6), we compute according
to the centroid-based cohesion due to its effectiveness and ef-
ficiency [31]. Visual representativeness in [31]is computed for
general semantic tags related to large number of images while
concepts for specific events are considered in our method.

(6)

Here, similarity function can be computed by distance
function using low level visual features, and is the
centroid of . Consider that a segment may be only rele-
vant to a specific region of an image, it is reasonable to mea-
sure the visual similarity for different image regions separately.
However, it is time-consuming using traditional methods. In-
spired by [32], we use a similarity measurement method through
Fourier transformation. We denote the feature vector of image
as , which is obtained using Bag-of-Word [33], [34]and SPM
[35]scheme. SPM divides image into regions to consider spatial
information, and features in different regions are concatenated
to obtain the feature vector. Thus, each part of denotes vi-
sual feature of one region in image . To measure correlations
of segments which are only related to local image regions, it is
reasonable to align their image features according to different
image regions. As shown in Eq. (7), we use the 1-dimensional
circulate encoding method [32]to achieve the visual similarity
of an image pair ( ).

(7)

where, denotes the conjugation, denotes the element-wise
multiplication, is the 1D discrete fourier transformation, and

is its inverse, and are the feature vectors of image pair
( ), and is the regularization coefficient which ensures the
stability of the filter. The similarity is measured for all possible
alignments of two image features rapidly due to Fourier domain
processing.
Note that we do not use the number of images in to nor-

malize the sum in Eq. (6). This is due to the following reasons.
Flickr is a photo sharing website where users can upload photos
to record the events happened in the world around them. The
tags and descriptions are mainly used to clarify the information
contained in these photos. One or several words of segment
must be contained in the descriptions, titles or tags related to im-
ages returned from Flickr when is used as query. The more
images contained in Flickr site for a single phrase segment ,
the more likely can be represented by visual information.
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Thus the number of images in can reflect the visual repre-
sentativeness of the phrase segment . Another possible choice
to measure the visual representativeness is using the query logs
of image search engine for each segment. However, it is diffi-
cult to collect search logs in occurrence time of all events.

IV. BOOSTED CONCEPT LEARNING

As illustrated in Section III, the concepts inCpts are extracted
automatically from text descriptions of the videos. In practice,
some image frames are not truly related to the concepts assigned
to a video as shown in Fig. 1. These images will add too much
noise if we learn concept classifiers using the extracted visual
features from the whole video. In this section, we introduce a
boosted concept learning algorithm to iteratively obtain mul-
tiple classifiers for each concept. With the help of auxiliary web
images, our concept classifiers are trained using the most related
image frames in videos. We first overview the whole process of
our algorithm. Then, we introduce each step in details.

A. Overview

Our goal is to learn multiple classifiers for each concept for
social event understanding on video dataset by leveraging on
an auxiliary image dataset. To achieve this goal, we make use
of boosting to learn one classifier at each iteration by consid-
ering instance weight distributions of the two datasets. After it-
eratively learning, we can obtain multiple classifiers to describe
each concept.
Let be the event dataset including videos.

Here, denotes a video instance and consists of frames.
The event class labels of videos in are denoted as

, is the number of event classes
and is the number of video instances. We use
to denote visual feature vectors of all frame images extracted
from all videos. Here, denotes the visual feature of the
th image, and is the number of all frames in .
Let be visual concept annotations for images of
all videos. denotes the index of concepts in Cpts related to
the th image in . Here, Cpts is the concept set extracted in
Section III. Since different videos may be related to several dif-
ferent concepts, frame images in different videos probably have
different concepts. Let be an auxiliary image set including
images. We use to denote feature vectors
for all images in . Concept annotations for all images in the
auxiliary image set are denoted as according to
Cpts. Let and denote the distribution vectors for all im-
ages in and , respectively.
Given , , , and , we introduce how to learn effec-

tive concept representation under boosting framework [36]. At
each iteration of the boosting process, (1) we first learn do-
main adaptation features, which can alleviate the domain dif-
ference between and . According to and updated
at the th iteration, we sample a subset of and a
subset of to lean a shared feature representation
via a recent method mSDA [37]. (2) Based on the learned fea-
ture representation and image distributions and ,
we train concept classifiers . Here, is the number
of all concepts. Then, the image weight distributions and

