
ORIGINAL ARTICLE

A data-based online reinforcement learning algorithm satisfying
probably approximately correct principle

Yuanheng Zhu • Dongbin Zhao

Received: 14 May 2014 / Accepted: 14 September 2014 / Published online: 30 October 2014

� The Natural Computing Applications Forum 2014

Abstract This paper proposes a probably approximately

correct (PAC) algorithm that directly utilizes online data

efficiently to solve the optimal control problem of contin-

uous deterministic systems without system parameters for

the first time. The dependence on some specific approxi-

mation structures is crucial to limit the wide application of

online reinforcement learning (RL) algorithms. We utilize

the online data directly with the kd-tree technique to

remove this limitation. Moreover, we design the algorithm

in the PAC principle. Complete theoretical proofs are

presented, and three examples are simulated to verify its

good performance. It draws the conclusion that the pro-

posed RL algorithm specifies the maximum running time to

reach a near-optimal control policy with only online data.

Keywords Reinforcement learning � Probably
approximately correct � Kd-tree

1 Introduction

The online reinforcement learning (RL) draws a lot of

attention both from the computer science [1–4] and from

the optimal control science [5–7], because it uses the online

data to achieve an optimal policy through the interaction

with the environment. Compared to the offline RL, the

efficient usage of online data or the trade-off of exploration

and exploitation becomes more critical. Besides, some

issues related to practical implementation, e.g., the con-

vergence rate and the obtained optimality, also need our

consideration. Lots of efforts [8–16] have been devoted to

solve such problems from different aspects.

Among many studies to overcome these problems, the

probably approximately correct (PAC) is one of the most

effective approaches. In the running process of an online

learning algorithm, if the sum of steps when it implements

non-optimal actions is finite and bounded, then it is called a

PAC algorithm. Considering finite Markov Decision Pro-

cesses (MDPs) with finite states, a lot of PAC algorithms

have been proposed, including E3 [17], RMAX [18], MBIE

[19], Delayed Q-learning [20].

For recent years, many researchers have concentrated on

continuous-state systems to solve online optimal control

problems in the PAC principle. These include Kakade et al.

with their Metric-E3 [21] and Pazis and Parr with their

C-PACE [22]. However, time bounds (number of steps that

implement non-optimal actions) for these algorithms are

proved to be polynomial and finite only with probabilities.

This means with some possibilities, it fails to draw their

conclusions. Meanwhile, Bernstein and Shimkin [23] pro-

pose the ARL algorithm for continuous deterministic sys-

tems. They prove their algorithm has a determinate finite

time bound. But, the implementation requires some

parameters of systems. So, it is partially dependent on

system information, which limits its application.

In this paper, we consider the optimal control problem

of continuous deterministic systems and propose an online

data-based RL algorithm. Without relying on any specific

approximation structure, the online data are used directly.

A kd-tree technique is adopted. The implementation is

based on the current collected data and is applicable for

arbitrary control problems.

Y. Zhu � D. Zhao (&)

The State Key Laboratory of Management and Control for

Complex Systems, Institution of Automation, Chinese Academy

of Sciences, Beijing, China

e-mail: dongbin.zhao@ia.ac.cn

Y. Zhu

e-mail: yuanheng.zhu@gmail.com

123

Neural Comput & Applic (2015) 26:775–787

DOI 10.1007/s00521-014-1738-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-014-1738-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-014-1738-2&domain=pdf

As we adopt kd-tree and consider the PAC principle on

continuous-state systems, we term our algorithm as kd-

CPAC. The major contributions are summarized as fol-

lows. The implementation of kd-CPAC is not dependent on

any specific approximation structure and is totally based on

data. Through analysis, it is proved that kd-CPAC satisfies

the PAC principle. This conclusion helps to infer that for

certain online cases, the maximum running time to reach a

near-optimal policy is bounded. It is the first implementa-

tion of a PAC algorithm that directly utilizes samples to

solve continuous deterministic systems without any system

parameters.

The paper is organized as follows. Section 2 introduces

the background for RL, and Sect. 3 describes the kd-tree

technique adopted in the algorithm. The whole process of

kd-CPAC algorithm and the theoretical results are pre-

sented in Sect. 4. Proofs of lemmas and theorems are given

in Sect. 5. We simulate three examples in Sect. 6 to verify

the performance of our algorithm. The end is our discus-

sion and conclusion.

