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A Novel Dual Iterative Q-Learning Method
for Optimal Battery Management in
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Abstract—In this paper, a novel iterative Q-learning
method called “dual iterative Q-learning algorithm” is de-
veloped to solve the optimal battery management and
control problem in smart residential environments. In the
developed algorithm, two iterations are introduced, which
are internal and external iterations, where internal iteration
minimizes the total cost of power loads in each period,
and the external iteration makes the iterative Q-function
converge to the optimum. Based on the dual iterative
Q-learning algorithm, the convergence property of the it-
erative Q-learning method for the optimal battery man-
agement and control problem is proven for the first time,
which guarantees that both the iterative Q-function and
the iterative control law reach the optimum. Implementing
the algorithm by neural networks, numerical results and
comparisons are given to illustrate the performance of the
developed algorithm.

Index Terms—Adaptive critic designs, adaptive dynamic
programming (ADP), approximate dynamic programming,
neural networks, optimal control, Q-learning, smart grid.

I. INTRODUCTION

W ITH the rising cost, environmental concerns, and relia-
bility issues, the need to develop optimal control and

management systems in residential environments is continu-
ously increasing. Smart residential energy systems, composed
of power grids, battery systems, and residential loads, which
are interconnected over a power management unit, provide
end users with the optimal management of energy usage to
improve the operation efficiency of power systems [1]–[3]. On
the other hand, with the rapidly evolving technology of electric
storage devices, energy-storage-based optimal management has
attracted much attention [4]–[6]. Along with the development
of smart grids, increasing intelligence is required in the optimal
design of residential energy systems [7]–[9]. Hence, the intel-
ligent optimization of battery management becomes a key tool
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for saving the power expense in smart residential environments.
Characterized by strong abilities of self-learning and adap-

tivity, adaptive dynamic programming (ADP), proposed by
Werbos [10], [11], has demonstrated strong capability for
finding the optimal control policy and solving the Hamilton–
Jacobi–Bellman (HJB) equation forward in time [12]–[18].
Q-learning, proposed by Watkins [19], [20], is a typical ADP
method and has been effectively applied to smart energy
systems [21], [22]. In [23], Q-learning was denoted as action-
dependent heuristic dynamic programming. In [24], a time-
based Q-learning (TBQL) algorithm, inspired by [25], was
proposed to obtain optimal control for residential energy sys-
tems. In [26] and [27], optimal control for residential energy
systems was obtained by the TBQL algorithm, where renewable
resources, including wind and solar energies, were taken into
consideration. In previous TBQL algorithms, however, it is
required that the time index t reaches infinity to obtain the
optimal Q-function, which means that the optimal Q-function
and optimal control law are time-invariant functions as t →
∞. Since the residential load is a time-varying function, the
optimal control law must be time varying, which means that
the optimal Q-function is also time varying. In addition, in
previous TBQL algorithms, properties of the algorithms, such
as the convergence property, are not analyzed. In this case, the
optimal control scheme cannot be guaranteed by the TBQL
algorithms as t → ∞, which limits the applications of the
TBQL algorithms to a great extent. Hence, it is necessary
to develop a new iterative Q-learning algorithm and establish
corresponding property analysis, which therefore motivates our
research.

In this paper, a new dual iterative Q-learning algorithm
is developed to obtain the optimal management scheme for
residential energy systems. First, the detailed iteration proce-
dure of the dual iterative Q-learning algorithm is presented.
Two iterations are introduced, which are external (i-iteration in
brief) and internal (j-iteration in brief) iterations. The objective
of i-iteration is to achieve the optimal Q-function, and the
objective of j-iteration is to obtain the iterative control law
sequence that minimizes the total cost in each period. Second,
the convergence property of the dual iterative Q-learning algo-
rithm is proven for the first time to guarantee that the iterative
Q-function can reach the optimum under the iterative control
laws. Furthermore, in order to facilitate the implementation
of the dual iterative Q-learning algorithm, neural networks
are employed to implement the developed algorithm to obtain
the iterative Q-function and the iterative control laws. Finally,
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numerical results and comparisons are given to show the effec-
tiveness of the developed algorithm.

II. PROBLEM FORMULATION

Here, smart residential energy systems with batteries will be
described. The optimization objective of our research will
be defined, and the corresponding principle of optimality will
be introduced.

