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Seeking Consensus in Networks of Linear Agents: Communication
Noises and Markovian Switching Topologies

Yunpeng Wang, Long Cheng, Wei Ren, Zeng-Guang Hou, and Min Tan

Abstract—The stochastic consensus problem of linear multi-
input multi-output (MIMO) multi-agent systems (MASs) with
communication noises and Markovian switching topologies is
studied in this technical note. The agent’s full state is first es-
timated by the state observer, and then the estimated state is
exchanged with neighbor agents through a noisy communication
environment. The communication topology is randomly switch-
ing and the switching law is described by a continuous-time
Markovian chain. Then a consensus protocol is proposed for this
MAS, and some sufficient conditions are obtained for ensuring
the mean square and almost sure consensus. In addition, if the
communication topology is fixed, some necessary and sufficient
conditions for the mean square consensus can be obtained accord-
ing to whether or not each agent in the system has parents.

Index Terms—Communication noise, linear multi-agent system,
Markovian switching topology, stochastic consensus.

I. INTRODUCTION

Recently, the communication noise becomes an attractive topic in
the field of consensus of multi-agent systems (MASs) [1]–[9]. In order
to attenuate the effect of communication noises, a time-varying gain,
namely the stochastic-approximation type gain, was first introduced
in the consensus protocol proposed in [1]. In [2], it is proven that
the stochastic-approximation type gain is not only sufficient but also
necessary for ensuring the mean square consensus of first-order inte-
gral MASs. In [3], two kinds of communication constraints (commu-
nication noises and delays) were considered simultaneously, and the
stochastic-approximation type consensus protocol was still valid in this
situation. Some interesting applications (e.g., the distributed parameter
estimation) of the stochastic consensus of MASs were done in [4], [5].
In [6], a new protocol was presented for the mean square consensus
of second-order integral MASs with additive communication noises.
It is proved that the stochastic approximation type conditions are still
the necessary and sufficient conditions. Extensions to the sampled-data
based consensus protocol were made in [7]. Although some results
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on stochastic consensus were published, the study regarding linear
MASs with communication noises is still very rare. Recently, few
early attempts towards this challenge were made in [8], [9] where
the mean square consensus problems of continuous-time/discrete-time
linear single-input single-output (SISO) MASs with fixed topologies
were solved. However, many interesting questions are still left open
such as the almost sure consensus and the consensus under switching
topologies, which become the motivation of the study presented in this
technical note.

In this technical note, the MAS works under randomly switching
communication topologies. The switching signal is modeled by a
homogeneous ergodic Markovian chain with right continuous trajec-
tories. The transition matrix of this Markovian chain is assumed to be
a “doubly stochastic generator matrix”. Moreover, it is assumed that
only the agent’s output is available. A state observer is constructed to
estimate the agent’s state. The estimated state is sent to its neighbor
agents for the purpose of reaching consensus. A consensus protocol
is then proposed by combining the agent’s own estimated state and
the relative estimated states between the agent and its neighbors. A
time-varying gain matrix a(t)K2 is applied to the relative estimated
states to attenuate the noise’s effect. It is proved that the mean square
and almost sure consensus can be solved by the proposed protocol if
the following conditions hold: 1) all possible communication topology
digraphs are balanced and the union of them has a spanning tree;
2)
∫∞
0

a(t)dt = ∞ and
∫∞
0

a2(t)dt < ∞; 3) all roots of “parameters
polynomials” have negative real parts. In addition, the stochastic
consensus of MASs with the fixed topology is further discussed.
According to whether or not each agent in the system has parents,
some necessary and sufficient conditions are obtained for the mean
square consensus of MASs, respectively.

This technical note is a continuation and improvement of the previ-
ous papers [6]–[9]. In [6] and [7], only the mean square consensus
problems of first-order/second-order integral MASs were studied.
Although the linear MAS was studied in [8], [9], this technical note
still has some distinguished features which are summarized as follows:
1) the agent is described by the stabilizable linear MIMO dynamics
rather than the controllable SISO dynamics; 2) both the randomly
switching topology and the fixed topology are investigated; 3) the
proposed protocol is based on the agent’s output rather than its full
state; and 4) the proposed protocol is able to solve not only the mean
square consensus problem but also the almost sure consensus problem.

Notations: 1n = (1, . . . , 1)T ∈ R
n; 0n = (0, . . . , 0)T ∈ R

n; In
denotes the n× n dimensional identity matrix; Θ denotes zero matrix
with proper dimension; ⊗ and ⊕ denote the Kronecker product and
Kronecker sum, respectively. For a given matrix X , XT denotes its
transpose; ‖X‖1, ‖X‖2 and ‖X‖F denote its 1-norm, 2-norm and
Frobenius norm, respectively; tr(X) denotes the trace of X; null(X)
denotes the null space of X . For a linear space H, its orthogonal
complement space is denoted by H⊥. diag(·) denotes a block di-
agonal matrix formed by its inputs. For a random variable/vector
x, E{x} denotes its mathematical expectation, D{x} denotes its
variance. This technical note is based on the complete probability
space (Ω,F , P ) which is equipped with a filtration {Ft, t ≥ 0}.
Throughout this technical note, “m.s.” and “a.s.” are abbreviations
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for mean square and almost sure, respectively. For a random process
x(t), x(t)

m.s.
−−−→ x∗ and x(t)

a.s.
−−−→ x∗ mean that x(t) is m.s. and

a.s. convergent to a random variable x∗ as time goes to infinity,
respectively. Let C, R, R+ denote the field of complex number, the
field of real number and the set of positive real number, respectively.
For any x ∈ C, 	(x) denotes its real part. Define an operator ϕ in the
following way: for a matrix V = [V1, V2, . . . , Vn] ∈ C

l×n with Vi ∈
C

l, ϕ(V ) = [V T
1 , . . . , V T

n ]
T ∈ C

nl×1. For a function f(x), f+(x) =
max{f(x), 0} and f−(x) = −min{f(x), 0}. For a real function
θ(t) : R → R, its indicator function is defined by

1[θ(t)=c] =

{
1, if θ(t) = c
0, if θ(t) 
= c.