are updated by using the concept classifier scores. Moreover, the
concept classifier scores can also be used to describe each frame
of video. By using sum-pooling among all frames in a video, we
can obtain the representation for each video. (3) Then, based on
the video representations, a weak classifier and the cor-
responding combination coefficient can be learned for social
events. (4) Finally, We update the distribution based on the
error of this event classifier. In our update, the values of the
distribution related to images of videos which are not clas-
sified correctly by are increased. Thus, images of these
videos are more likely to be selected for training a new feature
representation function at the next iteration.
Once this procedure converges, we obtain a set of concept

classifiers for each concept , feature representation
functions , weak event learners and
their corresponding combination coefficients . The
weak event classifier can be combined as a strong classifier

as shown in Eq. (19) to classify new videos. To classify a
new video, each frame of the video is mapped with feature func-
tions to obtain feature spaces ( is the number
of boosting iterations). Then, concept classifiers
are used to create a concept descriptor for the new video, which
can be classified by its corresponding weak classifier . Via
the corresponding combination coefficients , the final
class label of this video can be assigned by . The details
of the above process are summarized in Algorithm 1. In short,
at each iteration , our algorithm has 4 major components, learn
domain adaptation feature, learn concept classifier, learn event
weak classifier, update weight distribution. Finally, we can
construct a strong social event classifier. The details of each
component are introduced in the following subsections.

Algorithm 1 Boosted Concept Learning.

input: concept set , videos ,
labels , frame features ,
concept annotations , image set
and its features , concept

annotation , weight distribution
, .

output: , , , and .
1 for to do
2 Sample and from and according to

and , respectively.
3 Learn domain adaptation feature representation

on as in Section IV-B.
4 Learn concept classifiers according to

by considering and as in Section IV-C.
• Compute the error and for all

concepts according to Eq. (11) and Eq. (12).
• Update distribution and as in Eq. (13).

5 Learn weak classifier according to as in
Section IV-D.

• Compute the error and according to Eq. (16)
and Eq. (17), respectively.

• Update distribution as in Eq. (18).
6 end
7 Obtain social event classifier as in Eq. (19).
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B. Domain Adaptation Feature Learning
The simple yet effective marginalized stacked denoising

auto-encoder (mSDA) method has been successfully applied
for transfer learning in document sentiment analysis. The basic
idea of mSDA is to combine the instances in the source and
target domains together to learn a common feature represen-
tation [38], [37]. The SDAs are able to disentangle hidden
factors which explain the variations in the input data, and au-
tomatically group features in accordance with their relatedness
to these factor. This helps transfer across domains as these
generic concepts are invariant to domain-specific features [38].
More specifically, as mentioned in [37], the learned common
representations would tend to reconstruct, and be reconstructed
by, co-occurring features, typically of similar sentiment. Hence,
the source-trained classifier can assign weights even to features
that never occur in its original domain representation, which is
“re-constructed” by mSDA.
In this work, we go further beyond mSDA and SDA, and pro-

pose a distribution sensitive feature learning method within our
boosting framework. Specifically, we sample a subset of
and a subset of according to image weight distributions

and to learn domain adaptation feature representation.
Let be feature vectors of all sampled image
instances. The mSDA method reconstructs the original image
features with a single mapping function by minimizing the fol-
lowing squared reconstruction loss.

(8)

Here, is a corrupt version of and is obtained by stochasti-
cally setting some elements of the input to zero. Hence, de-
noising auto-encoder is trying to predict the missing values from
the non-missing values. The corruptions are useful for capturing
the statistical dependencies between the inputs [39]. denotes
the mapping matrix which projects the corrupted feature to
. Though it is just a single linear mapping, more representative

domain invariant features can be learned when combined with
the non-linear activation function and the layer-wise stacking
scheme [37]. With different corruptions, Eq. (8) can be written
as

(9)

This equation can be solved using the closed-form solution for
ordinary least squares. A more simplified solution is given in
[37]by marginalizing all the noises when .

