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Manifold Regularized Local Sparse Representation
for Face Recognition

Lingfeng Wang, Huaiyu Wu, and Chunhong Pan

Abstract— Sparse representation-(or sparse coding)-based clas-
sification has been successfully applied to face recognition.
However, it can become problematic in the presence of
illumination variations or occlusions. In this paper, we propose
a Manifold Regularized Local Sparse Representation (MRLSR)
model to address such difficulties. The key idea behind the
MRLSR method is that all coding vectors in sparse representation
should be group sparse, which means holding the two properties
of both individual sparsity and local similarity. As a conse-
quence, the face recognition rate can be considerably improved.
The MRLSR model is optimized by the modified homotopy
algorithm, which keeps stable under different choices of the
weighting parameter. Extensive experiments are performed on
various face databases, which contain illumination variations and
occlusions. We show that the proposed method outperforms the
state-of-the-art approaches and provides the highest recognition
rate.

Index Terms—Face recognition,
sparse representation.

manifold regularization,

I. INTRODUCTION

ACE recognition [1], [2] is a critical component in

many computer vision applications, such as access
control, video surveillance, and public security. In the real
world, face images are often corrupted by many unknown
factors, namely illumination, occlusion and expression, so face
recognition is still a challenging task. In the past decades, a
number of researchers have been attracted to tackle these dif-
ficulties [3]-[15] and have proposed many effective methods.
Among them, sparse representation-based method is one of
the promising branches. In this paper, we first briefly review
the existing face recognition methods, and then we introduce
the sparse representation-based face recognition methods.

A. Brief Introduction of Face Recognition

Until now, many face recognition methods have been pro-
posed. From face representation view, these approaches can
be mainly classified into two groups, i.e., the subspace-based
holistic methods and the feature-based local methods. It is
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worth noting that both holistic and local methods can adopt
the sparse representation technique.

The effectiveness of subspace-based face recognition
approaches depends on the utilization of subspace learning
methods, which include the well-known principal compo-
nent analysis (PCA) [16] and Fisher Linear Discriminate
Analysis (FLDA) [17], as well as the manifold learning-based
locality preserving projection (LPP) [18], local discriminant
embedding [19], and graph embedding [20]. For example,
the classical FLDA seeks an optimal linear transformation
by maximizing the ratio of between-class scatter and within-
class scatter. The manifold learning-based methods consider
that the high-dimensional data are often embedded on a low-
dimensional manifold. For example, the LPP in [18] learns
the subspace by preserving the geometric graph of the original
high-dimensional data. Yan et al. [20] utilize graph embedding
theory to reinterpret the subspace learning methods. Recently,
the kernel techniques, such as kernel PCA and kernel LDA
[21], are proposed to tackle the nonlinearity in face feature
space.

The holistic methods often fail to identify the faces with
local variations, such as illumination and expression. Fortu-
nately, the feature-based local face recognition approaches
can tackle these difficulties better. Two types of features
and their variants, i.e., local binary pattern (LBP) [22] and
Gabor [23]-[25], are often used in practice. For example, LBP
is a texture primitive statistic, which is obtained by the sign
of the difference between center pixel and its neighborhood.
It is invariant to linear transformation and is, thereby, robust
to illumination variation to some extent. Gabor filters could
effectively extract the local structure features at multiple
directions and scales. The Gabor feature is also robust to
illumination and expression variations.

B. Sparse Representation-Based Face Recognition

Sparse representation has been widely used in both
computer vision and signal processing applications. It was first
introduced into face recognition by Wright et al. [6]. In this
method, a testing image is first sparsely represented over all
training images, and then the classification result is obtained
by finding the class that leads to the minimal representation
error. Improved performances have been reported as compared
with some classical methods. However, the trivial template
represented by identity occlusion dictionary results in high
computational cost. In [25], the computational cost is reduced
by introducing Gabor features [23], which makes the occlu-
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sion dictionary compressible. In [9] and [12] robust sparse
representation is proposed to avoid the utilization of identity
occlusion dictionary, so that the speed of sparse representation
can be accelerated. The robust sparse representation method
can provide higher recognition rate, especially when the face
image is occluded by disguise. In [26], multiple features are
combined under a multitask sparse representation framework
by introducing a matrix {» 1-norm [27]. The key idea behind
the matrix £ -norm is to ensure the coding vectors are similar
to each other. Motivated by the matrix ¢ j-norm regular-
ization, Yang et al. [13] proposed a relaxed regularization.
The testing and training images are first divided into multiple
blocks, and then each block of a testing image is sparsely
represented by the corresponding block of the training images.
The relaxed regularization is utilized to ensure all the coding
vectors are globally similar to each other.