II. PRELIMINARY RESULTS, PROBLEM FORMULATION

AND CONSENSUS PROTOCOL

This technical note considers a MAS composed of N agents. The
ith agent is described by the following continuous-time linear MIMO
time-invariant system

ẋi(t) = Axi(t) +Bui(t), yi(t) = Cxi(t) (1)

where xi(t) ∈ R
n, ui(t) ∈ R

m and yi(t) ∈ R
r are the state, input and

output of the ith agent, respectively

A =
[
Aa Ac
Ave Av

]
∈ R

n×n (2)

where AT
a =[AT

e ,Θ]∈R
le×(n−lv), Ae∈R

le×le , Ac=diag(Θ, A1,2,
A2,3, . . . , Av−1,v) ∈ R

(n−lv)×(n−le), Ai,i+1 = [Ili ,Θ] ∈ R
li×li+1

(i = 1, . . . , v − 1), Av,e ∈ R
lv×le , Av = [Av,1, . . . , Av,v] ∈

R
lv×(n−le), Av,i ∈ R

lv×li (i = 1, . . . , v), l1 ≤ l2 ≤ · · · ≤ lv = m
and

∑v

i=1
lv + le = n; B = [Θ, . . . ,Θ, Im]T ∈ R

n×m and
C ∈ R

r×n. We assume that B is of full column rank. If it is
not, one can refer to the “γ-equivalence” in [10] to deal with this
challenge. It is worth noting that any linear MIMO system can be
transformed into the Yokoyama canonical form defined by (1) in [10].
Through this technical note, it is assumed that (A,B) is stabilizable
and (A,C) is detectable. Since (A,B) is stabilizable, all eigenvalues
of Ae must have negative real parts.

In the literature, the communication among agents is modelled by
a digraph G = {VG , EG ,AG}, where V = {v1, . . . , vN}, EG ⊆ V ×
V = {eij |i, j = 1, . . . , N} and AG = [αij ] ∈ R

N×N are the node
set, edge set, and adjacency matrix, respectively. Agent i is de-
noted by node vi. The edge eij ∈ EG denotes the information flow
from node j to node i. It is assumed that eij ∈ EG ⇔ αij > 0 and
eij 
∈ EG ⇔ αij = 0. The neighborhood of vi is defined by Ni =
{vj |eij ∈ EG}. If vj ∈ Ni, then vj is called the parent node of vi.
The in-degree and out-degree of node i are defined by degin(vi) =∑N

j=1
αij and degout(vi) =

∑N

j=1
αji, respectively. The digraph G

is called balanced if degin(vi) = degout(vi) for i = 1, . . . , N . The
Laplacian matrix of G is defined by LG = DG −AG where DG =
diag(degin(v1), . . . ,degin(vN )). In a digraph G, a directed path from
vi1 to vin is a sequence of end to end edges {eij+1ij ∈ EG , j =
1, . . . , n− 1}. A digraph G is said to contain a spanning tree if there
exists a node from which there are directed paths to all other nodes.

Lemma 1 (Lemma 3.3 in [11]): The Laplacian matrix LG of a di-
graph G has at least one zero eigenvalue and all non-zero eigenvalues
havepositive realparts.AndLG hasonlyonezeroeigenvaluewith theas-
sociated eigenvector 1N if and only if the digraph G has a spanning tree.

In practice, due to the link failure or packet loss, the communication
topology is actually time-varying rather than time-invariant. To model
this phenomenon, the communication topology can be described by

a time-varying digraph G(θt) = {VG , E(θt)
G ,A(θt)

G
Δ
= (α

(θt)
ij )}, where

θt : [0,∞) → S = {1, 2, . . . , s} is a piecewise constant function and
S denotes the index set of all possible graphs. The piecewise-constant

function θt can be regarded as a switching signal. The communica-
tion topology is switched just at the instant that the value of θt is
changed. In this technical note, this switching signal θt is modeled as a
continuous-time Markovian chain adopted to the filtration {Ft; t ≥ 0}.

Once the communication topology is constructed, the agent can send
its state to its neighbors for reaching consensus. However, the agent’s
full state xi(t) may not be unavailable due to the physical limitation
or the implementation cost. To solve this problem, one possible way is
to estimate the agent’s state by its output. By this idea, the following
observer is proposed:

˙̂xi(t) = (A+KeC)x̂i(t) +Bui(t)−Keyi(t) (3)

where Ke ∈ R
n×r is selected in such a way that A+KeC is a

Hurwitz matrix. There must exist such a matrix Ke since (A,C) is
detectable.

When transmitting the estimated state to neighbors via practi-
cal communication channels, the transmitted information is prone
to be corrupted by communication noises. In this technical note,
it is assumed that the estimated state received by agent i from
agent j is νij(t) = x̂j(t) + Δijηij(t) where ηij(t) = (ηij1(t), . . . ,
ηijn(t))

T ∈ R
n are the n-dimensional standard white noise, Δij =

diag(δij1, . . . , δijn) ∈ R
n×n and δijk > 0 (i, j = 1, . . . , N ; k =

1, . . . , n) are finite noise intensities. Additionally, it is assumed that
{ηijk(t); i, j = 1, . . . , N ; k = 1, . . . , n} are independent with each
other and adapted to the filtration {Ft, t ≥ 0}.

Motivated by [1], [12], [13], the following protocol is proposed to
deal with the consensus problem with communication noises:

ui(t) = K1x̂i(t) + a(t)
∑
j∈Ni

α
(θt)
ij K2 (νij(t)− x̂i(t)) (4)

where a(t) ≥ 0 is the uniformly continuous gain function and α
(θt)
ij

is the ith row and the jth column element of A(θt)
G . The control gain

matrices K1 and K2 have the following specific forms:{
K1=[−Av,e,−Av,1,−Av,2 −K1,1, . . . ,−Av,v −K1,v−1]
K2=[Θ,K2,1, . . . ,K2,v−1, Ilv ]

where K1,i = [K2,i,Θ] ∈ R
m×li+1 and K2,i = [diag(bi,1Il1 ,

bi,2Il2−l1 , . . . , bi,iIli−li−1
),Θ]T ∈Rm×li , i = 1, . . . , v − 1. The

parameters {bi,j |i = 1, . . . , v − 1; j = 1, . . . , i} should be selected
in such a way that bi,j = 1 (j 
∈ I; i = j, j + 1, . . . , v − 1) and all
roots of the following polynomials (we call them the “parameter
polynomials”) have negative real parts

sv−i + bv−1,is
v−i−1 + · · ·+ bi+1,is+ bi,i = 0, i ∈ I (5)

where I = {1}
⋃
{i|2 ≤ i ≤ v − 1 and li−1 < li}. Therefore, one

possible way to determine parameters bi,j in (4) is:

(i) Select v − i negative real numbers {r1, . . . , rv−i} as the roots
of (5).