A. Notation

The list of notations used is reported as follows.
t, k Time indexes.
i, j Iteration indexes.
Ebt Battery energy (kWh).
Emin

b Minimum storage energy of the battery (kWh).
Emax

b Maximum storage energy of the battery (kWh).
η(·) Charging/discharging efficiency of battery.
Pbt Battery power output (kW).
Pmin
b Minimum charging/discharging power of bat-

tery (kW).
Pmax
b Maximum charging/discharging power of bat-

tery (kW).
Prate Rated power output of battery (kW).
PLt Power of the residential load (kW).
Pgt Power from the power grid (kW).
Ct Electricity rate (cents/kWh).
Eo

b Middle of storage limit (kWh).
m1,m2, r Given positive constants in performance index

function.
γ Discount factor.
xt System state.
ut Control input.
F (·) System function.
U(·) Utility function.
J(·) Performance index function.
Q(·) Q-function.
argmin Argument of the minimum.
min Minimum of the function.
λ Period of residential load and electricity rate.
Wa Hidden-output weight matrix of action network.
Ya Input-hidden weight matrix of action network.
Wc Hidden-output weight matrix of critic network.
Yc Input-hidden weight matrix of critic network.

B. Smart Residential Energy Systems

The smart residential energy system described in [24] is com-
posed of the power grid; the residential load; the battery system,
which is located at the side of residential load (including a
battery and a sinewave inverter); and the power management
unit (controller). The schematic of the smart residential energy
system can be described in Fig. 1.

The battery model used in this work is based on [24], [28],
and [29], where the battery model is expressed as

Eb(t+1) = Ebt − Pbt × η(Pbt). (1)

Fig. 1. Smart residential energy system.

Let Pbt > 0 denote battery discharging. Let Pbt < 0 denote
battery charging, and let Pbt = 0 denote that the battery is idle.
Let the efficiency of battery charging/discharging be derived as
η(Pbt)=0.898−0.173|Pbt|/Prate, where we define Prate>0.

Remark 1: In this paper, the optimal battery control prob-
lem is treated as a discrete-time problem with the time step of
1 h, and it is assumed that the residential load varies hourly.
Then, the battery power output Pbt satisfies Pbt(kW)× 1(h) =
Pbt(kWh), which is equal to the value of energy. Hence, the
expression of the battery model in (1) is feasible.

C. Optimization Objectives and Optimality Principles

In this paper, the power flow from the battery to the grid is
not permitted, i.e., we define Pgt ≥ 0, to guarantee the power
quality of the grid. For convenience of analysis, we introduce
delays in Pbt and PLt, and then, we can define the load bal-
ance as PL(t−1) = Pb(t−1) + Pgt. The total performance index
function expected to be minimized is defined as

∞∑
t=0

γt
(
m1(CtPgt)

2 +m2 (Ebt − Eo
b )

2 + r(Pbt)
2
)

(2)

where 0 < γ < 1, and Eo
b = 1/2(Emin

b + Emax
b ). The physical

meaning of the first term of the performance index function is
to minimize the total cost from the grid. The second term aims
to make the stored energy of the battery close to the middle
of storage limit, which avoids full charging/discharging of the
battery. The third term is to prevent large charging/discharging
power of the battery. Hence, the second and third terms aim
to extend the lifetime of the battery. Let x1t = Pgt and x2t =
Ebt − Eo

b . Letting ut = Pbt and xt = [x1t, x2t]
T , the equation

of the residential energy system can be written as

xt+1 = F (xt, ut, t) =

(
PLt − ut

x2t − utη(ut)

)
. (3)

Let ut = (ut, ut+1, . . .) denote the control sequence from t

to ∞. Let Mt =

[
m1C

2
t 0

0 m2

]
. Let x0 be the initial states.

Then, the performance index function (2) can be written
as J(x0, u0, 0) =

∑∞
t=0 γ

tU(xt, ut, t), where U(xt, ut, t) =
xT
t Mtxt + ru2

t . Generally, functions of the residential load and
the real-time electricity rate are periodic. For convenience of
analysis, our discussion is based on the following assumption.
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Assumption 1: The residential load PLt and the electricity
rate Ct are periodic functions with the period λ = 24 h.

Define the control sequence set as Ut={ut :ut=(ut, ut+1,
. . .), ∀ut+i∈R

m, i=0, 1, . . .}. Then, the optimal performance
index function can be defined as J∗(xt, t)=minu

t
{J(xt,

ut, t) :ut∈Ut}. Define the optimal Q-function as Q∗(xt, ut, t),
which satisfies min

ut

Q∗(xt, ut, t) = J∗(xt, t). Hence, the

Q-function is also called the action-dependent performance
index function. According to [19] and [20], the optimal
Q-function satisfies the following equation:

Q∗(xt, ut, t)=U(xt, ut, t)+γmin
ut+1

Q∗(xt+1, ut+1, t+1). (4)

Remark 2: According to Bellman’s principle [30], J∗(xt, t)
satisfies the following HJB equation:

J∗(xt, t)=min
ut

{U(xt, ut, t)+J∗ (F (xt, ut, t), t+1)} . (5)

From (5), we can see that the J-function, i.e., J∗(xt, t), only
describes the quality of the states. If we desire to find an optimal
control by the J-function, then the mathematical expressions
of the residential energy system model and the utility function
are both explicitly required. From (4), we can see that the
Q-function also depends on the control input, and the con-
trol can be directly obtained by minimizing the Q-function
[19], [20]. Because of these merits, Q-functions are preferred
throughout this paper, and a novel iterative Q-learning algo-
rithm will be developed.