C. Our Method

In this paper, we propose a manifold regularization to ensure
that the neighboring coding vectors are similar to each other if
they have strong correlation. That is, manifold regularization
is proposed to transfer the local correlation of face patches
to the local similarity of coding vectors. By incorporating
manifold regularization into local (or block-based) sparse
representation, we propose a new Manifold Regularized Local
Sparse Representation (MRLSR) model. The MRLSR model
is optimized by the modified homotopy algorithm, where the
updating direction and the updating step are improved by
further considering manifold regularization. The weighting
parameter of sparse regularization starts from the infinity, and
then decreases to a specified value.

Specifically, the advantages of the MRLSR model are
highlighted as follows.

1) By introducing manifold regularization, all the cod-
ing vectors obtained by the MRLSR are group
sparse [28], [29], which means holding the two prop-
erties of both individual sparsity and local similarity.
As reported in previous work, group sparsity of coding
vectors can improve face recognition rate. Extensive
experiments also indicate that the proposed MRLSR
method provides better adaptability to face recognition
difficulties, such as illumination variations and occlu-
sions, compared with the state-of-the-art approaches.

2) Due to the homotopy-like optimization, the proposed
MRLSR model keeps stable under different choices of
the weighting parameter of sparse regularization. Face
recognition results on the AR and PIE database also
verify this (please refer to Section V-E).

3) The proposed MRLSR model not only provides high
recognition rate, but also is stable under different block
size selections. The comparative experiments on various
face databases verify these two points.

The rest of this paper is organized as follows. A brief
review of the sparse representation-based face recognition is
introduced in Section II. In Section III, we propose the mani-
fold regularization and the MRLSR model. The homotopy-like
optimization of our model is described in Section IV. Some

experimental results are provided in Section V. The concluding
remarks are given in Section VI.

II. BRIEF REVIEW OF SPARSE REPRESENTATION

Let X = [X!; X2 XC] be the set of training images, in
which X! represents images of class i, and C is the number
of classes. In sparse representation-based face recognition, the
testing image y is sparsely coded on X via £; minimization,
given by

. 1
& = argmin Iy — Xat[13 + paobarllo/ (1

where yglobal 1S @ weighting constant, which gives a tradeoff
between the reconstruction error and the sparsity of the coding
vector a. The objective of recognition is then to find the
smallest reconstruction error of all classes, given by

IDENTITY(y) = argmin ||y — X'é’ |3 )
1

where & = [a';a%;...;aC], and &' is the coding vector
associated with the ith class.

As shown in (1), the optimal solution & is sparse.
Wright et al. [6] denote that the sparsest representation is
naturally discriminative: among all subsets of base vectors,
it selects the subset which most compactly expresses the
input signal and rejects all other possible but less compact
representations. In other words, the sparsity could improve
discrimination. In object classification problem (face recog-
nition can be regarded as an object classification problem),
the discriminative nature is very effective. Hence, the core
idea behind sparse representation-based classification is that
a query sample should be classified to the class which could

faithfully represent it using fewer numbers of samples.