(ii) Construct a polynomial
∏v−i

k=1
(s− rk) = 0.

(iii) bj,i (j = i, . . . , v − 1) can be set as the coefficient of sj−i in∏v−i

k=1
(s− rk).

Remark 1: Compared to the protocol in [12], the improvements of
the proposed protocol are:

• A time-varying gain a(t) is introduced in the proposed protocol
to attenuate the noise’s effect. Therefore, the closed-loop MAS
becomes a time-variant system which cannot be dealt with by the
analysis approach used in [12].

• K1 and K2 are only required to satisfy that all roots of (5)
have the negative real parts, however, the minimum non-zero
eigenvalue of LG should be known for the design of control gains
in [12].

Finally, we give the mathematical definition of the mean square/
almost sure consensus.
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Definition 1: The protocol defined by (4) is said to be able to
solve the mean square/almsot sure consensus problems of the linear
MAS defined by (1) if there exists a random vector x∗ satisfying

E{‖x∗‖22} < ∞ such that for i = 1, . . . , N , xi(t)
m.s.
−−−→ x∗ (mean

square consensus) or xi(t)
a.s.

−−−→ x∗ (almost sure consensus).

III. MAIN RESULTS

Substituting (4) into (3) obtains that

˙̂
X(t) =

[
IN ⊗ (A+BK1)− a(t)L(θt)

G ⊗BK2

]
X̂(t)

+ a(t)Σ(θt)η(t)− (IN ⊗KeC)D(t)

where X̂(t) = (x̂T
1 (t), x̂

T
2 (t), . . . , x̂

T
N (t))

T , η(t) = [ηT
11(t), . . . ,

ηT
1N (t), . . . , ηT

NN (t)]T , Σ(θt) = diag(Σ
(θt)
1 ,Σ

(θt)
2 , . . . ,Σ

(θt)
N ),

Σ
(θt)
i = BK2(α

(θt)
i1 Δi1, α

(θt)
i2 Δi2, . . . , α

(θt)
iN ΔiN ), L(θt)

G is the

Laplacian matrix of G(θt), D(t) = (dT1 (t), . . . , d
T
N (t))

T and di(t) =
xi(t)− x̂i(t). By (1) and (3), it follows that di(t) =
e(A+KeC)tdi(0) → 0n.

By the definitions of K1 and K2, we can obtain that K2(A+

BK1) = Θ and K2BK2 = K2. Let Z(t)
Δ
= (z1(t), . . . , zN (t))T and

zi(t) = K2x̂i(t), then the following system is obtained:

Ż(t)=−a(t)
[(

L(θt)
G ⊗Im

)
Z(t)−(IN⊗K2)Σ

(θt)η(t)
]
−D̃(t)

(6)
where D̃(t) = (IN ⊗ (K2KeCe(A+KeC)t))D(0).

Before further discussion, the following four conditions are in-
troduced, which play fundamental roles in the study of stochastic
consensus.

(C1): All possible digraphs {G(i); 1 ≤ i ≤ s} are balanced and the
union of all those digraphs has a spanning tree.

(C2):
∫∞
0

a(t)dt = ∞ and
∫∞
0

a2(t)dt < ∞ (e.g. a(t) = 1/(t+ 1)).
(C3): {θt,Ft, t ≥ 0} is a homogeneous ergodic Markovian chain

with right continuous trajectories, taking values on the set
{1, 2, . . . , s}. The transition matrix of this Markovian chain is
denoted by Q = [qij ] ∈ R

s×s which is a “doubly stochastic
generator matrix” (i.e.,

∑
i,i �=j

qij =
∑

i,i �=j
qji).

(C4): All roots of the parameter polynomials defined by (5) have the
negative real parts.

Theorem 1: If Conditions (C1), (C2), and (C3) hold, then there
exists a random vector z∗ with finite second-order moment such that
zi(t)

m.s.
−−−→ z∗ and zi(t)

a.s.
−−−→ z∗, i = 1, . . . , N .

Proof: See Appendix A. �
Lemma 2: Consider the following stochastic differential equation:

ξ(p)(t) +

p∑
i=1

biξ
(i−1)(t) = ζ(t)

where ζ(t) is a m.s. continuous random process, ζ(t)
m.s.
−−−→ ζ∗

(ζ(t)
a.s.

−−−→ ζ∗), and ζ∗ is a random vector satisfying E{‖ζ∗‖22}<∞.

(I) If all roots of sp +
∑p

i=1
bis

i−1 = 0 have negative real parts,

then ξ(t)
m.s.
−−−→ ζ∗/b1 (ξ(t)

a.s.
−−−→ ζ∗/b1) and ξ(i)(t)

m.s.
−−−→ 0

(ξ(i)(t)
a.s.

−−−→ 0), i = 1, . . . , p.
(II) If E{ζ∗} 
= 0 and for any initial state, there exists a

random vector υ ∈ R
p+1 satisfying E{‖υ‖22} < ∞ such

that (ξ(t), ξ(1), . . . , ξ(p))
T m.s.
−−−→ υ, then all roots of sp +∑p

i=1
bis

i−1 = 0 have negative real parts.

