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Discriminant Tensor Spectral–Spatial Feature
Extraction for Hyperspectral Image Classification

Zisha Zhong, Bin Fan, Jiangyong Duan, Lingfeng Wang, Kun Ding, Shiming Xiang, and Chunhong Pan

Abstract—We propose to integrate spectral–spatial feature ex-
traction and tensor discriminant analysis for hyperspectral image
classification. First, we apply remarkable spectral–spatial feature
extraction approaches in the hyperspectral cube to extract a fea-
ture tensor for each pixel. Then, based on class label information,
local tensor discriminant analysis is used to remove redundant in-
formation for subsequent classification procedure. The approach
not only extracts sufficient spectral–spatial features from original
hyperspectral images but also gets better feature representation
owing to tensor framework. Comparative results on two bench-
marks demonstrate the effectiveness of our method.

Index Terms—Discriminative tensor representation, hyperspec-
tral classification, spectral–spatial feature extraction.

I. INTRODUCTION

HYPERSPECTRAL image classification remains an active
topic for many years with great achievements [1], [2].

Traditional pixel-wise classification takes the spectral signa-
tures as inputs. It does not consider the spatial information
from neighbor pixels. Thus, the classification result may be
noisy like salt-and-pepper noise. Many studies have led pixel-
wise classification into spectral–spatial classification, which
has been proved very effective for improving classification
accuracy and visual effect. Representative works are extended
morphological profiles (EMPs) [3], extended attribute profiles
(EAPs) [4], and Gabor filtering [5]. Generally speaking, these
remarkable spectral–spatial feature extraction methods extract
abundant features using well-designed morphological profiles,
attribute profiles, or Gabor wavelet filters from full or several
top components of the hyperspectral cube with different param-
eter configurations. However, they usually consider the output
of these efficient filters as a long vector, which may cause the
problem of curse of dimensionality under the high-dimensional
and limited available training samples.
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To overcome the curse of dimensionality, dimension re-
duction can be achieved with feature selection or feature ex-
traction. Representative feature selection techniques in remote
sensing are sequential forward floating selection [6] and ex-
tended Jeffreys–Matnsita criterion [7]. Additionally, Bruzzone
and Persello [8] have proposed a novel technique based on
multiobjective optimization to spatially invariant feature se-
lection for hyperspectral image classification. Considering the
feature extraction pipeline, two basic approaches are principal
component (PC) analysis [9] and linear discriminant analysis
(LDA) [10]. Due to the inherent Gaussian assumption, they
may be not suitable for multimodal high-dimensional data with
complex structures. Other widely used approaches in hyper-
spectral communities are maximum noise fraction [11] and
nonparametric weighted feature extraction (NWFE) [12].

Recently, tensor representation has attracted great interest
and has been widely applied to problems with tensorial data. In
remote sensing research communities, Renard and Bourennane
[13] have introduced a dimension-reduction strategy based on
tensor modeling. Zhang et al. [14] have developed a mul-
tifeature tensor representation method for target recognition.
Bourennane et al. [15] have proposed multidimensional Wiener
filtering to jointly achieve denoising and dimension reduction.
Lin and Bourennane [16] have surveyed two tensor-based de-
noising methods and proposed a novel combination to preserve
rare signals during the denoising procedure. Velasco-Forero and
Angulo [17] have integrated morphological decomposition and
tensor PC analysis to improve hyperspectral pixel-wise classifi-
cation. Zhang et al. [18] have developed a tensor discriminative
locality alignment method for removing redundant information
in hyperspectral image classification.

In this letter, we propose a spectral–spatial discriminative
feature extraction method based on 2-D feature tensor repre-
sentation to improve hyperspectral image classification. First,
we apply spectral–spatial feature extraction methods to extract
abundant spectral–spatial features and represent the features for
each pixel as a second-order feature tensor (i.e., a matrix). Then
based on class label information, the local tensor discriminant
analysis (LTDA) [19] technique is adopted to remove redundant
information and extract discriminative representation for the
subsequent classification procedure.

Our contributions mainly lie in three points: 1) We represent
spectral–spatial features as feature tensors, which combine
the advantage of spectral–spatial feature extraction and ten-
sor representation. 2) We use a tensor discriminant analysis
method, i.e., LTDA [19], to remove redundant information
and extract discriminative representation from feature tensors.
Meanwhile, the optimal reduced dimensions are automatically

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ZHONG et al.: SPECTRAL–SPATIAL FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION 1029

extracted. 3) We conduct a comparative analysis on three well-
known spectral–spatial feature extraction approaches and their
corresponding discriminative improvements based on second-
order tensor representation. Our work is a natural extension
as [18]. First, we extend their pixel-wise feature extraction to
the spectral–spatial counterpart, which can enhance descriptive
power of features and achieve smoother classification maps.
Second, tensor discriminative locality alignment in [18] is
based on the patch alignment framework, whereas the LTDA
is easily derived with a well-defined criterion similar to LDA
and could automatically obtain the optimal reduced dimensions
during the optimization procedure.