Remark 3: It should be pointed out that if the residential
environment, such as the battery model, is changed, the optimal
control will change correspondingly. The control results under
different elements of the battery will be discussed in Section V.

III. DUAL ITERATIVE Q-LEARNING ALGORITHM OF ADP

Here, a new dual iterative Q-learning algorithm is developed
to obtain the optimal control law for residential energy systems.
A novel convergence analysis method will also be developed in
this section.

A. Derivation of the Dual Iterative Q-Learning Algorithm

From (4), we can see that the optimal Q-function
Q∗(xt, ut, t) is a time-varying function, which means that for
different time t, the optimal Q-function is different. This makes
it difficult to obtain Q∗(xt, ut, t). According to Assumption 1,
for ∀t = 0, 1, . . ., there exist � = 0, 1, . . . and θ = 0, 1, . . . , 23
that satisfies t = �λ+ θ. Let k = �λ. Then, we have PLt =
PL(k+θ) = PLθ and Ct = Ck+θ = Cθ, respectively. Define Uk

as the control sequence from k to k + λ− 1, i.e., Uk =
(uk, uk+1, . . . , uk+λ−1). Then, for ∀k ∈ {0, λ, 2λ, . . .}, we can
define a new utility function as

Π(xk,Uk) =

λ−1∑
θ=0

γθU(xk+θ, uk+θ, θ). (6)

Then, (4) can be expressed as

Q∗(xk,Uk) = Π(xk,Uk) + γ̃ min
Uk+λ

Q∗(xk+λ,Uk+λ) (7)

where γ̃ = γλ. The optimal control law sequence can be ex-
pressed by

U∗(xk) = argmin
Uk

{Q∗(xk,Uk)} . (8)

Based on the preparations above, the new dual iterative
Q-learning algorithm of ADP can be developed. In the de-
veloped algorithm, two iterations are introduced, which are
external iteration (i-iteration in brief) and internal iteration
(j-iteration in brief), respectively. Let i = 0, 1, . . .be the external
iteration index. Let Ψ(xk, uk) be an arbitrary positive semidef-
inite function. Define the initial Q-function Q0(xk,Uk) as

Q0(xk,Uk) = Π(xk,Uk) + γ̃ min
uk+λ

Ψ(xk+λ, uk+λ). (9)

The iterative control law sequence U0 can be computed as

U0(xk) = argmin
Uk

Q0(xk,Uk). (10)

The iterative Q-function can be updated as

Q1(xk,Uk) = Π(xk,Uk) + γ̃ min
Uk+λ

Q0(xk+λ,Uk+λ). (11)

For i = 1, 2, . . ., i-iteration will proceed between

Ui(xk) = argmin
Uk

Qi(xk,Uk) (12)

and

Qi+1(xk,Uk)= Π(xk,Uk)+γ̃ min
Uk+λ

Qi(xk+λ,Uk+λ)

= Π(xk,Uk)+γ̃Qi (xk+λ,Ui(xk+λ)) . (13)

Remark 4: The objective of i-iteration is to update the
iterative performance index function to achieve the optimum.
The idea of i-iteration (9)–(13) is inspired by the value iteration
in [31], while there exist essential differences. First, for the
value iteration in [31], the initial performance index function
is required to be zero. In the developed Q iterative algorithm,
Ψ(xk, uk) can be an arbitrary positive semidefinite function.
Second, for the value iteration in [31], for ∀ i = 0, 1, . . ., a
single iterative control law is required to update the iterative
performance index function, whereas for the developed Q
iterative algorithm, an iterative control law sequence Ui(xk) is
needed, which means the iterative control law sequence cannot
be directly obtained by solving (10) and (12). Hence, j-iteration
is necessary to proceed.

Let j = 0, 1, . . . , 23 be the internal iteration index. For i = 0
and j = 0, let the initial iterative performance index be

Q0
0(xk, uk) = Ψ(xk, uk). (14)

For i = 0 and j = 0, 1, . . . , 23, j-iteration will proceed
between

uj
0(xk) = argmin

uk

Qj
0(xk, uk) (15)

and

Qj+1
0 (xk, uk)= U(xk, uk, j)+γ min

uk+1

Qj
0(xk+1, uk+1)

= U(xk, uk, j)+γQj
0

(
xk+1, u

j
0(xk+1)

)
(16)



2512 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 4, APRIL 2015

where we let xk+1 =
(PL(λ−1−j)−uk

x2k−ukη(uk)

)
. Let U(xk, uk, j) =

xT
kMλ−1−jxk + ru2

k, where Mλ−1−j =

[
m1C

2
λ−1−j 0
0 m2

]
.