Proof (I): Let D denote the differential operator, namely
Dnξ(t) = ξ(n)(t). Let {ri|i = 1, . . . , p} denote the roots of sp +∑p

i=1
bis

i−1 = 0. Let ξ1(t) =
∏p

i=2
(D− ri)ξ(t), then ξ̇1(t) =

r1ξ1(t) + ζ(t). It follows that ξ1(t) = ξ1(0)e
r1t + ψ(t), where

ψ(t) =
∫ t

0
ζ(t)er1(t−s)ds. According to the properties of m.s. inte-

gral, it can be obtained that

E

⎧⎨
⎩
∣∣∣∣∣∣ψ(t)−

t∫
0

ζ∗er1(t−s)ds

∣∣∣∣∣∣
2⎫⎬
⎭

≤

⎧⎨
⎩

t∫
0

E
1
2

{
|(ζ(t)− ζ∗)|2

}
e�(r1)(t−s)ds

⎫⎬
⎭

2

.

By L’Hôpital’s rule, it follows that:

lim
t→∞

t∫
0

E
1
2

{
|(ζ(s)− ζ∗)|2

}
e�(r1)(t−s)ds

= − lim
t→∞

E
1
2

{
|(ζ(t)− ζ∗)|2

}
	(r1)

= 0.

Meanwhile, it is noted that limt→∞
∫ t

0
ζ∗er1(t−s)ds=−ζ∗/r1. Hence,

ξ1(t)
m.s.
−−−→ −ζ∗/r1. By repeating this procedure for p times, it can

be proved that ξi(t)
Δ
=
∏p

j=i+1
(D−ri)ξ(t)

m.s.
−−−→ ζ∗/(

∏i

j=1
(−ri)),

which leads to that ξ(t)
m.s.
−−−→ ζ∗/b1 and ξ(i)(t)

m.s.
−−−→ 0, i=1, . . . , p.

If ζ(t) is a.s. convergent to ζ∗, then there exists a subset Ω0 ⊂ Ω
(Ω is the sample space) such that P{Ω0} = 0 and ζ(t) is convergent
to ζ∗ on the set Ω \Ω0. Since all roots of sp +

∑p

i=1
bis

i−1 = 0
have the negative real parts, by the knowledge of differential equation,
limt→∞ ξ(t) = ζ∗/b1 and limt→∞ ξ(i)(t) = 0 on Ω \Ω0, which

means ξ(t)
a.s.

−−−→ ζ∗/b1 and ξ(i)(t)
a.s.

−−−→ 0, i = 1, . . . , p.
(II): It is clear that there exists a random variable ξ∗1 such that

E{|ξ∗1 |22} < ∞ and ξ1(t)
m.s.
−−−→ ξ∗1 , where ξ1(t) is defined in Proof

(I). This leads to that 	(r1) ≤ 0. If 	(r1) = 0, then it is obtained
that E{|ξ∗1 |2} ≥ |E{ξ∗1}|2 =limt→∞ |ξ1(0)er1t +E{ψ(t)}|2 = ∞,
which contradicts E{|ξ∗1 |22} < ∞. Hence, 	(r1) < 0. By repeating
this procedure for p times, it can be obtained that all roots of sp +∑p

i=1
bis

i−1 = 0 have negative real parts. �
Theorem 2: The proposed protocol (4) can solve the m.s. and a.s.

consensus problems of linear MASs defined by (1) if Conditions (C1),
(C2), (C3), and (C4) hold.

Proof: Let xi(t)=(exT
i (t),

1xT
i (t), . . . ,

vxT
i (t))

T where jxi(t) =

(jxi1(t), . . . ,
jxij(t))

T ∈R
lj, jxi1(t)∈R

l1 and jxik(t)∈R
lk−lk−1 (i =

1, . . . , j; j = 1, . . . , v). It is easy to see that eẋi(t) = Ae
exi(t), which

indicates that exi(t) = eAet(exi(0)) → 0le as t goes to ∞.
By Lemma 1, if Conditions (C1), (C2), and (C3) hold, then

K2x̂i(t)
m.s.
−−−→ z∗ and K2x̂i(t)

a.s.
−−−→ z∗ (i = 1, . . . , N). This to-

gether with limt→∞ xi(t)− x̂i(t) = 0n leads to that K2xi(t)
m.s.
−−−→

z∗ and K2xi(t)
a.s.

−−−→ z∗. Denote z∗ = (z∗1
T , . . . , z∗v

T )
T

,
where z∗1 ∈ R

l1 and z∗i ∈ R
li−li−1 (i = 2, . . . , v). Then,

(Dv−j +
∑v−1

k=j
bk,jD

k−j)(jxij(t)) is convergent to z∗j in
the m.s./a.s. sense, where j ∈ I and I is defined in (5). By
Lemma 2, if Condition (C4) holds, then jxij(t) is convergent
to z∗j /bjj and j+kxij(t) = Dk(jxij(t)) (k = 1, . . . , v − j) are
convergent to 0lj−lj−1

in the m.s./a.s. sense. Therefore, xi(t)

is convergent to x∗ Δ
= (0le ,

1x∗T , . . . , vx∗T )
T

in the m.s./a.s.

sense, where ix∗ Δ
= (0Tli−1

, z∗i
T /bii)

T
(i = 1, . . . , v − 1) and

vx∗ = (0Tlv−1
, z∗v

T )
T

. �
By Lemma 2 and Theorem 2, we know that the selection of bi,j can

influence the convergence rate of consensus. Qualitatively speaking,
the larger the distance between the roots of the parameter polynomials
and the imaginary axis, the faster the convergence rate. Furthermore,
bi,j can partially determine the mathematical expectation of final
consensus value by the proof of Theorem 2.
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IV. DISCUSSIONS ON FIXED COMMUNICATION TOPOLOGIES

In Section III, all possible digraphs are required to be balanced. In
fact, this requirement is unnecessary for MASs with fixed communi-
cation topologies. In this section, we discuss the stochastic consensus
problem under the fixed topology. Define four sets: T = {G|G is a
digraph which has N nodes}, T1 = {G ∈ T |G does not contain
any spanning tree}, T2 = {G ∈ T |G contains a spanning tree
and everynode of G has at least one parent node} and T3 = {G ∈
T |G contains a spanning tree and there exists one node of G which
has no parent node}. In the literature, the agent denoted by the node
without any parent node is called the leader. It is easy to see that
T = T1

⋃
T2

⋃
T3 and Ti

⋂
Tj = ∅, 1 ≤ i 
= j ≤ 3. When the MAS

works under the topology G ∈ T2, the MAS is called the leaderless
MAS. When the MAS works under the topology G ∈ T3, the MAS is
called the leader-follower MAS.