This letter is organized as follows. Section II introduces
the LTDA. Section III introduces the proposed discriminative
tensor feature extraction of spectral–spatial information for
hyperspectral image classification. Section IV presents the ex-
periments and analysis. Section V concludes this letter.

II. LTDA

In this section, we briefly introduce some background on
tensor and the LTDA method.

A. Tensor Basics

A tensor with an order m is defined as A ∈ R
I1×I2×···×Im

with its element denoted by Ai1,i2,...,im . The inner product
of two tensors A,B ∈ R

I1×I2×···×Im is defined by 〈A,B〉 =∑I1
i1

∑I2
i2
· · ·

∑Im
im

Ai1,i2,...,imBi1,i2,...,im . Then, the Frobenius
norm of a tensor A is defined as ‖A‖F = 〈A,A〉 =√∑I1

i1
· · ·

∑Im
im

A2
i1,...,im

. Please refer to [19] for more details.

B. LTDA

Given n high-dimensional tensors Ai ∈ R
H1×H2×···×Hm and

its class label from {1, 2, . . . , c}, LTDA [19] is used to find
m multilinear transformation matrices Uk ∈ R

Hk×Lk(Lk <
Hk, k = 1, 2, . . . ,m) to obtain n low-dimensional tensors Bi ∈
R

L1×L2×···×Lm , i.e.,

Bi = Ai ×1 U1 ×2 U2 × · · · ×m Um (1)

such that the separability in the reduced space is maximized.
Here, ×k (k = 1, 2, . . . ,m) is k-mode product in tensor algebra
and defined as

Bi=Ai ×k Uk (2)

(Bi)i1,··· ,ik−1,h,ik+1,··· ,im=
Ik∑

ik=1

(Ai)i1,...,ik−1,ik,ik+1,...,im
Uik,h.

(3)

Similar to LDA, LTDA then minimizes the distances within
a class and maximizes the distances between classes. It is
formulated as maximizing the following criterion:

L(U) = SU
b − γSU

w (4)

where Sw and Sb are the local within-class scatter and
the local between-class scatter matrix, respectively, and U =
{U1, . . . ,Um} is the set of multilinear projection matrices. It is
noted that to construct Sw and Sb scatter matrices, we consider
kw and kb neighbors, respectively. For detailed explanation,
refer to [19] and [20].

Based on (4), the optimization problem for LTDA can be
formulated as

U∗ = arg max
1≤Lk≤Hk (k=1,2,...,m)

max
UT

k
Uk=Ik (k=1,2,...,m)

L(U).

(5)

Generally, (5) has no closed solution. Nevertheless, we can
obtain a local optimal solution to this problem by alternative
optimization. This optimization problem is finally reformulated
as a generalized eigenvalue problem, and it is derived that the
optimal reduced dimensions Lk (k = 1, 2, . . . ,m) is automati-
cally adapted to the data [19].

In this letter, we extend their pixel-wise feature extrac-
tion of the TDLA [18] to the spectral–spatial counterpart,
which can enhance descriptive power of features and achieve
smoother classification maps. Meanwhile, the LTDA is adopted
to remove the redundant information in feature tensors. Fur-
thermore, compared with those conventional vector-based
supervised dimension-reduction methods, such as LDA [10]
and NWFE [12], there is a large reduction of unknown pa-
rameters when using the LTDA, which helps prevent the
overfitting problem and consequently improve generalization
performance. In Section III, we will describe the proposed
method in detail.

III. PROPOSED APPROACH

The proposed approach contains three steps: 1) perform
spectral–spatial feature extraction via efficient approaches in
the hyperspectral image to generate second-order feature ten-
sors; 2) perform LTDA on these feature tensors based on class
label; and 3) perform classification with the reduced feature
representation. The flowchart is shown in Fig. 1. In the follow-
ing, we will describe these three steps in detail.

A. Spectral–Spatial Feature Extraction

The well-known spectral–spatial feature extraction methods,
such as EMP [3], EAP [4], and Gabor filtering [5], are generally
computed with different parameter settings on several top PCs
of original hyperspectral data. On each component, they extract
morphological profiles, attribute profiles, or filtering responses
and then stack them into a vector. To better preserve structure
information within these features along PCs and along different
parameter settings, we model the extracted features as a second-
order tensor (i.e., a matrix). The row-wise of the feature tensor
is the view of PCs, and the col-wise is the view of different
parameter settings of profiles or responses.