For ∀ i = 1, 2, . . ., we let Q0
i (xk, uk) = Q24

i−1(xk, uk). For j =
0, 1, . . . , 23, j-iteration will proceed between

uj
i (xk) = argmin

uk

Qj
i (xk, uk) (17)

and

Qj+1
i (xk, uk)=U(xk, uk, j)+γ min

uk+1

Qj
i (xk+1, uk+1)

=U(xk, uk, j)+γQj
i

(
xk+1, u

j
i (xk+1)

)
. (18)

Then, for ∀ i = 0, 1, . . ., we can obtain the iterative control law
sequence by

Ui(xk) =
{
u0
i (xk), u

1
i (xk), . . . , u

23
i (xk)

}
. (19)

Remark 5: The objective of j-iteration is to obtain the
iterative control law sequence that minimizes the total cost
in each period. From (17), we can see that for different j
values, the iterative control law uj

i (xk) is different. For ∀ i,
j-iteration (14)–(19) proceeds for a finite number of iterations,
whereas i-iteration (10)–(13) proceeds for an infinite number
of iterations. The optimal Q-function and iterative control law
are desired to achieve according to i-iteration and j-iteration,
and the developed algorithm is therefore called “dual iterative
Q-learning algorithm.”

B. Properties of the Dual Iterative Q-Learning Algorithm

Here, the convergence property of the dual iterative Q-
learning algorithm will be investigated. First, we will show that
iterative control law sequence Ui(xk) obtained by j-iteration
can minimize the total cost in each period.

Theorem 1: For i = 0, 1, . . . and j = 0, 1, . . . , 23, let the
iterative Q-functions Qi(xk,Uk) and Qj

i (xk, uk) be obtained
by (9)–(19). Then, we have

min
Uk

Qi(xk,Uk) = min
uk

Q24
i (xk, uk). (20)

Proof: The statement can be proven by mathematical
induction. First, for i = 0, we have

min
uk

Qj+1
0 (xk, uk)

= min
uk

(
U(xk, uk, j) + γ min

uk+1

Qj
0(xk+1, uk+1)

)

=min
uk

(
U(xk, uk, j)+γ min

uk+1

(U(xk+1, uk+1, j−1)+· · ·

+ γ min
uk+j

(U(xk+j , uk+j , 0)

+ γ min
uk+j+1

Ψ(xk+j+1, uk+j+1)))

)

= min
(uk,uk+1,...,uk+j)

(
j∑

l=0

γlU(xk+l, uk+l, j − l)

+ γj+1 min
uk+j+1

Ψ(xk+j+1, uk+j+1)

)
.

(21)

Let j = 23. According to (6) and (9), we have

min
uk

Q24
0 (xk, uk)= min

Uk

(
Π(xk,Uk)+γ̃ min

uk+λ

Ψ(xk+λ, uk+λ)

)

= min
Uk

Q0(xk,Uk). (22)

The conclusion holds for i = 0. Assume that the
conclusion holds for i = τ − 1, i.e., min

Uk

Qτ−1(xk,Uk) =

min
uk

Q24
τ−1(xk, uk). Then, for i = τ , we have

min
uk

Q24
τ (xk, uk)

= min
uk

(
U(xk, uk, 23) + γ min

uk+1

Q23
τ (xk+1, uk+1)

)

= min
uk

(
U(xk, uk, 23) + γ min

uk+1

(
U(xk+1, uk+1, 22) + · · ·

+ γ min
uk+23

(
U(xk+23, uk+23, 0)+γ min

uk+λ

Q0
τ (xk+λ, uk+λ)

)))

= min
Uk

(
Π(xk,Uk) + γ̃ min

uk+λ

Q24
τ−1(xk+λ, uk+λ)

)

= min
Uk

(
Π(xk,Uk) + γ̃ min

Uk+λ

Qτ−1(xk+λ,Uk+λ)

)

= min
Uk

Qτ (xk,Uk). (23)

The mathematical induction is completed. �
From Theorem 1, we can obtain the following corollary.
Corollary 1: Let μ(xk) be an arbitrary control law.

For i = 0, 1, . . . and j = 0, 1, . . . , 23, define a new per-
formance index function as Qj+1

i (xk, uk) = U(xk, uk, j) +

γQj
i (xk+1, μ(xk+1)) and define Qj+1

i (xk, uk) as in (18). For
∀ i = 0, 1, . . ., let Q0

i (xk, uk) = Q0
i (xk, uk). Then, for ∀ j =

0, 1, . . . , 23, we have Qj
i (xk, uk) ≤ Qj

i (xk, uk).
From Theorem 1 and Corollary 1, for ∀ i = 0, 1, . . ., we can

say that the total cost in each period can be minimized by the
iterative control law sequence Ui(xk) according to j-iteration
(14)–(19). Next, the convergence property of i-iteration will be
developed.