Since the communication topology is fixed, the protocol is
changed into

ui(t) = K1x̂i(t) + a(t)
∑
j∈Ni

αijK2 (νij(t)− x̂i(t)) . (7)

Consequently, the auxiliary system (6) becomes the following form:

Ż(t) = −a(t) [(LG ⊗ Im)Z(t)− (IN ⊗K2)Ση(t)]− D̃(t). (8)

By Lemma 2 and the proof of Theorem 2, the m.s. consensus problem
is solved if and only if Condition (C4) holds and there exists a random

vector z∗ ∈ R
m such that E{‖z∗‖22} < ∞ and Z(t)

m.s.
−−−→ 1N ⊗ z∗.

Case I—G ∈ T1: The m.s. consensus problem cannot be solved.
Proof: By Lemma 1, there exist at least two left eigen-

vectors v1, v2 ∈ R
N of LG associated with zero eigenvalue such

that v1 
= v2 and vT1 1N = vT2 1N = 1. Let μ(t) = ((v1 − v2)
T ⊗

Im)E{Z(t)}, then μ(t) = μ(0)− ((v1 − v2)
T ⊗ Im)

∫ t

0
D̃(s)ds.

Assume Z(t)
m.s.
−−−→ 1N ⊗ z∗, where z∗ ∈ R

m is a random vector. It
is easy to see that

lim
t→∞

μ(t) =μ(0)−
(
(v1 − v2)

T ⊗ Im
) ∞∫

0

D̃(s)ds

=(v1 − v2)
T 1NE{z∗} = 0m.

This together with the arbitrariness of the initial states Z(0) and D(0)
leads to v1 = v2 which contradicts v1 
= v2. Hence, the m.s. consensus
problem can not be solved. �

Case II—G ∈ T2: The m.s. consensus problem can be solved if
and only if Conditions (C2) and (C4) hold.

Proof (Sufficiency): By Itô’s integral formula, the solution
to (8) is Z(t) = Ξ1(t) + Ξ2(t), where Ξ1(t) = Φ(t, 0)Z(0)−∫ t

0
Φ(t, s)D̃(s)ds; Ξ2(t) =

∫ t

0
Φ(t, s)a(s)(IN ⊗K2)ΣdW (s);

Φ(t, t0) is the state transition matrix of (8); and {W (t),Ft} is the
nN2-dimensional standard Brownian motion. Let Ψ(t, t0) denote the
state transition matrix of differential equation ξ̇(t) = −a(t)LGξ(t).
Then, it is easy to see that Φ(t, t0) = Ψ(t, t0)⊗ Im. According to
[14], if G ∈ T2 and Condition (C2) holds, then limt→∞ Ψ(t, t0) =

1NκT Δ
= Ψ∞ where κ is the left eigenvector of LG associated with

eigenvalue zero and κT 1N = 0. Moreover, Ψ(t, t0) is uniformly
continuous and uniformly bounded with respect to time.

Therefore

lim
t→∞

Ξ1(t) = (Ψ∞ ⊗ Im)Z(0)−
∞∫
0

(Ψ∞ ⊗ Im)D̃(s)ds

=

⎡
⎣Ψ∞ ⊗

⎛
⎝K2K3C

∞∫
0

e(A+K3C)tdt

⎞
⎠
⎤
⎦D(0).

By the same approach used in [6], it can be proved that there exists a
random vector ν∗ ∈ R

m such that E{‖ν∗‖22} < ∞ and limt→∞ E ×

{‖Ξ2(t)− 1N ⊗ ν∗‖22} = 0. Let z∗ = (κT ⊗ Im)Z(0)+[κ⊗
(K2K3C

∫∞
0

e(A+K3C)tdt)]D(0)) + ν∗, then E{‖z∗‖22} < ∞ and

Z(t)
m.s.
−−−→ 1N ⊗ z∗.

(Necessity) Let v ∈ R
N denote a left eigenvector of LG associated

with a nonzero eigenvalue λ. It is easy to see that vT 1N = 0. By (8),
it is obtained that

(vT ⊗Im) lim
t→∞

E{Z(t)} = e

−λ

∞∫
0

a(s)ds

(vT ⊗ Im)Z(0)

− lim
t→∞

t∫
0

e
−λ
∫ t

s
|!a(τ)dτ

(vT ⊗Im)D̃(s)ds

= vT 1NE{z∗} = 0m.

This together with the arbitrariness of the initial state Z(0) and D(0)
leads to

∫∞
0

a(s)ds = ∞.
Let κ ∈ R

N denote the left eigenvector of LG associated eigen-
value zero. Denote μ(t) = (κ⊗ 1m)TZ(t), then D{μ(t)} = (κT ⊗
1TmK2)ΣΣ

T (κ⊗KT
2 1m)

∫ t

0
a2(s)ds. If the m.s. consensus prob-

lem is solved, then limt→∞ D{μ(t)} =(κT ⊗ 1TmK2)ΣΣ
T (κ⊗

KT
2 1m)

∫∞
0

a2(s)ds < ∞, which leads to that
∫∞
0

a2(s)ds < ∞.
The necessity of Condition (C4) can be easily proved by Lemma 2. �

Case III—G ∈ T3: The m.s. consensus problem can be solved if
and only if Condition (C4) and the following Condition (C2’) hold.

(C2’).
∫∞
0

a(t)dt = ∞ and limt→∞ a(t) = 0.
Proof (Sufficiency): Without loss of generality, assume that node 1

is the agent without any parent node. Then the Laplacian matrix has
the following form:

LG =
[

0 0TN−1
L1 L2

]
(9)

which follows that ż1(t) = −K2K3Ce(A+K3C)td1(0). Thus, z1(t) is

convergent to z∗1
Δ
= −

∞∫
0

K2K3Ce(A+K3C)td1(0)dt.