Take the Gabor filtering method as an example, we first
design some Gabor filters with five scales and eight orientations
under the wavelet framework. With these filters, we convolve
each band or the several top PCs of a 3-D hyperspectral cube,
which produces 40 3-D Gabor features. Then, from these Gabor
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Fig. 1. Flowchart of the proposed method.

features, we can obtain 40× P (P is the number of total bands
or top PCs) features for one pixel. Traditional methods based on
Gabor filtering treat the features as a long vector, which loses
the structural correlated information among these different
filter parameters. In addition, considering the high redundancy
of these features, we take advantage of tensor representation
and rearrange them into a second-order tensor A ∈ R

40×P . A
similar strategy can also be adopted for EMP, EAP, or others.

B. Discriminative Feature Extraction

With the LTDA introduced in Section II, we can trans-
form a second-order feature tensor A ∈ R

H1×H2 into a low-
dimensional tensor B ∈ R

L1×L2 . Generally, B has much
smaller size than A but can still keep most of its information.
LTDA can effectively overcome the limitation of the Gaussian
assumption such as LDA. Meanwhile, the optimal reduced
dimensions are automatically obtained during the optimization
procedure [19]. In this letter, we reshape the reduced feature
tensor back into vector representation and feed it into the
subsequent classification stage.

C. Classification With Tensor Representation

To sum up, we first extract abundant spectral–spatial features
from the total bands or several top components of the 3-D
hyperspectral. Then, we rearrange these features for one pixel
into a second-order tensor. Based on class label, we take the
LTDA technique to effectively reduce the redundant informa-
tion among these feature tensors as well as extract discrimina-
tive features. After that, the extracted feature representations
are rearranged back into vector representation, and later, we
train support vector machine (SVM) classifiers with them. To
validate the effectiveness of our method, we have conducted
several comparative experiments. The detailed information will
be described in the following section.

IV. EXPERIMENT

In this section, we first overview the two standard hyper-
spectral benchmark data sets, and then, quantitative results

TABLE I
AVERAGE (ON FIVE TRIALS) OVERALL CLASSIFICATION ACCURACY (%),

KAPPA COEFFICIENT (κ), AND STANDARD DEVIATION VALUES

OBTAINED FOR BOTH DATA SETS

and visual classification maps are illustrated to evaluate the
effectiveness of our method.

A. Datasets

Indian Pines Image: The original ground truth has 16
labeled classes, we discard six classes due to too less training
samples, and finally, the selected classes are as follows:
Soybean–Mintill (2468), Corn–Notill (1434), Grass–Trees
(747), Soybean–Notill (968), Corn–Mintil (834), Hay–
Windrowed (489), Soybean–Clean (614), Grass–Pasture (497),
Woods (1294), and Buildings–Grass–Trees (380).

Pavia University Image: The ground truth has nine labeled
classes: Meadows (18 686), Asphalt (6852), Bare Soil (5104),
Self-Blocking Bricks (3878), Trees (3436), Gravel (2207),
Painted metal sheets (1378), Bitumen (1356), and Shadows
(1026).

In both data sets, 10% of samples from each class are
randomly chosen as the training set and the remaining ones as
the testing set, and this is repeated five times for evaluation.
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Fig. 2. (a) Indian Pines Image with size of 145 × 145 in pixels and (b) its ground truth image and classification maps obtained by (c) Spectral-Original,
(d) Spectral-LDA, (e) Spectral-LTDA, (f) EAP-Original, and (g) EAP-LTDA.

B. Experimental Settings

For comparison, the original spectral signatures (de-
noted Original, also as the baseline method) and three
spectral–spatial feature extraction methods are tested, i.e., EMP
[3], EAP [4], and Gabor [5]. They are listed as follows. For
Original, the spectral signature is directly used. For EMP and
EAP, we use five and two PCs in the two data sets, respectively.
Nine MP features were computed for each component with
disk-shaped structural elements of radius increased from 1 with
a step size of 2. For EAP, four attributes were computed
for each component with the same parameters as [21]. For
Gabor (denoted G), Gabor features with five spatial scales and
eight frequency orientations are extracted for each band and
then stacked into a long vector. For the second-order tensor
representation of EMP and EAP, we concatenated the profiles
or filtering responses for each PC row by row.