2 Formulation of online reinforcement learning

A continuous-state system with deterministic transition

function can be represented by a four-tuple, (S, A, R, F).

S is an n-dimensional continuous-state space, A denotes a

discrete action set, R(s, a) is the reward function, and F(s,

a) is the deterministic transition function that indicates the

next-step state at state-action pair (s, a). Suppose the state

space is bounded, not infinitely extended. The reward

function also has an interval, namely rmin �Rðs; aÞ� rmax.

Note that in this case, R and F are both unknown to

algorithms. So, the only available information is online

observations (s, a, r, s0), where r is the received reward and

s0is the next-step state at (s, a).

During the interaction with the environment, we assume

that at time t, the agent has experienced a history of states

and actions, denoted by

ht ¼ fs0; a0; s1; a1; . . .; st�1; at�1; stg:

In the online case, the policy is non-stationary as algo-

rithms can modify it at any moment. So, actions are

selected following a series of policies p ¼ ptf g1t¼0, namely

at ¼ ptðstÞ.
To evaluate the performance of a policy, we adopt the

discounted return criterion. Given a policy p and an initial

state s0 = s, the discounted return is defined as

JpðsÞ,
X1

t¼0

ctrt s0¼s;at¼ptðstÞ
�� ð1Þ

where c is the discounted factor satisfying 0\ c\ 1. Note

that in some systems, agents may stop and get stuck at

some terminal states. Then, the discounted return in this

case is modified to

JpðsÞ,
XT�1

t¼0

ctrt þ VðsTÞ s0¼s;at¼ptðstÞ
�� ð2Þ

where sT indicates the terminal state and VsT is a prede-

fined value to estimate the success or failure at sT. We see

(2) as a special case of (1) and only consider the first

expression below.

The target of RL is maximizing the value of JpðsÞ,
namely finding the optimal value function, defined by

VðsÞ, max
p

JpðsÞ. The corresponding policy is called the

optimal policy, p� , argmax
p

Jp. Sometimes, the optimal

policy is too difficult to obtain, and then, a near-optimal

policy with the similar performance is acceptable. Policy

p is called e-optimal if JpðsÞ�VðsÞ � e holds for all

s 2 S.

In some cases, optimal action-value function or optimal

Q function is preferred for the implementation of RL. It is

defined as Qðs; aÞ, r þ cVðs0Þ and can be expressed in a

Bellman principle

Qðs; aÞ ¼ r þ cmax
a0

Qðs0; a0Þ;

and the optimal policy is generated by

p�ðsÞ ¼ argmax
a

Qðs; aÞ:

Similarly, V is obtained from Q by VðsÞ ¼ max
a

Qðs; aÞ. In
the following sections, our interest is mainly focused on the

form of Q function.

As the reward function is bounded in an interval

rmin; rmax½ �, so the discounted return has a lower bound and

an upper bound, denoted by rmin

1�c and rmax

1�c, respectively.

Furthermore, define Vb ,
1

1�c ðrmax � rminÞ as the maximum

difference of returns between any two policies.

To evaluate the performance of an online algorithm, a

definition of policy-mistake count (PMC) is introduced,

which specifies the sum of steps when the algorithm

implements non-optimal actions during its whole process

of online running.

Definition 1 (PMC) [23] In an algorithm, ht is its history

of states and actions and At ¼ pkf g1k¼t is the policy that the

algorithm implements at time t. The discounted return of At

from t is denoted by JAtðstÞ,
P1

k¼t c
ðk�tÞrk ak¼pkðskÞ

�� . So,

the policy-mistake count is defined as

PMCðeÞ,
X1

t¼0

IfJAtðstÞ\VðstÞ � eg

where If�g is a signal function. If the event in brace occurs,

it outputs 1, otherwise 0.

776 Neural Comput & Applic (2015) 26:775–787

123

So, at the other time excluding the PMC steps, the

algorithm has near-optimal performance at corresponding

states. If an algorithm’s PMC is finite and bounded, the

algorithm is called PAC.

As the information of systems is only from online

observations, the storage of these samples is a major

problem in the algorithm. Next, we will give a brief

description about kd-tree, which is used to store online

samples.