Let δ(t) = (ẑT2 (t), ẑ
T
3 (t), . . . , ẑ

T
N (t))

T where ẑi(t) = zi(t)−
z1(t), then it can be obtained that δ(t) = Ξ3(t) + Ξ4(t), where
Ξ3(t) = (Φ(t, 0)⊗ Im)δ(0)−

∫ t

0
(Φ(t, s)⊗ Im)D̂(s)ds, Ξ4(t) =∫ t

0
(Φ(t, s)⊗ Im)a(s)(IN−1 ⊗K2)Σ̂dŴ (s), Φ(t, t0) is the state

transition matrix of ξ̇(t) = −a(t)L2ξ(t), Σ̂ = diag(Σ2, . . . ,ΣN ),
D̂(t) = (IN−1 ⊗K2KeC)diag(d2(t), . . . , dN (t)) and {Ŵ (t),Ft}
is the nN(N − 1)-dimensional standard Brownian motion. By
[14], we know if Condition (C2’) holds, then limt→∞ Φ(t, t0) = Θ
and Φ(t, t0) is uniformly bounded. Hence, it can be proved that
limt→∞ Ξ3(t) = 0m(N−1). By using the same techniques in the proof

of Theorem 1 in [14], it can be obtained that Ξ4(t)
m.s.
−−−→ 0m(N−1).

Therefore, zi(t)
m.s.
−−−→ z∗1 , i = 1, . . . , N .

(Necessity) If the m.s. consensus problem is solved, then δ(t)
m.s.
−−−→

0m(N−1) which follows that: limt→∞ Φ(t, 0) = Θ. According to
[14], if

∫∞
0

a(t)dt < ∞, then limt→∞ Φ(t, 0) 
= Θ. Therefore,∫∞
0

a(t)dt = ∞ is necessary.
Let p denote a eigenvector of L2 associated with eigen-

value λ. If the m.s. consensus problem is solved, then it can
be obtained that limt→∞ E{|(p⊗ 1m)T δ(t)|2} =limt→∞ ‖(pT ⊗

1m)K2Σ̂‖22
∫ t

0
e
−2λ

∫ t

τ
a(s)ds

a2(τ)dτ = 0, which implies that g(t) =∫ t

0
e
−2λ

∫ t

τ
a(s)ds

a2(τ)dτ → 0 as t goes to ∞. Since a(t) ≥ 0 is a
uniformly continuous function, by the proof of Theorem 1 in [14], if
a(t) � 0, then g(t) � 0. Therefore, limt→∞ a(t) = 0.

The necessity of Condition (C4) can be easily proved by Lemma 2. �
Since a(t) ≥ 0 is a uniformly continuous function, it is easy to

see that
∫∞
0

a2(t)dt < ∞ implies that limt→∞ a(t) = 0. Therefore,
Condition (C2’) is weaker than Condition (C2).
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Remark 2: By Condition (C2) and the properties of Φ(t, t0),
it is clear that {Ξ2(t)|Ft}, {Ξ4(t)|Ft} are martingales and
supt≥0 E{‖Ξ2(t)‖22} < ∞, supt≥0 E{‖Ξ4(t)‖22} < ∞. By the mar-
tingale convergence theorem, it can be proved that Ξ2(t) and Ξ4(t) are
a.s. convergent to some variable vectors. This together with the proofs
of Case II and Case III follows that: (i) for the leaderless MAS, the a.s.
consensus problem can be solved if Conditions (C2) and (C4) hold; (ii)
for the leader-follower MAS, the a.s. consensus problem can be solved
if Conditions (C2) and (C4) hold.

V. CONCLUSION

In this technical note, a dynamic output-feedback based protocol is
proposed to solve the stochastic consensus problem of generic linear
MIMO MASs with communication noises and Markovian switching
topologies. It is shown that the mean square and almost sure consensus
problems can be solved by the proposed protocol if the time-varying
gain a(t) satisfies

∫∞
0

a(t)dt = ∞ and
∫∞
0

a2(t)dt < ∞; all roots
of “parameter polynomials” have the negative real parts; all possible
topology graphs are balanced and the union of them has a spanning
tree; and the continuous-time Markovian chain is homogeneous and er-
godic, whose transition matrix is a doubly stochastic generator matrix.
Furthermore, for the fixed topology case, the sufficient and necessary
conditions are obtained for ensuring the mean square consensus of the
leaderless MAS and the leader-follower MAS, respectively.

APPENDIX

The Mean Square Case: The proof is divided into three parts.
Part I: This part is motivated by [15], and some techniques

used in [15] are borrowed here to prove this theorem. Let δ(t) =
Z(t)− JZ(t) = (ImN − J)Z(t), V (t) = E{δ(t)δT (t)} and Vi =
E{δ(t)δT (t)1[θt=i]}, where J = (1/N)1N1TN ⊗ Im. Then it is ob-
tained by the Itô’s formula and [16, Lemma 4.2] that

V̇i(t) = −a(t)
((

L(i)
G ⊗ Im

)
Vi(t) + Vi(t)

(
L(i)

G
T
⊗ Im

))
+

s∑
j=1

qjiVj(t) + γi(t) + γT
i (t) + a2(t)Ri(t)

where γi(t) = −E{δ(t)1[θt=i]}D̃T (t)(ImN − J), Ri(t) = (ImN −
J)(IN ⊗K2)Σ

(i)Σ(i)T (ImN ⊗KT
2 )(ImN − J)pi(t) and pi(t) =

P (θt = i).
Let V̄ (t) = [V1(t), V2(t), . . . , Vs(t)]

T , then

ϕ̇
(
V̄ (t)

)
=
(
−a(t)Γ +QT ⊗ Im2N2

)
ϕ
(
V̄ (t)

)
+ ϕ (γ(t))
+ a2(t)ϕ (R(t))

where Γ = diag((L(1)
G ⊗ Im)⊕ (L(1)

G ⊗ Im), . . . ,(L(s)
G ⊗ Im)⊕

(L(s)
G ⊗ Im)), γ(t) = [γ1(t) + γT

1 (t), . . . , γs(t) + γT
s (t)], R(t) =

[R1(t), . . . , Rs(t)]. Therefore, it can be obtained that

d
∥∥ϕ (V̄ (t)

)∥∥2

2

= 2ϕT
(
V̄ (t)

) (
−a(t)Γ̂ + Q̂⊗ Im2N2

)
ϕ
(
V̄ (t)

)
dt

+ 2ϕT
(
V̄ (t)