(10)

Here, , is copies of , and
the corrupted version of is denoted as .
The obtained by minimizing Eq. (9) can be considered

practically as a linear mapping function. After the linear fea-
ture mapping, as in traditional deep learning methods, a non-
linear activation function (e.g., ) is applied. To construct
a deep layer-wise structure, such one layer auto-encoders are
stacked together. In practice, the mSDA structure for feature

representation is fixed by weight matrices where each layer has
one weight matrix and a nonlinear function. For sim-
plicity, we denote the multi-layer mSDA feature representation
as a single function . Take a 2-layer mSDA as an example,
the function is the learned fea-
ture representation.

C. Concept Classifier Learning
Based on the learned domain adaptation feature representa-

tion , we can learn concept classifier for each con-
cept on two sampled subsets and obtained by consid-
ering weight distributions and . For simplicity, we make
use of the linear SVM due to its effectiveness and efficiency to
learn concept classifier for each concept in Cpts. For concept
, images in both and related to concept are adopt to
learn the corresponding concept classifier . For efficiency,
the classifier training for different concepts can be conducted in
parallel. After training, the classifier can assign a binary
value 1 or to indicate whether an input image is related to
concept or not.
At each iteration of the boosting process, we need to obtain

the corresponding feature descriptors for all videos
. For the th video, its images can be described by

the scores of the concept classifiers . Then, we can
obtain the video representation through sum-pooling scheme
among its images. Moreover, based on the learned concept
classifier for each concept , we can compute the corre-
sponding classification error and the weight as in Eq. (11)
and Eq. (12), respectively.

(11)

(12)

In Eq. (11), denotes the index of images related to
concept in and . Features in and are firstly
transformed through . Then all concept classifiers are used
to predict their labels. Here, is the indicator function.
Update distributions and : Rewrite , the
can be updated as in Eq. (13). In the same way, the update

scheme for can be derived directly.

(13)

Here, denotes the index of images in related to
concept . Note that Eq. (13) is different from the update scheme
as in conventional boosting method [36]. Here, the weights of
correctly classified images will be increased. By this kind of
update, the most representative images for each concept, which
are always correctly predicted by concept classifiers, will be
selected to learn new representations.

D. Event Weak Classifier Learning
Once the concept descriptors for all videos are ob-

tained as shown in Section IV-C, we can learn a corresponding
weak classifier for social event classification. Now, we intro-
duce how to design an effective and efficient weak classifier

for social event by considering the weight distribution
of images in the video set. For simplicity, we adopt the linear
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weighted support vector machine (WSVM) [40] due to its ef-
ficiency. Descriptors of all videos are denoted as . The
event class labels of the training instances are . Then, a
2-class linear support vector machine can be written as

(14)

Note that Eq. (14) can be viewed as assigning a penalty param-
eter to . Thus different instances will be constrained with
different penalties in the learning process. For the multi-class
problem, one-vs-the-rest strategy can be adopted.
Now we illustrate the in Eq. (14). The event classifiers

need to be trained according to the distribution of videos. How-
ever, the distribution is only defined for frames contained in
the videos for the convenience of the distribution update ac-
cording to errors of concept classifiers. Thus, we need to trans-
form the distribution of frames to the distri-
bution of videos. Rewrite and

. Here, are weight values of the im-
ages in video set , and denote weight values of videos.

can be obtained by accumulating all the weight values in
of images in the corresponding video. This can be illus-

trated as Eq. (15), where denotes index of all images
in belonging to the th video in .

(15)

Similar to the conventional multi-class AdaBoost scheme [36],
after constructing the weak classifier according to distri-
bution of videos, we compute the classification error and
assign a weight for the weak learner as shown in Eq. (16)
and Eq. (17), respectively. Here, is the indicator function,

is the number of event classes.

(16)

(17)

Then, we update all weight values of as Eq. (18) according
to the learned weak classifier.

(18)
Here, denotes the index of images in , denotes the index
of videos in , and denotes index of all images in
related to the th video in .