III. MANIFOLD REGULARIZED LOCAL SPARSE
REPRESENTATION (MRLSR)

A. Local Sparse Representation

Real face images are often corrupted by partial occlusion
and local illumination variation. In such cases, it is fallacious
to utilize holistic template to describe face image. Therefore,
we present the local sparse representation to solve the above
two difficulties. The testing and training images are first
divided into B = m x n blocks, respectively (with half overlap
in practice). Then, for each block of testing image yp, its
coding vector is obtained by optimizing the following sparse
representation problem, given by

. 1
iy = argmin = lyp = Xpop 3 + 7o llos |1 3)

where b € {1,2,...,B} is the block index. Fig. 1 shows
the details about block sparse representation. In (3), the
blocking strategy effectively introduces spatial information
into local sparse representation. Unfortunately, each coding
vector oy is obtained individually. That is, the relationship
of all coding vectors {ocb}E:1 is ignored. In practice, it is
reasonable to assume that the neighboring blocks should share
similar coding vectors. The manifold regularization proposed
in Section III-B considers local similarity of the coding
vectors.
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Testing Image

Training Image Set

Fig. 1. Local (or block-based) sparse representation. The testing and
training images are first divided into m x n blocks, respectively (see the red
grids). Then, each block of the testing image is sparsely represented by the
corresponding blocks of the training images (see the blue curves).

B. Manifold Regularization

Assuming that the input image is divided into B = m x n
blocks, we denote the block index set by

B=1{1,2,...,B}. )

For the bth block, we consider a 3 x 3 neighboring block
centered on this block as its neighborhood. The neighboring
coding vectors of o; within this local window are

-5 O} )

where b1, by, . . ., bg are the coordinates of the blocks arranged
from the top-left to the bottom-right. Note that the block itself
is not its neighborhood. Similar to Laplacian Eigen maps [30],
the weighted difference is utilized to interpret local similarity
between oy and its neighboring coding vectors

{0, aby, - .

8
E(b) = wpp, lap — ap, |13 (6)
i=1
where wpp, is the weight (or similarity) between two blocks.
In this paper, the weight wy, is obtained by calculating the
Canonical Correlation Analysis (CCA) of two corresponding
blocks, i.e., X; and Xb,..1
Denote W € RB*B s a similarity matrix constructed by all
weights, that is the bcth element of W is defined as

if ¢ is the neighbor of b

0, otherwise

note that if ¢ is the neighbor of b, ¢ belongs to the set {bi}§:1.
Denote D is a diagonal matrix, satisfying that Dp, = >  Woe.
Matrix L is a Laplacian matrix defined as

L=D-W (7)

Laplacian matrix L is a symmetric matrix since the neighbor-
hood system and weight calculation are both symmetric.

In our model, we need a similarity measurement to calculate the similarity
between two different set facial parts. Note that each set contains N facial
parts, where N is the number of training samples. Most of traditional similarity
measurements derive from the Sum of Square Difference (SSD). However,
using SSD requires that two samples should be exactly aligned. It is not
satisfied here because we need to measure the similarity between different
facial parts. Fortunately, the CCA can just satisfy this problem. CCA can be
seen as the problem of finding basis vectors for two sets of variables such
that the correlations between the projections of the variables onto these basis
vectors are mutually maximized. Based on the above analysis, we choose CCA
but not the other similarity measurements. Refer to [31] for more information
about CCA.

With the above definitions, the total difference, which is
defined by the summation of all blocks, is

1B

5 2 E®)
b=1

| B3

5 22 2 wibilla —ay |3 = w(ALAT) - (8)
b=1 i=1

in which matrix A contains all representation coding vectors,

namely, A = [a1; a2; ...; aB] € R9*B where d is the number
of pixels in each block, and tr(.) is the matrix trace operation.

E(A)

C. MRLSR Model

The manifold regularization on all coding vectors is pro-
posed in (8). Combined with (3), the MRLSR model is
defined as

B
F(A)=> (% ||yb—xbab||%+yb||ab||1) + %tr(ALAT) ©)
b=1
where 1 is a weighting constant. As shown in (9), the first
term is composed of B L; regularized SR models, which
means that the first term of F(A) term is convex. Moreover,
the Laplacian matrix L is semidefinite, which indicates that
the second term of F(A) is also convex. Accordingly, we
can obtain that the objective function of F(A) is convex.
The core idea behind our MRLSR model is to ensure all coding
vectors hold the following two properties: individual sparsity
and local similarity. Based on the two properties, the coding
vectors are group sparse.