)
ϕ (γ(t)) dt+ 2a2(t)ϕT

(
V̄ (t)

)
ϕ (R(t)) dt

(10)

where Γ̂ = (Γ + ΓT )/2 and Q̂ = (Q+QT )/2.
By Conditions (C1), (C3), Lemma 1 and Lemma 3.5 in [17], it is

easy to see that the null space of Γ̂− Q̂⊗ IN2 is N1 = {1sN ⊗ v1 ⊗
1N ⊗ v2|v1, v2 ∈ R

m}. Therefore, it follows from [18, p. 178] that

min
x �=0,x∈N⊥

1

{
xT (Γ̂− Q̂⊗ Im2N2)x

‖x‖22

}
= λ2

where λ2 denotes the smallest nonzero eigenvalue of Γ̂− Q̂⊗ Im2N2 .
It is noted that (1sN ⊗ v1 ⊗ 1N ⊗ v2)

Tϕ(V̄ (t)) = 0, hence it is ob-
tained that
ϕT

(
V̄ (t)

)
(−Γ̂ + Q̂⊗ Im2N2)ϕ

(
V̄ (t)

)
≤ −λ2

∥∥ϕ (V̄ (t)
)∥∥2

2
.

(11)

By Condition (C2), there must exist a constant t0 > 0 such that ∀t ≥
t0, a(t) ≤ min{1, λ2}. Therefore, ∀t ≥ t0, the following inequality
can be derived from (10) and (11):

d
∥∥ϕT

(
V̄ (t)

)∥∥2

2

dt
≤ −a(t)λ2

∥∥ϕ (V̄ (t)
)∥∥2

2
+H(t) (12)

where H(t) = 2ϕT (V̄ (t))ϕ(γ(t)) + a2(t)‖ϕ(R(t))‖22. This together
with the comparison theorem leads to∥∥ϕT

(
V̄ (t)

)∥∥2

2
≤ I1(t, t0)

∥∥ϕ (V̄ (t0)
)∥∥2

2
+ I2(t, t0) + I3(t, t0)

where I1(t, t0) = e
−λ2

∫ t

t0
a(τ)dτ

, I2(t, t0) =
∫ t

t0
I1(t, τ)a

2(τ)

‖ϕ(R(τ))‖22dτ and I3(t, t0) = 2
∫ t

t0
I1(t, τ)ϕ

T (V̄ (t))ϕ(γ(τ))dτ .

By Condition (C2), it is easy to see that limt→∞ I1(t, t0) = 0. And,
it has been proved that limt→∞ I2(t, t0) = 0 in [15]. Next, it is proved
that I3(t, t0) is convergent to zero as well. Before further analysis, an
assumption is made first:

(A1): There exist three finite positive constants M1, M2 and c such
that ‖ϕ(γ(τ))‖2 ≤ M1e

−ct and ‖ϕ(V̄ (t))‖2 ≤ M2.

If Assumption (A1) holds, we have that

|I3(t, t0)| ≤ 2

t∫
t0

I1(t, τ)
∥∥ϕT

(
V̄ (t)

)∥∥
2
‖ϕ (γ(τ))‖2 dτ

≤ 2M1M2

t∫
t0

e
−λ2

∫ t

τ
a(s)ds

e−cτdτ → 0 (t → ∞).

Therefore, if Assumption (A1) holds, limt→∞ ‖ϕ(V̄ (t))‖22 = 0 which
indicates that limt→∞ E{‖δ(t)‖22} = 0.

Part II: In this part, it is proved that Assumption (A1) holds. The
first step is to prove that γ̄i(t) = E{δ(t)1[θt=i]} is bounded for all
t ∈ R

+. By Proposition 3.28 in [19], it is obtained that

dγ̄i(t) = −a(t)
(
L(i)

G ⊗ Im

)
γ̄i(t)dt

+

s∑
j=1

qjiγ̄j(t)dt− (ImN − J)D̃(t)pi(t)dt. (13)

Let γ̄(t) = [γ̄T
1 (t), γ̄

T
2 (t), . . . , γ̄

T
s (t)]

T and Vγ(t) = ‖γ̄(t)‖22, then it
is obtained by (13) that

V̇γ(t) = 2γ̄T (t)
(
−a(t)L̂G + Q̂⊗ ImN

)
γ̄(t)

− 2γ̄T (t)
(
P (t)⊗ [(ImN − J)D̃(t)

)
where L̂G = diag(L(1)

G + L(1)
G

T
, . . . ,L(s)

G + L(s)
G

T
)⊗ Im/2 and

P (t) = (p1(t), p2(t), . . . , ps(t))
T .

By Conditions (C1), (C3), Lemma 1 and Lemma 3.5 in [17], it is
easy to see that the null space of L̂G − Q̂⊗ ImN is N2 = {1sN ⊗
v|v ∈ R

m}. Therefore, it follows from [18, p. 178] (pp. 178) that

min
x �=0,x∈N⊥

2

{
xT (L̂G − Q̂⊗ ImN )x

‖x‖22

}
= λ̂2

where λ̂2 is the smallest nonzero eigenvalue of L̂G − Q̂⊗ ImN .
By the definitions of D̃(t) and P (t), there exist two positive

finite constants M3 and b such that ‖P (t)⊗ ((ImN − J)D̃(t))‖2 ≤
M3e

−bt. It is noted that (1N ⊗ v)T γ̄(t) = 0, hence ∀t ≥ t0, V̇γ(t) ≤
(Vγ(t) + 1)M3e

−bt. By comparison theorem, it is obtained that

Vγ(t) ≤ e

∫ t

0
M3e

−bτdτ

⎛
⎝Vγ(0) +

t∫
0

M3e
−bτdτ

⎞
⎠ < ∞

which follows that γ̄i(t) is bounded. This together with the definitions
of D̃(t) and γ(t) leads to that there exist two finite positive constants
c and M1 such that ‖ϕ(γ(t))‖2 ≤ M1e

−ct.
For ∀t > t0, it is obtained form (12) that d‖ϕ(V̄ (t))‖22/dt ≤

M1e
−ct‖ϕ(V̄ (t))‖22 +M1e

−bt+a2(t)‖ϕ(R(t))‖22. By the
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comparison theorem, it is obtained that

∥∥ϕ (V̄ (t)
)∥∥2

2
≤ e

∫ t

0
M1e

−cτdτ

⎛
⎝∥∥ϕ (V̄ (0)

)∥∥2

2

+

t∫
0

(
M1e

−bτ + a2(τ) ‖ϕ (R(τ))‖22
)
dτ

⎞
⎠ < ∞.