Theorem 2: For i = 0, 1, . . ., let Qi+1(xk,Uk) and Ui(xk)
be obtained by i-iteration (10)–(13). Then, the iterative Q-
function Qi(xk,Uk) converges to its optimum, i.e.,

lim
i→∞

Qi(xk,Uk) = Q∗(xk,Uk). (24)

Proof: For functions Q∗(xk,Uk), Π(xk,Uk), and Q0(xk,
Uk), inspired by [32], let ς , ς , δ, and δ be constants that satisfy

ςΠ(xk,Uk) ≤ γ̃ min
Uk+λ

Q∗(xk+λ,Uk+λ) ≤ ςΠ(xk,Uk) (25)
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and

δQ∗(xk,Uk) ≤ Q0(xk,Uk) ≤ δQ∗(xk,Uk) (26)

respectively, where 0 < ς ≤ ς < ∞ and 0 ≤ δ ≤ δ < ∞. Since
Q∗(xk,Uk) is unknown, the values of ς , ς , δ, and δ cannot
be directly obtained. In the following, we will prove that for
arbitrary constants ς , ς , δ, and δ, the iterative Q-function
Qi(xk,Uk) will converge to the optimum, and the estimations
for the values of these constants can be omitted. The proof
proceeds in four steps. First, we show that if 0 ≤ δ ≤ δ < 1,
then for ∀ i = 0, 1, . . ., the iterative performance index function
Qi(xk,Uk) satisfies(
1 +

δ − 1

(1 + ς−1)
i

)
Q∗(xk,Uk) ≤ Qi(xk,Uk)

≤
(
1 +

δ − 1

(1 + ς−1)i

)
Q∗(xk,Uk). (27)

Inequality (27) can be proven by mathematical induction. Let
i = 0, and we have

Q1(xk,Uk)

= Π(xk,Uk) + γ̃ min
Uk+λ

{Q0(xk+λ,Uk+λ)}

≥ Π(xk,Uk) + δγ̃ min
Uk+λ

{Q∗(xk+λ,Uk+λ)}

≥
(
1 + ς

δ − 1

1 + ς

)
Π(xk,Uk)

+ γ̃

(
δ − δ − 1

1 + ς

)
min
Uk+λ

{Q∗(xk+λ,Uk+λ)}

=

(
1+

ς(δ−1)

(1+ς)

){
Π(xk,Uk)+γ̃ min

Uk+λ

{Q∗(xk+λ,Uk+λ)}
}

=

(
1 +

δ − 1

(1 + ς−1)

)
Q∗(xk,Uk). (28)

From the idea of (28), we can also get Q1(xk,Uk) ≤ (1 + (δ −
1/(1 + ς−1))Q∗(xk,Uk). Thus, (27) holds for i = 0. Assume
that (27) holds for i = l − 1, l = 1, 2, . . .. Then, for i = l, we
have

Ql+1(xk,Uk)

= Π(xk,Uk) + γ̃ min
Uk+λ

{Ql(xk+λ,Uk+λ)}

≥Π(xk,Uk)+γ̃

(
1+

ς l−1(δ−1)

(1+ς)l−1

)
min
Uk+λ

{Q∗(xk+λ,Uk+λ)}

≥
(
1+

ς l(δ−1)

(1+ς)l

){
Π(xk,Uk)+γ̃ min

Uk+λ

{Q∗(xk+λ,Uk+λ)}
}

=

(
1 +

δ − 1

(1 + ς−1)l

)
Q∗(xk,Uk). (29)

From the idea of (29), we can also get Ql+1(xk,Uk) ≤ (1 +
((δ − 1)/(1 + ς−1)l)Q∗(xk,Uk). Hence, we obtain that (27)
holds for ∀i = 0, 1, . . . The mathematical induction is com-

pleted. Second, we show that if 0 ≤ δ ≤ 1 ≤ δ < ∞, then the
iterative Q-function Qi(xk,Uk) satisfies(
1 +

δ − 1

(1 + ς−1)
i

)
Q∗(xk,Uk) ≤ Qi(xk,Uk)

≤
(
1 +

δ − 1

(1 + ς−1)
i

)
Q∗(xk,Uk). (30)

The left-hand side of (30) can be proven according to (28)
and (29). For the right-hand side of (30), letting i = 0, we have

Q1(xk,Uk)

= Π(xk,Uk) + γ̃ min
Uk+λ

{Q0(xk+λ,Uk+λ)}

≤ Π(xk,Uk) + δγ̃ min
Uk+λ

{Q∗(xk+λ,Uk+λ)}

+
δ − 1

(1 + ς)