E. Social Event Classifier

Once the boosting procedure converges, we obtain a set of
feature representation functions , concept classi-
fiers , and a set of weak learners and

their corresponding combination coefficients . Then,
the learned social event classifier is

(19)

F. Discussion

Firstly, we give the more detailed explanations to the distri-
butions and which are used in our algorithm to sample
image instances and iteratively updated in the boosting proce-
dure. (1) The distribution is maintained for all frame images
of the event videos in . The is firstly updated by using
the errors of the concept classifiers as shown in Eq. (13). In the
boosting process, the image frames with most representative vi-
sual appearance for concepts are increased.With the help of ,
though the concept annotations are only available for videos, we
can obtain the most related frames in the videos for each concept
to train the corresponding concept classifier. Moreover, by up-
dating using the errors of the event weak classifiers as shown
in Eq. (18), the misclassified videos in will be paidmore atten-
tion at next iteration of the boosting process. (2) We also main-
tain a distribution similar as for all images in image set
. The image set crawled from Flickr is used to enrich the in-
stances for concept classifier training. The concept annotations
for images in are obtained by assigning the concepts in Cpts
according to the text descriptions, tags, and titles on Flickr. As
we know that the text descriptions or tags of the images crawled
from Flickr are provided by common users, this will inevitably
introduce inaccurate descriptions which lead to the unreliable
concept annotations for the images in the image set . By up-
dating based on the concept classifiers as shown in Eq. (13),
we can obtain the most related images in the image set to each
concept for concept classifier training. It is worth noting that the
image dataset and the event video dataset may have different
data distributions. To deal with this issue, we adopt the mSDA
to bridge the two domains to reduce the domain difference as
shown in Section IV-B.
In Fig. 3, we show an example to illustrate how the learned

multiple concept classifiers can improve event recognition per-
formance step by step.7 For simplicity, we only show the con-
cept classifier training process and event recognition for training
videos related to event “Victory speech of Obama” from the
th iteration to the th iteration. At the th iteration, the
learned concept classifier for “Obama talk” can classify video1
and video2 correctly. Due to the representative discriminability
of the concept classifier, it cannot describe video3 well. By con-
sidering the weight distributions of the misclassified instances,
our algorithm can learn a new concept classifier for “Obama
talk”, which can classify the video3 correctly. Therefore, our
boosted concept learning can iteratively learn multiple classi-
fiers for each concept to enhance its representative discrim-
inability.

7[Online] Available: https://drive.google.com/file/d/0B0os9DsfRuirQVJm-
RURXdW52dE0/view?usp=sharing
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Fig. 3. Process of our boosted concept learning. Here, for simplicity, we only show the process of concept classifier training and event recognition for training
videos related to event “ Victory speech of Obama” from the th iteration to the th iteration. At the th iteration, the learned concept classifier for “Obama
talk” can classify video1 and video2 correctly. Due to the representative discriminability of the concept classifier, it cannot describe video3 well. By considering
the weight distributions of the misclassified instances, our algorithm can learn a new concept classifier for “Obama talk,” which can classify the video3 correctly.
(Videos via YouTube and images via Flickr under Creative Commons License.)

TABLE I
DETAILS OF EVVE VIDEO DATASET

V. EXPERIMENTS

In this section, we firstly introduce the two datasets including
a video dataset and an image dataset used in our experiments.
Then we show the experimental results and analysis.

A. Dataset and Feature Extraction

For the video dataset, we use the videos of the EVVE dataset
collected in [32], which includes 13 specific events. In Table I,
we show the details of all these 13 events. Since original videos
are not provided by authors, we crawl videos according to the
URLs provided in [32] by ourselves. Finally, we obtain 1659
videos with the above event class labels as declared in [32]. Be-
sides, more than 1000 negative videos provided in [32] are used
to train concept learners combined with 2000 negative videos
crawled from YouTube.
In our implementation, all videos are formatted uniformly to

a maximum size of 300 pixels in height and width while the
original aspect ratios remain unchanged. Frame images are sam-
pled for all videos with a fixed step size (every 5 seconds).

Then, to obtain image representation, we adopt the localized
soft-assignment coding(LSC) [41] with a codebook comprised
of 1024 keywords to encode the dense SIFT features. Finally,
via SPM [35], the visual feature dimension is 21504.
Since the visual features are extremely sparse, we reduce their
dimensions to 200 using PCA which does not decrease the per-
formance much. In all experiments, we choose two-thirds of the
videos to be our training instances while the remaining videos
are used for testing.
To compute the visual representativeness of each description