Therefore, there exists a positive constant M2 < ∞ such that
‖ϕ(V̄ (t))‖2 < M2 for all t ∈ R

+.
Part III: It is noted that J(L(θt)

G ⊗ Im) = 0mN . Then multiply-
ing both sides of (6) with J leads to d(JZ(t)) = a(t)J(ImN ⊗
K2)Σ

(θt)dW (t)− JD̃(t)dt, which implies that JZ(t) = JZ(0) +∫ t

0
a(τ)J(IN ⊗K2)Σ

(θτ )dW (τ)−
∫ t

0
JD̃(τ)dτ , where {W (t)|Ft}

is the nN2-dimensional standard Brownian motion.
Let z∗=(1TN⊗Im/N)Z(0)+(1/N)

∫∞
0

a(τ)(1TN⊗K2)Σ
(mτ )

dW (τ)−(1TN ⊗ Im/N)
∫∞
0

D̃(τ)dτ , then JZ(t)− 1N ⊗ z∗ =

I4(t) + I5(t), where I4(t) = −
∫∞
t

a(τ)J(IN ⊗K2)Σ
(θτ )dW (τ)

and I5(t) =
∫∞
t

JD̃(τ)dτ . It has been proved in [15] that

limt→∞ E{‖I4(t)‖22} = 0. And it is easy to see that limt→∞ I5(t) =

0N . Therefore, it is proved that JZ(t)
m.s.
−−−→ 1N ⊗ z∗.

By combining the above three parts, it is proved that zi(t)
m.s.
−−−→ z∗,

i = 1, . . . , N . Moreover, the statistic properties of z∗ can be calcu-
lated as

E{z∗} =
1TN ⊗ Im

N
Z(0) +

∞∫
0

1TN ⊗ Im
N

D̃(τ)dτ

and

D{z∗} ≤ max
1≤i≤s

(∥∥(1N ⊗K2)Σ
(i)
∥∥2

2

N2

) ∞∫
0

a2(τ)dτ < ∞

which implies E{‖z∗‖22} < ∞.
The Almost Sure Case: Let δ(t) = Z(t)− 1N ⊗ z∗ and V (t) =

δT (t)δ(t), then by (6) and Itô’s formula, it follows that:
dV (t) = − a(t)δT (t)L̄(θt)

G δ(t)dt− 2δT (t)D̃(t)dt

+ a2(t)tr
(
(IN ⊗K2)Σ

(θt)Σ(θt)
T (

IN ⊗KT
2

))
dt

+ 2a(t)δT (t)(IN ⊗K2)Σ
(θt)dW (t)

where L̄(θt)
G = (L(θt)

G + L(θt)
G

T
)⊗ Im. Integrating both sides

of the above equation from t0 to t gives that V (t) = V (t0)−
I6(t, t0)− 2I7(t, t0) + I8 (t, t0) + 2I9 (t, t0), where I6 (t, t0) =∫ t

t0
a (τ) δT (τ) L̄(θτ )

G δ (τ) d τ , I7 (t, t0) =
∫ t

t0
δT (τ) D̃ (τ) d τ ,

I8(t, t0) =
∫ t

t0
a2(τ)tr((IN ⊗K2)Σ

(θτ )Σ(θτ )T (IN ⊗KT
2 ))dτ and

I9(t, t0) =
∫ t

t0
a(τ)δT (τ)(IN ⊗K2)Σ

(θτ )dW (τ).

Let I7+ (t, t0) =
∫ t

t0
(δT (τ) D̃ (τ))+dτ and I7− (t, t0) =∫ t

t0
(δT (τ) D̃ (τ))

−
dτ , then I7 (t, t0) = I7+ (t, t0)− I7−(t, t0).

It can be proved that {I7+(t, t0)|Ft} and {I7−(t, t0)|Ft} are
submartigale. Moreover, it is easy to see that E{I+7+(t, t0)} < ∞ and
E{I+7−(t, t0)} < ∞. Therefore, by the submartingale convergence
theorem, I7(t, t0) is a.s. convergent to certain random variable.

For t > s ≥ t0, we have

E {I8(t, t0)− I8(s, t0)|Fs} = E

{∫ t

s

a2(τ)tr

×
(
(IN ⊗K2)Σ

(θτ )Σ(θτ )T
(
IN ⊗KT

2

))
dτ |Fs

}
> 0.

Hence, {I8(t, t0)|Ft} is a submartingale. Moreover, by Condition
(C2), it is obtained that supt≥t0

E{I+8 (t, t0)} < ∞. According to
the submartingale convergence theorem, I8(t, t0) is a.s. convergent to
certain random variable.

Since δ(t)
m.s.
−−−→ 0mN , it is obtained that E{‖δ(t)‖22} < ∞. This

together with Condition (C2) leads to that {I9(t, t0)|Ft} is a martin-
gale. Let V̂ (t) = V (0)− I6(t, 0) + 2I9(t, 0), then it is obtained that
E{V̂ (t)− V̂ (s)|Fs} = −E{I6(t, s)|Fs} ≤ 0. Therefore, V̂ (t) is a
supermartingale. It is noted that

sup
t≥t0

E
{
V̂ −(t, t0)

}
= sup

t≥t0

E
{
(V (t, t0) + 2I7(t, t0)− I8(t, t0))

−}
≤ sup

t≥t0

E
{
V −(t, t0) + 2I−7 (t, t0) + I+8 (t, t0)

}
< ∞.

By the supermartingale convergence theorem, V̂ (t, t0) is a.s. conver-
gent to a random variable.

From the above discussion, it is shown that V (t) is a.s. convergent
to a random variable. Meanwhile, it is noted that limt→∞ E{V (t)} =

limt→∞ E{δT (t)δ(t)} = 0. Hence, zi(t)
a.s.

−−−→ z∗, i = 1, . . . , N .
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