3 Kd-tree for the storage of samples

Kd-tree, as an efficient approach to split the state space and

store data, has been applied widely in the field of RL. For

example, Munos and Moore [24] use kd-trie, a special

version of kd-tree, to accomplish a variable resolution

discretization of state space for dynamic programming.

Ernst et al [25] study the kd-tree-based regression algo-

rithm. Here, kd-tree is adopted to store the online samples.

Details about kd-tree technique are available in [26]

Suppose a sample is denoted by ðŝ; â; r̂; ŝ0Þ. We take ŝ as

the key to refer the sample. For convenience, each action

corresponds to a kd-tree and there are Aj j kd-trees– Aj j
indicates the number of actions. At the beginning, each tree

has an empty root, which occupies the whole state space.

When samples arrive, they are stored in the root. When the

number of stored samples reaches a maximum number

Nsplit—split condition, the space of the root is split into two

nodes by a split hyperplane at the split dimension. There-

fore, the Nsplit samples are divided equally into two chil-

dren. This process will continue if more samples arrive and

the depth of the tree will increase larger and larger.

The split dimension and hyperplane are determined by

the following principle. Calculate the variance of each

dimension among the samples in the node which is going to

be split. For better comparison, states are normalized by the

span of the state space before the calculation. The dimen-

sion corresponding to the maximum variance is selected as

the split dimension. Then, choose the median value at this

dimension among samples as the split hyperplane.

When a new sample ðŝ; â; r̂; ŝ0Þ is required to be added in
kd-trees, search the kd-tree of action â for the leaf which ŝ

belongs to. Then, put the sample in the leaf node.

For arbitrary states, it is also convenient to find their

neighboring samples in kd-trees. Given a state s, the

neighboring samples of s refer to the set of samples

ðŝ; â; r̂; ŝ0Þ which satisfy dðs; ŝÞ� d. d is a metric d :

S� S ! R to specify the distance between two states, and

d is the neighboring distance. Start from the root and

estimate the area of each node if it is close to s within d. If
not, its children and the included samples are also farther

away than d and there is no need to consider them.

Otherwise, if the distance between the node and s is less

than d, and the node has children, then continue to estimate

each child in the same way until reaching leaves. Compare

the samples in the leaves with s and output those whose

distances are less than d as neighboring samples.

Based on the principle of storing samples with kd-tree,

we present the kd-CPAC algorithm in the following sec-

tion, whose theoretical proof is given in Sect. 5.

4 Kd-tree-based continuous PAC algorithm

Before introducing the kd-CPAC algorithm, some

assumptions about the continuity of systems are required.

Assumption 1 (Continuity) [23] For any s1; s2 2 S and

a 2 A, there exist two constants a and b such that

Rðs1; aÞ � Rðs2; aÞj j � adðs1; s2Þ
dðFðs1; aÞ;Fðs2; aÞÞ� bdðs1; s2Þ:

a and b are called continuity constants of reward and

transition functions, respectively.

Based on Assumption 1, a lemma about the optimal Q

function is deduced.

Lemma 1 For any s1; s2 2 S and a 2 A; we have

Qðs1; aÞ � Qðs2; aÞj j � �xðdðs1; s2ÞÞ

where �x is defined as

1. If cb\1

�xðzÞ ¼ a
1� cb

z

2. If cb[1

�xðzÞ ¼ czlogbð1=cÞ

where

c, 2b
a

cb� 1

� �logbð1=cÞ
Vb

logbðcbÞ:

The above lemma is about the continuity of Qðs; aÞ. For
�x, if z ! 0, �xðzÞ ! 0. Note that a similar result is avail-

able in [23], while the original statement refers to V(s). But

the mechanism of the proofs is almost the same, so we omit

it here.

Note that a, b, and �x are all parameters and function

about systems. In general, they are unknown to algo-

rithms. Next, we will present a detailed description of our

algorithm. In its implementation, no knowledge of these

values is required. But in the theoretical analysis, these

parameters and function will help to obtain our lemmas

and theorems.

Neural Comput & Applic (2015) 26:775–787 777

123

4.1 Data set

Based on the previous section, suppose the current time is t

and we have a data set Dt ¼ ŝi; âi; r̂i; ŝ
0
ið Þf g stored in kd-

trees, in which are selective samples of the past time. As r̂i
and ŝ0i are determined by ŝi and âi, so we can simplify the

expression of a sample by the pair ðŝi; âiÞ. Or just ŝi if given
âi.