segment illustrated in Section III-A, we crawl about 100 images
per segment from Flickr. Totally, there are more than 1000K im-
ages used in the experiment. Then, the same visual features as
above are extracted for each image. For the auxiliary image set
which is used to train concept learners, we collect about 40 K
images from Flickr according to the keywords of each event.
Specifically, we used the nouns (e.g., time, place, and people)
contained in the event name as the keywords to search the im-
ages on Flickr. The event name is defined by the author of the
EVVE dataset [32], such as “die toten hosen rock am ring 2012”.
For some events, using all words of the event name may lead
to invalid search on Flickr and no images are returned. In this
case, we randomly ignored several words. As a result, the re-
turned images may not to be strictly relevant to the event. This
issue can be slightly dealt with the proposed boosted concept
learning method, which can pick out the most related images in
both video set and image set for event recognition as illustrated
in Section IV. Though this kind of method for collecting images
from Flickr really needs somemanual work, it is still muchmore
convenient than the traditional methods by annotating the event
related concepts manually. The images collected for each event
are restricted with the condition that the uploading time cannot
be earlier than the practical happening time of the event. Visual
features for all crawled images are also extracted as the above
method.
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Fig. 4. Segments frequency. (a) Frequencies of the segments appeared in all videos follow the power-law distribution. We can see that above 90% of these
segments only appear in a few videos. (b) Frequencies of the segments with enriched instances by leveraging on the Flickr image set. We can see that more related
instances are available for specific segments.

TABLE II
EVENT CLASSIFICATION ACCURACIES OF DIFFERENT CONCEPT SELECTION METHODS

B. Automatic Concept Mining
In this section, we introduce the segment results for video

descriptions and the visual concepts selected from them.
Segments of Text Descriptions for Videos: Before segment

extraction from video descriptions, the stop-words and words
with non-English character in the text description of all videos
are removed. After segmentation of text description for each
video as illustrated in Section III-A, we obtain a total of 14852
distinct segments. The statistics on the description segments
learned by our segmentation method are given as follows. There
are 10895 unique segments, 311 of them are unigram (single
word), 9230 are 2-grams, and 1354 are 3-grams. We observed
that 2-grams account for most part of the segments which is con-
sistent with [30].
As shown in Fig. 4(a), the frequencies of the segments

appeared in all videos follow the power-law distribution. We
can see that above 90% of these segments only appear in a
few videos which are referred as specific segments for sim-
plicity. Though these segments are much more efficient for
distinguishing classes of the corresponding videos, there are
few instances for learning concept classifiers. Segments with
more related video instances are called common segments.
Compared with specific segments, these common segments are
not efficient to represent a specific event. This can be proved
by the event recognition results shown in the first two rows
of the Table II. specificSegments denotes the method using
segments appeared between 5 to 10 times while commonSeg-
ments denotes the method using segments appeared more than
20 times. We obtain about 40 segments for commonSegments
and specificSegments, respectively. In both methods, the seg-
ments used as the concept labels to train concept classifiers
are similar to the method in [10]. Then, the learned concept
classifiers are combined to decide the event class. We can see
that the specificSegments method performs better. The simple
experiment gives us an insight that if we want to improve the
event recognition performance, we should enrich the instances
for specific segments.

TABLE III
STICKINESS AND REPRESENTATIVENESS OF SEGMENTS

Concept Selection: As shown in Fig. 4(a), most segments
only correspond to a few videos. By leveraging on the Flickr
image set, we can enrich instances for specific segments as il-
lustrated in Section V-B1. This is also the reason why we in-
troduce an auxiliary image set to learn concept classifiers. By
annotating images from Flickr with the segments introduced in
Section V-B1, we get more visual instances for each segment.
The segment frequencies on Flickr are shown in Fig. 4(b). Com-
pared with Fig. 4(a), we can see that more related instances are
available for specific segment.
We obtain our concepts by choosing a subset of these seg-

ments with the help of stickiness and visual representativeness
as illustrated in Section III. In Table III, we show four exam-
ples of segments for each event with high stickiness score com-
puted as in Section III-A. Due to the space limitation, we only
show segment examples of 3 events. The number of unique
segments is shown below the ID for each event. We can see
that the visual representativeness is always inconsistent with the
stickiness value. For the first event as shown in the first row of
Table III, the segment “shops attacked” has the highest sticki-
ness value 0.87 and the relative small visual representativeness
value 0.15 compared with other three segments. On the contrary,
the segment “scuffles strike” has the smallest stickiness value
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TABLE IV
COMPARISONS OF SEVERAL TRADITIONAL METHODS FOR EVENT CLASSIFICATION