(
ςΠ(xk,Uk)− γ̃ min

Uk+λ

{Q∗(xk+λ,Uk+λ)}
)

≤
(
1 +

δ − 1

(1 + ς−1)

)
Q∗(xk,Uk). (31)

According to mathematical induction, we can obtain the right-
hand side of (30). Third, for the situation 1 ≤ δ ≤ δ < ∞,
according to (28) and (29), we can prove that for ∀ i = 0, 1, . . .,
the iterative performance index function Qi(xk,Uk) satisfies
(27). Finally, considering the three situations above, for arbi-
trary constants ς , ς , δ, and δ, according to (27) and (30), we can
easily obtain (24), as i → ∞. �

Corollary 2: For i = 0, 1, . . ., let Qi+1(xk,Uk) and Ui(xk)
be obtained by i-iteration (10)–(13). Then, the iterative control
law sequence Ui(xk) converges to the optimal control law
sequence, i.e., lim

i→∞
Ui(xk) = U∗(xk).

Remark 6: One important property should be mentioned.
We say that the optimal control of the battery does not provide
global optimal management of the whole smart home grids. The
global optimal control can be obtained only if the system as
a whole is discussed. In this paper, given the residential load
and the electricity rate, the optimal battery control law for the
residential energy system (3) is achieved to minimize the given
performance index function in (2) under the assumptions of
periodic residential load and electricity rate, i.e., Assumption 1.
Hence, the approach presented in this paper in fact deoptimizes
distributed system operation.

IV. NEURAL NETWORK IMPLEMENTATION FOR THE

DUAL ITERATIVE Q-LEARNING ALGORITHM

Here, neural networks are introduced to implement the dual
iterative Q-learning algorithm. There are two neural networks,
which are critic and action networks, respectively, in the dual it-
erative Q-learning algorithm. Both neural networks are chosen
as three-layer backpropagation networks. The whole structure
diagram is shown in Fig. 2.

A. Action Network

For ∀ i = 0, 1, . . ., the role of the action network is to approx-
imate the iterative control law sequence Ui(xk) defined in (12).
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Fig. 2. Structure diagram of the dual iterative Q-learning algorithm.

The target of the action network can be defined as (15) and (17).
The action network can be constructed by two input neurons,
ten sigmoidal hidden neurons, and one linear output neuron.
Let l = 0, 1, . . . be the training step. The output of the action
network can be expressed as ûj,l

i (xk) = W jT
ai (l)σ(Za(xk)),

where Za(xk) = Y T
a xk, and σ(·) is a sigmoid function

[25]. To enhance the training speed, only the hidden-output
weight W j

ai(l) is updated during the neural network train-
ing, whereas the input-hidden weight is fixed [33]. According
to [25], the action network weight update is expressed as
follows:

W j
ai(l + 1) = W j

ai(l)− βa

[
∂Ej

ai(l)

∂W j
ai(l)

]
(32)

where Ej
ai(l) = (1/2)(ejai(l))

2, ejai(l) = ûj,l
i (xk)− uj

i (xk),
and βa > 0 is the learning rate of the action network.

B. Critic Network

For ∀ i = 0, 1, . . . and j = 0, 1, . . . , 23, the goal of the critic
network is to obtain Qi(xk,Uk) by updating Qj+1

i (xk, uk) in
(18), iteratively. The critic network can be constructed by three
input neurons, 15 sigmoidal hidden neurons, and one linear
output neuron. Let Zck = [xT

k , uk]
T be the input vector of the

critic network. Then, the output of the critic network can be
expressed as Q̂j+1,l

i (xk, uk) = W jT
ci (l)σ(Zck), where Zck =

Y T
c Zck, and σ(·) is a sigmoid function [25]. During the neural

network training, the hidden-output weight W j
ci(l) is updated,

whereas the input-hidden weight Yc is fixed. According to [25],
the critic network weight update is expressed as follows:

W j
ci(l + 1) = W j

ci(l)− αc

[
∂Ej

ci(l)

∂W j
ci(l)

]
(33)

where Ej
ci(l) = (1/2)(ejci(l))

2, ejci(l) = Q̂j+1,l
i (xk, uk)−

Qj+1
i (xk, uk), and αc > 0 is the learning rate of the critic

network.

C. Training Phase

Here, the dual iterative Q-learning algorithm implemented
by action and critic networks is explained step by step and
shown in Algorithm 1.

Algorithm 1 Dual iterative Q-learning algorithm.

Initialization:

1: Collect an array of system data for the residential
energy system (3).

2: Give a positive semidefinite function Ψ(xk, uk).
3: Give the computation precision ε > 0.

Iteration:

4: Let i = 0. For j = 0, let Q0
0(xk, uk) = Ψ(xk, uk).