For comparison of supervised dimension reduction, three
methods are evaluated: LDA [10], NWFE [12], and TDLA
[18]. For LDA, the reduced dimensions for all methods are
c− 1. For G-LDA, the original dimension is 5 ∗ 8 ∗ 220 =
8800, which leads to a singular inverse of Sw in LDA; thus, we
remove the results. For NWFE, the optimal reduced dimension
is selected by cross validation. For LTDA and TDLA, the five
spectral signatures in the 4-nearest-neighbor (4-NN) neighbor-
hood are rearranged into a matrix as inputs, as that in [18]. For
TDLA, there are five adjustable parameters: n1 is the number
of NNs that have the same class label, n2 is the number of NNs
that have different class labels, α is a scaling factor, P1 is the
reduced dimension of the first mode of feature tensors, and P2

is the reduced dimension of the second mode of feature tensors.
As suggested in [18], we set n1 = n2 = 6, and α is constantly
set to 2. P1 and P2 are selected according to I1 and I2 by cross
validation, respectively.

With all the methods, the extracted features are used as the in-
put for multiclass SVM for classification. The Gaussian kernel
is adopted in SVM, and the regularization and Gaussian kernel
parameters in SVM are selected from {2−5, 2−4, . . . , 215} and
{2−15, 2−14, . . . , 210} by cross validation. For performance
evaluation, two quantitative indexes are used [17]: overall
accuracy (OA) and kappa coefficient (κ), which indicate better
results with larger values.

C. Experimental Results

Table I shows the comparative OA and κ with their standard
deviations in the two standard benchmark hyperspectral data
sets. As shown in the table, the methods with tensor represen-
tation achieve overall better performance compared with their

vector versions. In particular, the OA accuracy of G-LTDA is
about 20% higher compared with the baseline in the Indian
Pines Image.

On the whole, the feature extraction methods that incorporate
spatial information are better than the baseline. This validates
the efficiency of the spectral–spatial feature extraction strategy
in hyperspectral image classification. Furthermore, their tensor
versions have consistent higher accuracies than their vectorial
versions. This also indicates the efficiency of second-order
tensor discriminant analysis. In particular, G-LTDA is better
than LTDA and Gabor. On the one hand, the better performance
over LTDA indicates that spatial feature extraction via Gabor
filtering is better than original pixel-wise spectral signatures.
On the other hand, the better performance over Gabor gives sup-
port on the efficiency of tensor representation. Unfortunately,
in some classes, it is slightly worse than others. The main
reason is that in the pixels near the edge, the surface texture is
complex; thereby, the discriminative capability of the features
is weakened.

The classification maps in the Indian Pines Image are il-
lustrated in Fig. 2. As shown in the figure, the baseline has
the problem of salt-and-pepper noise. As a result, their clas-
sification maps are not smooth. Fortunately, the methods with
efficient spectral–spatial feature extraction can overcome this
problem, which makes the visual effect better than those of
other methods. Such a good performance is attributed to the
use of spatial smoothing, which helps suppress noise. Similar
results can also be observed in Fig. 3 for the Pavia University
Image.

The ANOVA analysis of quantitative results for 20 methods
in our experiments is shown in Fig. 4. From these two figures,
our method accomplishes comparable or better performance
than the other methods. The methods with tensor representation
overall achieve higher accuracies than those with vectorial
versions. On the other hand, the size of unknown parameters in
the projection matrix of LDA or NWFE (which have the vector-
based inputs with size of H1H2) is H1H2 × L1L2 (where
L1L2 is the reduced dimension), whereas that of the projection
matrices of the LTDA is H1 × L1 +H2 × L2. Thus, owing to
the large reduction of unknown parameters of the projection
matrices, particularly under the condition of high-dimensional
but limited number of training samples, feature extraction with
tensor representation has more compact feature representations
and lower evaluated variances.

V. CONCLUSION

In this letter, we have proposed a discriminative tensor
representation strategy for spectral–spatial feature extraction in
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Fig. 3. (a) Pavia University Image with size of 640 × 310 in pixels and (b) its ground truth image and classification maps obtained by (c) Spectral-TDLA,
(d) EMP-Original, (e) EMP-LTDA, (f) EAP-NWFE, and (g) Gabor-LTDA.

Fig. 4. ANOVA. Black line in each box is the median value. (a) Indian Pines
Image. (b) Pavia University Image.

hyperspectral images. First, we extract abundant spectral–
spatial features of a pixel to compose a second-order tensor.
Then, LTDA is adopted to preserve the discriminativity be-
tween classes for classification. Compared with several remark-
able methods on two standard data sets, the methods with
tensor representation achieve higher classification accuracies
and better visual results.
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