and the largest representativeness value. From these examples,
we can see that some segments with big stickiness value, such
as “shops attacked”, cannot be expressed easily with visual con-
tent due to the various scenes related to the segments. Thus, this
kind of segments are not suitable to be selected as our visual
concepts.
To further illustrate the importance of the visual represen-

tativeness for concept selection, we set two simple baselines,
StickyConcepts and CombineConcepts, for event recognition on
the video dataset. StickyConcepts denotes the event recognition
method on the video dataset using concepts selected according
to the stickiness value while CombineConcepts denotes the
method using concepts selected according to both the stickiness
value and the visual representativeness. In these two methods,
the concept classifiers are trained with the similar scheme as
in conventional methods [23], [10], [24], and the feature de-
scriptions for videos are obtained using the scheme introduced
in Section IV-C. Accuracy results for these two methods are
shown in Table II. These results demonstrate the necessity of
introducing visual representativeness for our visual concept
selection. Impact of the number of the selected segments will
be illustrated in Section V-D.

C. Boosted Concept Learning
In this section, we evaluate the effectiveness of our boosted

concept learning method by comparing it with several recently
proposed event recognition methods.
1) PoolFeature is a simple baseline, which combines visual

features of all frames by sum-pooling to describe each
video. Then, the SVM classifier is trained and tested.

2) DenseTraj is a baseline method implemented using dense
trajectory features [42] based on the code provided by the
authors.

3) SVM-2K denotes the revised version of the conventional
two-view learning method [43] using classifier of the
video features for predicting. Specifically, classifiers for
two views (video and text in our experiment) are learned
for training while only the classifier corresponding to the
visual features of videos is used for predicting. This is
different from the conventional SVM-2 K [43]. Because
in our experiment, text information is only available for
training. We use the code provided by the authors to
implement the baseline. All parameters are tuned to give
best results.

4) Co-training denotes the revised method of [44]. Similar
as the SVM-2 K method, classifiers for two views (video
and text in our experiment) are learned for training while

only the classifier corresponding to the visual features of
videos is used for predicting. Besides, the auxiliary images
are used as unlabeled instances. We use the code provided
in [45]. All parameters are tuned to give best results.

5) CTE-KNN denotes the method where we combine circu-
late temporal encoding (CTE) and KNN for event classi-
fication. Specifically, the CTE is used as distance function
and KNN is used to decide the class for a given video. CTE
method is originally proposed in [32] for event based video
retrieval on EVVE dataset.

6) CTE-KNN-cpt denotes the baseline method based on
CTE-KNN using the learned concept features.

7) DSM is an event recognition method proposed in [19]
which is leveraged on the web images from different web
sites. Since an auxiliary image set is also adopted in our
algorithm, the DSM method is used to measure the effec-
tiveness for utilizing auxiliary images of our algorithm.

8) DSM-cpt denotes the baseline method based onDSM using
the learned concept features.

9) BoostConcepts-mFL is a simple implementation of our al-
gorithm introduced in Section IV. Concept classifiers are
trained without considering multiple feature learning via
mSDA. Specifically, original low level visual features of
videos and images are used to train concept learners. In the
boosting iteration process, distributions of video instances
and image instances are updated similarly as the distribu-
tion update scheme introduced in Section IV. Then the con-
cept classifiers are used to create feature representations of
videos to train event learners.

10) BoostConcepts is the implementation of our whole algo-
rithm. Concept classifiers are trained based on the common
feature representations (mSDA) of images in video set
combined with the images in auxiliary image set. More
detailed illustrations could be found in Section IV.