IV. OPTIMIZATION

The homotopy-like algorithm is used to optimize the
proposed MRLSR model. Let F, (A) be the objective func-
tion with a given sparse regularization coding vector 7y,
where y = [y1,72,..., yB]. Since the objective function is
convex, the minimization of F, (A) can be achieved when
Ay =[a1,y,: 2,9, . .; aB,yg]. Based on convex analysis, the
zero vector 0 should be an element of the subdifferential at
ab,y,, given by

0= aAFy (ab,yb) = —(XZ()’I; - Xbab,yb) - /1Ay Lb)

+ybollab,y,lli Vb €B (10)

where Lj is the bth column of the Laplacian matrix L, and
u = 0llap,y, |1 is the subgradient, satisfying that

u(j) = sgn(ap,y, (), ab,y,(j) #0

u(.]) € [_19 1]’ ab,)’h(j) =0

where sgn(.) is the sign function and (j) means the jth item
of a vector. Let

¢ = X} (vp — Xpath,y,) — A, L

be the residual vector, and Z,, = {j : ap,,(j) # 0} be
the active set of the coding vector ay ,,. Equation (10) is
equivalent to the following two conditions:

Y

(12)
13)

Condition 1: ¢p(j) = ypsgn(ap,y,(j)) j € Ly,
Condition 2: |cp(j)| < yp, otherwise
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similar to the homotopy [32], our algorithm starts from the
zero initial solution, i.e., the initial coding vectors {ag}gzl,
and then updates them iteratively {ai}le, t=1,2,....

A. Updating Direction

For each coding vector ayp,,,, b € B, the corresponding
updating direction e,(Z,,) in the active set Z,, is obtained by
solving the following equation:

Xp (th)TXb(be)eb (Z,,) + 2E(Z,, )Ly = sgn(ap(Zy,)) (14)

where E(Z,,) = [e1(Z,,); e2(Z,,); . . .; e(Zy,)]. The updating
direction ensures that (12) should be still held after updating.
In (14), the updating directions of all coding vectors are
coupled together. To solve it effectively, the Landweber itera-
tion [33] is utilized. That is, e;(Z,,) is obtained by iteratively
solving the following function:

e;; Zy,) = Xp (IV/;)TXb Ty, + ’IDbed)il

(sen(an(Z,,)) + 2E (T, ) Wp) (15)

where E'~! is the previous updating direction matrix, e}, is the
current bth updating direction vector, and Id is the identical
matrix. In each iteration, the updating direction vectors in the
active set Z,, are set to e,(Z,,), while those not in the active
set Z,, are set to zero.

B. Updating Step

The updating step Ay is determined by calculating a min-
imum step that breaks the following two conditions. First, a
nonactive element of ¢;(j) would increase beyond y, given by

+ . [ 7 —¢ep(J)
Yy = min T s
JETs, 1 —X(j) X(be)eb(be) — iE(th)Lb
b+ e (J)

, ] (16)
1+ X()HTX(Z,,)er(T,,) + AE(Z,,)Ly

where I;h =B —17,,. Second, for an element in the active set,
its coding value equals to zero, given by

_ . —0Qbp,y, (.]) ]
y, = min { ————. (17)
b jEbe { €) (.])
The updating step Ay, is obtained by
Ayp = mbin{yl:r, Vbi}' (18)

Equation (18) restricts that only one condition can be broken
when updating the coding vectors. When yb+ <7y, , we add
an element i T, the minimal index in (16), to the active set.
Otherwise, we delete an element i —, the minimal index in (17),
from the active set.

C. Summarization of the Algorithm

Following the above procedure, the updating directions
{db}fz1 and their corresponding steps {Ayb}E: | are obtained.
Thus, the regularization parameters {yb}E:1 are updated by

vi=y""— Ay VbeB (19)

Algorithm 1 MRLSR

Data: Training images {Xh}E: 1> testing image {yb}E: 1, the
weighting constant 1, and the threshold € = 1073,
Result: The coding vectors {ab}le.
1 Constructing the Laplacian matrix L based on (7);
2 Initializing the coding vectors {ag = 0}?21;

3 Initializing the y; with max{Xth};
4 for + = 0 to maxIterOuter do

5 for i = 0 fo maxlterlnner do

6 Updating the directions {db}l]f’:1 by Eqn. (15);
7 | end

8 | forb=11¢t0 B do

9 Calculating ber and y,~ by (16) and (17);

10 Computing updating step Ay by (18);

11 if 7b+ <7y, then

12 | Adding it to T, : Z,, =T, +it;

13 else

14 | Removing i~ from be : be = be —i
15 end

16 Updating regularization parameter by (19);

17 Updating the coding vector by (20);

18 if min{{y}P_,} <€ then

19 | Break;

20 end

21 | end
22 end

and the coding vectors {ab}E: | are updated by

ap =o'+ Aype, Vb e B (20)

where ¢ is the iteration number. Details of MRLSR are
summarized in Algorithm 1.