Use DtðaÞ to represent the set of samples belonging to a.

Furthermore, for an arbitrary state s at action a, we construct

a neighboring set—Ctðs; aÞ, which includes the neighboring
samples ŝi; a; r̂i; ŝ

0
ið Þ in DtðaÞ that have dðs; ŝiÞ� d, where d

is the predefined neighboring distance. If there exists no

such samples, we say Ctðs; aÞ ¼ £. So, Ctðs; aÞ indicates

the set of samples that is d-close to s and we can further use
them to approach (s, a). Moreover, for any pair (s, a) and its

arbitrary neighboring sample ŝi; a; r̂i; ŝ
0
ið Þ, they have the

following inequalities based on Assumption 1

Rðs; aÞ � Rðŝi; aÞj j � ad ð3Þ

dðFðs; aÞ � Fðŝi; aÞÞ� bd: ð4Þ

4.2 Data-based Q-Iteration

Based on the data set, we can utilize it to define a Data-

Based Q-Iteration (DBQI) operator.

Definition 2 (DBQI operator) Given a function g : S�
A ! R and arbitrary s and a, the DBQI operator T is

defined as

T ðgÞðs; aÞ ¼ min
ŝi2Ct ðs;aÞ

r̂iþcmax
a0

gðŝ0 i;a0Þ
h i

; if Ctðs;aÞ6¼£

Vmax; otherwise

(
ð5Þ

where ŝi; a; r̂i; ŝ
0
ið Þ denotes the neighboring samples of (s,

a) if Ctðs; aÞ is not empty.

DBQI operator means for a pair (s, a), if its Ctðs; aÞ is
empty, we assign the value of (s, a) with the upper bound

of value function, Vmax. Otherwise, we use the neighboring

samples in Ctðs; aÞ to approach its value, more concretely,

the minimum one corresponding to the right side of the

equation in (5). It is obvious that the calculation of DBQI

operator is totally based on the stored samples.

We can prove T is a contraction operator, so there exists

a fixed solution that has Q̂t ¼ T ðQ̂tÞ. Q̂t is called Data-

Based Q Function (DBQF). To calculate Q̂t, value iteration

(VI) [27, 28] or policy iteration (PI) [29, 30] can be used.

In Appendix, we present a simple and convenient VI

method to calculate it. The only need in the method is to

calculate Q values of stored samples, and then, the exact Q̂t

over the whole state space is obtained.

About T and Q̂t, we have two lemmas as follows and

the corresponding proofs are presented in the next section.

Lemma 2 The operator T is a contraction with the factor

c in the infinity norm.

Lemma 3 For every time t, Q̂t has the following rela-

tionship with respect to the optimal Q function

Q̂tðs; aÞ�Qðs; aÞ � adþ c �xðbdÞ
1� c

; 8s 2 S and 8a 2 A:

With Q̂t, a greedy policy is extracted and applied to the

system online to obtain a new observation at the next step

ptðsÞ ¼ argmax
a

Q̂tðs; aÞ: ð6Þ

4.3 Escape event

The next issue is whether to add the new observation into

Dt or not. At the beginning of the algorithm, D0 is empty.

As the implementation progresses, some observations are

added in Dt, while some are ignored to avoid the data set

increasing infinitely. The principle is only storing the

samples that have useful information about systems. So, a

definition of known is given here.

Definition 3 (Known) Given an observation ðs; a; r; s0Þ. If
Ctðs; aÞ 6¼ £ and there exists a sample ðŝi; ai; r̂i; ŝ0iÞ 2

Ctðs; aÞ such that max
a0
1

Q̂tðs0; a01Þ �max
a0
2

Q̂tðŝ0i; a02Þ
����

����� eK,

then the observation is known. Otherwise, we say it is

unknown. The parameter eK is called known error.

Based on Definition 3, we have the following lemma

about Ctðs; aÞ.

Lemma 4 For any s and a, Ctðs; aÞ can include at most

Vb

�
eK

� �
samples. We denote this value by Nc.