Experimental results for all these methods are shown in
Table IV. We can see that our BoostConcepts-mFL and Boost-
Concepts methods perform much better than all other methods.
Compared with PoolFeature, the dense trajectory features
DenseTraj really improve the event recognition performance,
but still cannot outperform our proposed boosted concept
features. Besides, it is very time-consuming to extract the dense
trajectory features for video understanding. The experimental
results are shown in Table IV. The two methods SVM-2K and
co-training perform better than the baseline method PoolFea-
ture which only uses the visual features in the video for training
classifiers, but are still not comparable with our concept feature
based method. From the results of DSM-cpt and CTE-KNN-cpt,
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Fig. 5. Confusion matrix of the event recognition results by our BoostConcepts
method.

we can see that DSM and CTE-KNN methods can be improved
dramatically by using the concept features. Compared with
the conventional event recognition methods, our BoostCon-
cepts-mFL achieves much better performance, which shows the
effectiveness of the concept boosting scheme that effective vi-
sual images for each concept are selected iteratively according
to the distributions and as discussed in Section IV. The
only difference between BoostConcepts-mFL and BoostCon-
cepts is the multiple feature representation learning via mSDA
at each iteration. Our BoostConcepts shows much better per-
formance, which demonstrates that feature learning via mSDA
can reduce the domain difference between the video set and the
image set.
In Fig. 5, we show the confusion matrix of the event recog-

nition results for our BoostConcepts method. We can see that
event “BM” (the full name is “Bomb attack in the main square
of Marrakech, 2011”) has the maximum confusion value where
50% videos are misclassified as “MT” (the full name is “Major
autumn flood in Thailand, 2011”). Intuitively, the events “BM”
and “MT” are not similar according to the semantic informa-
tion contained in their event names. The confusion is because
videos of the two events have very similar background, which
increases the difficulty to distinguish these two events.

D. Parameter Analysis
In Section V-B, we show event recognition accuracies for dif-

ferent concept selection methods without considering the im-
pact of the number of selected concepts. To make clear how
many concepts should be used for event recognition, we show
the average accuracies of CombineConcepts method with dif-
ferent number of concepts in Fig. 6. We can see that the best ac-
curacy is obtained with 550 concepts and more concepts even
up to 1000 do not improve the performance. This can be ex-
plained by reviewing the concept mining step of our algorithm
in Section III. Generally speaking, more concepts lead to a more
complete semantic representation for the videos. However, in
our method, the concepts with low stickiness value are inaccu-
rate and will decrease the performance. According to this rule,
we select 550 concepts in all experiments.

Fig. 6. Average accuracy results for the CombineConcepts method with dif-
ferent number of concepts.

Fig. 7. Accuracy results of the BoostConceptsmethod with different iterations
of the boosting framework.

Our boosted concept learning algorithm is based on the
boosting framework as illustrated in Section IV. To verify its
convergence, in Fig. 7, we show the recognition accuracies
of the BoostConcepts method explained in Section V-C with
different iterations. We can see that our algorithm converges
quickly within about 10 iterations, more iterations will not
improve the performance much.

E. Event Description by Visual Concept

As illustrated in Section IV, two distributions are adopted in
the boosting process of our algorithm. One is the distribution
for frames of the video set and the other one is the distribution
for images of the image set. As shown in Section V-C, these
distributions actually contribute much to the high performance
of our algorithm for event recognition in videos. Besides, after
convergence of the boosting process, we can obtain a weight
vector which is an intermediate output according to the event
classifier. Elements in the weight vector denote the importance
of different concepts for recognizing event videos. For linear
SVM classifier, this vector could be simply obtained by sum-
ming the transformation matrix according to the column of each
concept. Here, we show another application of the weight vector
of concepts. In Fig. 8, we show a visual concept description for
social event “kate and williamwedding” using the weight vector
for all concepts. The edge reflects the weights of concepts. This
concept based event description is a more effective visual sum-
marization of the social event “kate and william wedding”. We
can see that concepts “horse guards parade”, “clarence house”,
“queen elizabeth ii”, “buckingham” and “kate williams” have
big weights, which are consistent with our observation that these
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Fig. 8. Relationship among event and its concepts. The thick edges mean that
the concepts and the event have strong relationship. We show visual concept
description for social event “kate and william wedding” using the weight vector
for all concepts.

concepts are the most discriminative semantic key phrases for
the wedding event.

VI. CONCLUSION
In this paper, we have proposed an automatic visual concept

learning method for social event understanding. To achieve this
goal, we first do automatic concept mining. Then, we propose
a boosted concept learning method to learn multiple classifiers
for each visual concept to enhance its representation discrim-
inability. The experimental results demonstrate the effective-
ness of our proposed method. In the future, we will test our algo-
rithm for other applications, such as image retrieval and domain
adaptation.
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