As shown in Algorithm 1, the complexity of the outer
loop is O(TB), where T is the iteration number and B is
the block number. The computational complexity in the inner
loop is O(TN?), where N is the number of training samples.
Therefore, the computational complexity of our algorithm is
O(TB2N?).

The parameter € is utilized to control the weighting para-
meter of the sparse regularization. Without being specified,
it is set to 1073, It is worth noting that in our algorithm,
the weighting parameter of the sparse regularization starts
from the infinity, and then decreases to the specified value €.
As a result, our algorithm keeps stable under different choices
of the weighting parameter € (Section V-E).

After all coding vectors {6(1,}521 are obtained by
Algorithm 1; the recognition is determined by finding the
smallest reconstruction error of all classes, given by

B
IDENTITY(y) = argmin »_ |ly, — X}dj | (1)
"=l
where a;, = [&}7; &g; ;&E], and &l’; is the coding vector
associating the bth block with ith class.

V. EXPERIMENTAL RESULTS

Extensive experiments on three public face databases, i.e.,
AR, Extended Yale B, and CMU-PIE, are performed to
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(a) Without
Occlusion

REREY TS
FEEE 77
EEEEZZ

Fig. 2. Image samples from the AR database. The first row illustrates 7
training images with only illumination and expression changes, while the
second and third rows show images with the sunglass and scarf occlusions,
respectively.

(b) Sunglass
Occlusion

(c) Scarf
Occlusion

TABLE I
RECOGNITION RATE COMPARISONS WITH THE RCR WITH DIFFERENT
BLOCK SIZES ON THE AR DATABASE WITHOUT OCCLUSION

N gomh:'“" Size 12*16 12:8 816 88
Local SR 95.43% 97.29% 96.00% 729
RCR 96.71% 96.00% 96.14% 93.14%
MRLSR 98.86% 98.86% 99.00% 99.00%

evaluate the effectiveness of the proposed MRLSR. In our
algorithm, the major parameter A is experimentally set to 1072,

We compare our method with the state-of-the-art sparse
representation-based face recognition approaches, including
sparse representation without using occlusion dictionary [6]
(SR), local sparse representation without regularization (Local
SR),? relaxed collaborative representation [13] (RCR), robust
sparse representation [9] (RSR), and tone aware sparse
representation [14] (TaSR).3 For SR, TaSR, and Local SR, the
homotopy algorithm is utilized to optimize the ¢ problem.
For RCR and RSR, the source codes are available at the URL
www4.comp.polyu.edu.hk/~slzhang/code.htm. We utilize the
default well-tuned parameters for the RCR and RSR face
recognition algorithms.

A. Results on the AR Database Without Occlusion

In the first experiment, we test our MRLSR method on the
AR database without occlusion [34]. Similar to [6], a subset
of images with only illumination and expression variations is
utilized (see the first row of Fig. 2). All images are cropped
and resized to 48 x 32. For each person, the seven images
from Session 1 are selected as the training images, while other
seven images from Session 2 are chosen as the testing images.