5: For j = 0, 1, . . . , 23, train the action and critic net-
works to obtain uj

0(xk) and Qj+1
0 (xk, uk) that satisfy

(15) and (16), respectively.
6: Let Q0(xk,Uk) = Q24

0 (xk, uk). Obtain U0(xk) and
Q1(xk,Uk) by (10) and (11), respectively.

7: Let i = i+ 1.
8: For j = 0, 1, . . . , 23, train the action and critic net-

works to obtain uj
i (xk) and Qj+1

i (xk, uk) that satisfy
(17) and (18), respectively.

9: Let Qi(xk,Uk) = Q24
i (xk, uk). Obtain Ui(xk) and

Qi+1(xk,Uk) by (12) and (13), respectively.
10: If |Qi(xk,Uk)−Qi−1(xk,Uk)| ≤ ε, then goto next

step. Otherwise, goto Step 7.
11: For j = 0, 1, . . . , 23, solve uj

i (xk) by (17) and obtain
Ui(xk) = (u0

i (xk), . . . , u
23
i (xk)).

12: return Qi(xk,Uk) and Ui(xk).

V. NUMERICAL ANALYSIS

Here, the performance of the dual iterative Q-learning al-
gorithm will be examined by numerical experiments. Compar-
isons will also be given to show the superiority of the developed
algorithm. The profiles of the residential load demand and the
real-time electricity rate are taken from [24], [26], and [27],
where the residential load demand and the real-time electricity
rate for one week (168 h) are shown in Fig. 3(a) and (c), re-
spectively. We can see that the residential load demand and the
real-time electricity rate are both periodic-like functions with
the period λ = 24. The average trajectories of the residential
load demand and the electricity rate are shown in Fig. 3(b) and
(d). In this paper, we use average residential load demand and
average electricity rate as the periodic residential load demand
and electricity rate.

We assume that the supply from the power grid guarantees
the residential load demand at any time. Define the capacity of
the battery as 100 kWh. Let the upper and lower storage limits
of the battery be Emin

b = 20 kWh and Emax
b = 80 kWh, respec-

tively. The rated power output of the battery and the maxi-
mum charging/discharging rate is 16 kW. The initial level of
the battery is 60 kWh. Let the performance index function
be expressed as in (2), where we set m1 = 1, m2 = 0.2,
r = 0.1, and γ = 0.995. Let the initial function Ψ(xk, uk) =
[xT

k , uk]I[x
T
k , uk]

T , where I is the identity matrix with a suit-
able dimension. Let the initial state be x0 = [8, 60]T . After
normalizing the data of the residential load demand and the
electricity rate [25], [34], we implement the developed dual
iterative Q-learning algorithm by neural networks for i = 20
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Fig. 3. Residential load demand and electricity rate. (a) Residential
load demand for 168 h. (b) Average residential load demand. (c) Real-
time electricity rate for 168 h. (d) Average electricity rate.

Fig. 4. Trajectory of the iterative Q-function.

iterations to guarantee the computation precision ε = 10−4.
The learning rates of the action and critic networks are 0.01,
and the training precision of the neural networks is 10−6.
Let Qj

i (x0, ū) = min
u

Qj
i (x0, u). The trajectory of Qj

i (x0, ū) is

shown in Fig. 4. After i = 20 iterations, for ∀ j = 0, 1, . . . , 23,
we can get Qj

i+1(x0, ū) = Qj
i (x0, ū), which means that the

iterative Q-function is convergent to the optimum. According
to one week’s residential load demand and electricity rate, the
optimal control of the battery is shown in Fig. 5.

In the following, the TBQL algorithm [24] and the particle
swarm optimization (PSO) algorithm [27] will be compared
to illustrate the superiority of the developed dual iterative
Q-learning algorithm. For ∀ t = 0, 1, . . ., the goal of the TBQL
algorithm [24], [25] is to design an iterative control that

Fig. 5. Optimal control of the battery in one week.

satisfies the following optimality equation: Q(xt−1, ut−1, t−
1) = U(xt, ut, t) + γQ(xt, ut, t). Let the initial function and
the structures of the action and critic networks, which imple-
ment the TBQL algorithm, be the same as those in our example.
For the PSO algorithm [27], let G = 30 be the swarm size.
The position of each particle at time t is represented by x�t,
� = 1, 2, . . . ,G and its movement by the velocity vector v�t.
Then, the update rule of PSO can be expressed as

x�t=x�(t−1) + ν�t

ν�t=ων�(t−1)+ϕ1ρ
T
1

(
p�−x�(t−1)

)
+ϕ2ρ

T
2

(
pg−x�(t−1)

)
.