The comparative results with the RCR method are shown
in Table I. From this table, we obtain three observations.
First, our results are better than those of the RCR and the
Local SR. Second, our results are stable under different selec-
tions of the block size. Third, when the block size is smaller,

2The local SR method is similar to our method but without using the man-
ifold regularization, that is, the coding matrix, A, is obtained by minimizing
the equation of 3°p_; (1/21lys — Xpapll3 + pllash)-

3RSR is very robust to occlusion. Hence, we compared it on AR with
occlusion dataset. TaSR is very efficient to illumination variations. Hence, we
compared it on Extended Yale B and CMU-PIE datasets.

|EE<R I LocalsR [ IRCR [ MRLER]

=

&
=

0.9+ I

0.8}

0.7+

Recognition Rate

06}

05 L L | L
2 3 4 5 6 7

Training Sample on Each Class

Fig. 3. Recognition rate comparisons with the SR and the Local SR with
different training samples on the AR database without occlusion.

the superiority of our result is more obvious. Especially, when
the block size is 8 x 8, the recognition rate of our MRLSR is
5.86% higher than that of the RCR.

The higher recognition rate of our MRLSR on the AR data-
base without occlusion indicates that manifold regularization
is necessary for local sparse representation. Moreover, if the
block size is small, local regularization of the MRLSR is more
effective than global regularization of the RCR.

We also compare our method with the SR and the Local SR
under different training samples Niqin. The results are shown
in Fig. 3. The training sample Ni.ij, = 2 means that for each
person, we randomly choose two images from seven images
for training. For the same training sample, we perform each
recognition algorithm for 10 times.* As shown in Fig. 3, the
recognition rates of MRLSR are higher than those of SR and
Local SR.

Fig. 4 shows the comparison of the coding vectors.
The top image is the absolute coding matrix |AT| obtained
by the Local SR, while the bottom one is calculated by our
MRLSR. From the two images, it can be seen that some coding
values are suppressed by our method (see the coding values
in the blue rectangle), while some coding values are enhanced
(see the coding values in the red rectangle). As a result, our
coding vectors hold more group sparsity [28], [29] than those
of the Local SR. In this example, the true class of the testing
image is 27. Some noise coding values cannot be suppressed
by the Local SR. Hence, it misclassifies the testing image
as 85.

Fig. 5 provides the convergence curves on the six testing
face images. From this figure, we see that the energies
gradually decrease as the iteration number increases, which
experimentally verifies that the proposed homotopy-like algo-
rithm is convergent.

B. Results on the AR Database With Occlusion

The second experiment is performed on the AR database
with occlusion [34] to further evaluate the robustness of our
MRLSR against occlusions. The selection of the training
images is the same as the first experiment. Two separate

4Note that when the training sample Ngip is set to 7, we perform all
algorithms once, since we only have 7 training images for each person.



656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 4, APRIL 2015

(a) Local SR ‘ ‘ ‘ ‘
27 7

(b) MRLSR

Fig. 4.

2
(d) Close ups
of MRLSR

() Close ups
of Local SR

Comparison of coding vectors. (a) Absolute coding matrix |AT| obtained by the Local SR. (b) Absolute coding matrix |AT| calculated by our

MRLSR. (c) and (d) Close-ups of the coding matrices for the two classes, respectively. For each absolute coding matrix \ATl, the bth row is the coding vector
of the bth block. The true class of the testing image is 27. The Local SR misclassifies it as 85, while our MRLSR classifies it as 27 correctly.
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Fig. 5. Convergence curves on six testing face images.

TABLE II
RECOGNITION RATE COMPARISONS WITH THE RCR WITH DIFFERENT
BLOCK SI1ZES ON THE AR DATABASE WITH OCCLUSION

Block Size 12*16 12*8 8*16 8*8
Algorithm Sunglass Scarf Sunglass Scarf Sunglass Scarf Sunglass Scarf
Local SR 83.17% | 88.67% | 82.50% | 88.00% | 91.00% | 90.33% | 90.50% | 90.33%
RCR 79.00% | 89.00% | 59.00% | 80.67% | 74.67% | 89.17% | 52.17% | 81.17%
MRLSR 85.83% | 93.00% | 86.50% | 92.83% | 92.83% | 94.17% | 91.67% | 93.00%

subsets with sunglass and scarf occlusions are utilized for
testing. For each person, we select six images with sunglass
occlusion and six images with scarf occlusion (Fig. 2).

The comparisons with the RCR method under different
block sizes are shown in Table II. As shown in this table,
the recognition rates of our MRLSR are higher than those of
the RCR and the Local SR, especially when the block size is
small. The recognition rates with the block size 8 x 16 are
better than the recognition rates with the block size 12 x 8.
Therefore, we conclude that when the image is occluded by
disguise, the local methods could be sensitive to the image
partition. Thanks to manifold regularization, our method is
less sensitive to the image partition, as compared with the
RCR method.