Let the inertia factor be ω = 0.7. Let the correction factors
ρ1 = ρ2 = [1, 1]T . Let ϕ1 and ϕ2 be random numbers in [0,1].
Let p� be the best position of particles, and let pg be the global
best position. Implement the TBQL algorithm for 100 time
steps and the PSO algorithm for 100 iterations. Let the real-time
cost function be Rct = CtPgt, and the corresponding real-time
cost functions are shown in Fig. 6(a), where the term “original”
denotes “no battery system.” The comparison of the total cost
for 168 h is displayed in Table I. From Table I, the superiority
of our dual iterative Q-learning algorithm can be verified. The
trajectories of the battery energy by dual iterative Q-learning
and TBQL algorithms are shown in Fig. 6(b). We can see that
using the TBQL algorithm, the battery is fully charged each
day, whereas the battery level is more reasonable by the dual
iterative Q-learning algorithm.

In the above optimizations, we give more importance to
the electricity rate than the cost of the battery system, i.e.,
m1 in the performance index function is large. On the other
hand, the discharging rate and depth are also important for the
battery system to be kept “alive” as long as possible. Hence, we
enlarge parameters m2 and r in the performance index function.
Let m2 = 1, r = 1, and let m1 be unchanged. The iterative
Q-function is shown in Fig. 7. The optimal battery control
can be seen in Fig. 8, and the battery energy under the new
performance index function can be seen in Fig. 9(a). Enlarging
m2 and r, we can see that the value of the iterative Q-function is
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Fig. 6. Numerical comparisons. (a) Real-time cost comparison among
dual iterative Q-learning, TBQL, and PSO algorithms. (b) Battery energy
comparison between dual iterative Q-learning and TBQL algorithms.

TABLE I
COST COMPARISON

Fig. 7. Trajectory of the iterative Q-function.

enhanced. The battery output power is reduced, and the battery
energy is closer to Eo, which extends the lifetime of the battery.
However, the total cost of one week is 2955.35 cents, which
means the cost saving is reduced.

On the other hand, the battery model is important to the
optimal control law of the battery. To illustrate the effective-
ness of the developed algorithm, different elements of the
battery will be considered. For convenience of analysis, we
let m1 = 1, m2 = 0.2, r = 0.1. First, let the efficiency of

Fig. 8. Optimal control of the battery under m1 = 1, m2 = 1, and
r = 1.

Fig. 9. Batteries’ energy. (a) New performance index function with
m1 = 1, m2 = 1, and r = 1. (b) Battery I. (c) Battery II.

battery charging/discharging be reduced as η(Pbt) = 0.698−
0.173|Pbt|/Prate, and let the capacity of the battery be 80 kWh.
Define the battery as Battery I. Implementing the developed
dual iterative Q-learning algorithm with Battery I, the trajectory
of Qj

i (x0, ū) is shown in Fig. 10. We can see that the iterative
Q-function is also convergent to the optimum after i = 20
iterations, and the values of the Q-functions are larger than
those in Fig. 4, which indicates that the optimization ability
decreases. The optimal control trajectory for Battery I is shown
in Fig. 11. The battery energy of Battery I is shown in Fig. 9(b),
and the total cost of one week is 2914.70 cents.

Next, we keep on reducing the performance of the battery.
Let the capacity of the battery decrease to 60 kWh. Let the
rated power output of the battery and the maximum charging/
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Fig. 10. Trajectory of the iterative Q-function.

Fig. 11. Optimal control of the battery in one week.

discharging rate be 12 kW. Define the battery as Battery II. The
optimal control trajectory for Battery II is shown in Fig. 11. The
battery energy of Battery II is shown in Fig. 9(c), and the total
cost of one week is 3027.17 cents.

From the numerical results, we can see that for different bat-
tery models, the developed dual iterative Q-learning algorithm
will make the iterative performance index function converge to
the optimum and obtain the optimal battery control law. We can
also see that as the performance of the battery decreases, the
optimization ability of the battery also decreases.

VI. CONCLUDING REMARKS AND FUTURE WORK

Given the residential load and the real-time electricity rate,
the objective of the optimal control in this paper is to find the
optimal battery charging/discharging/idle control law at each
time step, which minimizes the total expense of the power from
the grid while considering the battery limitations. The main

idea of the developed dual iterative Q-learning algorithm is to
update the iterative performance index function and iterative
control laws by the ADP technique according to i-iteration and
j-iteration, respectively. For the first time, the convergence and
optimality of the developed algorithm are developed. Neural
networks are introduced to implement the developed dual it-
erative Q-learning algorithm. Finally, the effectiveness of the
developed algorithm is justified by numerical results.

As is known, renewable sources, such as solar and wind
energies, are important elements to reduce the total cost of
residential energy systems and extend the life of the battery.
As renewable sources possess more uncertainties, how to deal
with the uncertainties is a key problem to implementing our
Q-learning algorithm to renewable-source-based residential en-
ergy systems, and it is also our future research topic.
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