We also compare our MRLSR with the RSR, an efficient
face recognition algorithm that is very robust against occlu-
sions. The results, including recognition rate and running time,
are shown in Table III. We select the best recognition rates

TABLE III
RECOGNITION RATE COMPARISONS WITH THE SR, LOCAL SR, RCR,
AND RSR ON THE AR DATABASE WITH OCCLUSION

Algorithm Rec. Rate Time
Sunglass Scarf (second)
Local SR 91.00% | 90.33% 6.2
RCR 79.00% | 89.17% 285
RSR 86.17% | 86.00% 97.3
MRLSR 92.83% | 94.17% 8.1
; [l sR B Local SR C_RCR [_IRSR __MRLSR]
T
- 3 &
ot gl ] i ]
1l o
0.8 i M 0.8 | A
2 2
& &
c 08 L 06
=) 8
z E
204 o4
3 8
@D D
4 [
0.2 0.2
0 LU L L 0 LU LU LU L
4 5 6 7 4 5 & 7

Training Sample on Each Class (Sunglass) Training Sample on Each Class (Scarf)

Fig. 6.  Recognition rate comparisons with the SR and the Local SR
with different training samples on the AR database with occlusion. The left
sub-figure shows comparisons under Sunglass occlusions, while the right
sub-figure gives comparisons under Scarf occlusions.

in Table II as the results of Local SR, RCR, and MRLSR.
As shown in Table III, our MRLSR is 12 times faster than
RSR, while it still holds higher recognition rate.

The comparative results with different training samples are
shown in Fig. 6. The selection of the training sample is
the same as the first experiment. For each person, we select
four testing images (two images with sunglass occlusion and
two images with scarf occlusion). The testing images are
reselected at each round of experiment. For the same training
and testing images, we perform each recognition algorithm
for 10 times. As shown in Fig. 6, the recognition rates are
much higher than those of the SR, which are derived from the
utilization of the local representation. Moreover, all the results
of the MRLSR are higher than those of the Local SR.
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Fig. 7.

Image samples from the Extended Yale B database.

TABLE IV
RECOGNITION RATE COMPARISONS WITH THE RCR WITH DIFFERENT
BLOCK SIZES ON THE EXTENDED YALE B DATABASE

Block Size

Algorithm 1614

16*8 8*14 8*8

Local SR
RCR
MRLSR

92.63%
84.22%

93.61% 93.02%

81.71%

94.74%
73.55%

78.86%

95.09% 95.72% 95.58% 95.58%

[N SR I TasR [—JLocal SR [_JRCR [_IMRLSR]
1 : . . —
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09 B

08 B

Recognition Rate

06 B

05

5 10 20 30
Training Sample on Each Class

Fig. 8. Recognition rate comparisons with the SR, the TaSR, and the Local
SR with different training samples on the Extended Yale B database.

C. Results on the Extended Yale B Database

The Extended Yale B database [35] consists of 16128
face images of 38 subjects under 9 poses and 64 laboratory-
controlled illumination conditions. Here, 2414 frontal images
are selected. The resolution of each cropped gray-scale image
is 64 x 56. Some examples are shown in Fig. 7. From this
figure, we can see that it is even hard for people to distinguish
or recognize some face images as they are corrupted by strong
illumination changes.

Table IV provides comparative results with the RCR under
different block sizes. For each subject, we randomly select
10 images for training, and use the rest for testing. As shown
in this table, the recognition rates of our MRLSR are all at least
10% higher than other approaches, especially when the block
size is small. This result indicates that when face images are
strongly corrupted by illuminations, manifold regularization
adopted in the MRLSR performs better than global regular-
ization used in the RCR.

Fig. 8 shows experimental comparisons with different
training samples. In this experiment, all images, including
the training and testing images, are down-sampled to the
size of 32 x 28. For each subject, we randomly select Nipin
(Nirain = 5, 10, 20, 30) images for training, and use the rest

TABLE V
RECOGNITION RATE COMPARISONS WITH THE RCR WITH DIFFERENT
BLOCK S1ZES ON THE CMU-PIE DATABASE

Block Size

Algorithm 16*16

16*8 8*16 8*8

Local SR
RCR

95.21% 95.85% 95.28% 95.58%

95.96%
97.24%

94.94%
97.36%

93.51% 90.90%

MRLSR 96.79% 96.68%

[N <R I TasR [JLocal SR __JRCR [_]MRLSR]
1 ‘ . —
JES ™
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o
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038
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Fig. 9. Recognition rate comparisons with the SR, the TaSR, and the Local
SR with different training samples on the CMU-PIE database.

TABLE VI
OUR RECOGNITION RATES UNDER DIFFERENT VALUES
OF € (BLOCK SIZE 8 x 8)

Parameter 1 o.1 1 o.z 1 0-3 10-4

Database

AR without Occlusion 99.14% 99.14% 99.00% 99.00%

AR (sunglass occlusion) 91.50% 91.50% 91.67% 91.67%

AR (scarf occlusion ) 92.67% 92.83% 93.00% 93.00%

YelaB 95.53% 95.58% 95.58% 95.58%

for testing. For the same training and testing images, we
perform each recognition algorithm for 10 times. As shown in
Fig. 8, although the image resolution is very low, the proposed
MRLSR algorithm can still provide high recognition rate.

D. Results on the CMU-PIE Database

Similar comparative experiments are performed on the
CMU-PIE database [36]. This face database contains images
of 68 subjects under 13 poses, 43 illumination conditions,
and 4 expressions. Only the frontal face images are selected.
They are cropped and resized to 64 x 64 pixels.’

Table V shows experimental comparison with the RCR with
different block sizes. For each subject, we only randomly
select 5 images for training, and use the rest for testing.
As shown in Table V, the MRLSR provides higher recognition
rate.

Fig. 9 provides more comparisons with different train-
ing samples. Similar to the configuration for the Extended
Yale B database, for each subject, we randomly select

SDownloaded from www.zjucadcg.cn/dengcai/data/data.html.
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TABLE VII
OUR RECOGNITION RATES UNDER DIFFERENT VALUES
OF 1 (BLOCK SIZE 8 x 8)

Parameter | 4 05 0.025 0.01 0.0025 | 0.001 0.000

Database

97.85%
91.67%

98.28%
91.67%

99.00%
91.67%

99.00%
92.00%
91.00%
95.58%

99.14%
92.00%

95.72%
90.50%

AR without Occlusion

AR (sunglass)

AR (scarf) 92.00%

95.48%

92.33%
95.53%

93.00%
95.58%

91.00%
95.58%

90.33%
94.74%

YelaB

Nirain (Nirain = 5, 10, 15) images for training, and use the
rest for testing. For the same training and testing images, we
perform each recognition algorithm for 10 times. Again, from
this figure, it can be seen that our algorithm provides the
highest recognition rates.

E. Parameter Evaluation

In the above experiments, the parameter € of Algorithm 1
is set to 1073, We evaluate the stability of the MRLSR under
different choices of €. The results are shown in Table VI.
From this table, it can be seen that the recognition rates are
very similar, which indicates that our algorithm is stable under
variations of the sparse regularization parameter.

We further evaluate the stability of the MRLSR under
different choices of A, and the results are shown in Table VII.
As shown in this table, our result is a little sensitive to
the parameter A, especially in AR with occlusion dataset.
Fortunately, our results are all better than the corresponding
results without using manifold regularization listed in the last
column of Table VII (A = 0). Hence, we can conclude that it
is necessary to incorporate the manifold regularization.

VI. CONCLUSION

In this paper, we propose the manifold regularization for
local sparse representation. All the coding vectors obtained
by our MRLSR model can hold more group sparsity than
those obtained by the Local SR. As a consequence, our
face recognition rates are higher. In the future, we hope to
incorporate other terms into our MRLSR model to enhance its
group sparsity. As a general sparse representation method, the
proposed MRLSR can also be applied to other classification-
based applications, such as language classification and
character recognition. Moreover, manifold regularization can
be utilized in other local models.
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