When a new observation arrives, we determine whe-

ther it is known or unknown first. If known, we regard it

with no useful information for our algorithm. If

unknown, the observation contains some knowledge we

have not encountered. Then, it is added into the data set

and Dt ! Dtþ1. Update Q̂t and pt to Q̂tþ1 and ptþ1. To

denote this process, an escape event is defined. Before

that, we introduce a common definition about the horizon

time.

Definition 4 ðeH-HorizonTimeÞ A eH-horizon time TeH is

defined as

TeH , log1=c
Vb

eH
:

778 Neural Comput & Applic (2015) 26:775–787

123

This definition indicates that the rewards after TeH steps

only have at most eH influence to the current return.

Definition 5 (Escape event) At time t, the system starts

from a state s and At ¼ fpkg1k¼t is the policy implemented

by the algorithm. An escape event is defined as

EtðsÞ, fstarting a trial from s and following policy

At; a pair ðss; asÞ is encountered within TeH

steps; such that ðss; asÞ is unknown in Dt;

where t� s� t þ TeH � 1g

whenever an escape event occurs, the data set is increased

and the data-based Q function is updated. The next lemma

reflects a relationship between the return of At and Q̂t

associated with the escape event.

Lemma 5 For every time t,

max
a

Q̂tðst; aÞ � JAtðstÞ

� IfEtðstÞgVb þ
ad

1� c
þ c
1� c

eK þ eH

4.4 Main theorem

Before we present our main results, another definition is

introduced which will be used in our theorems.

Definition 6 (Largest minimal cover) [21] In a whole

state space, a d-cover is a set of points with the property

that for any state s, there exists a point ŝ in the set satisfying

dðs; ŝÞ� d. Let Nd be the size of the largest minimal d-
cover—that is the largest d-cover set that the removal of

any point in it could render the set no longer d-cover.

Theorem 1 In our kd-CPAC algorithm, its PMC is

bounded by

PMCðeÞ�NdNC Aj jlog1=c
Vb

eH

where e ¼ 2adþc �xðbdÞ
1�c þ c

1�c eK þ eH:

So, during the whole process of our algorithm, the sum

of steps when kd-CPAC implements non-optimal actions is

finite and bounded. Therefore, kd-CPAC is a PAC algo-

rithm. In particular, this theorem helps to deduce a result

that bounds the running time for some online cases to reach

a near-optimal policy.

Theorem 2 For an online problem, suppose it has an

initial state s0 and each episode has a fixed Tepisode length.

At the beginning of each episode, the system is set to s0,

and after Tepisode steps, the episode ends and the state is

reset. Apply kd-CPAC algorithm to the system. The maxi-

mum number of episodes for kd-CPAC to stop and output a

near-optimal policy is bounded by NdNC Aj j (correspond-
ing to NdNC Aj jTepisode steps).

Therefore, the maximum running time of our algorithm

to achieve a near-optimal policy is finite and deterministic

in some parameters about systems and kd-tree. Note that

the supposition about the online problem is quite common

in practice. Besides, the optimal error e of the learned

policy is related to neighboring distance d, the known

error eK, and the horizon time error eH. If these parame-

ters are set smaller values, the final learned policy is more

optimal. But on the contrary, this will increase the run-

ning time because Nd and NC are increased. However, in

the theorems, NdNC is the number of samples stored in

data set at the worst case. While in practice, when the

algorithm stops, the actual stored samples are far less than

NdNC.

Another point that needs more attention is the final

learned policy. From the result of Theorem 1, the policy is

near-optimal only for the states along the trajectory starting

from the initial state s0 within Tepisode length of the episode.

For the other area of state space, the optimality is not

concerned. However, for online problems, the main issue is

controlling systems from the start with a near-optimal

performance. So here, it is simplified to declare the final

policy is near-optimal.

Algorithm 1 Kd-CPAC Algorithm
Require: value function upper bound Vmax

|A| kd-trees
neighboring distance δ
known error εK

1: initialize D0 ← ∅, Q̂0 ← Vmax and π0(s) =
argmaxa Q̂0(s, a)

2: for t = 0, 1, 2, ... do
3: observe (st, at, rt, st)
4: if (st, at) is unknown in Dt then
5: (st, at, rt, st) is added into Dt

6: update Q̂t according to (5)
7: produce πt according to (6)
8: end if
9: execute πt on the system
10: end for no change of Dt happens in an episode

The whole process of kd-CPAC is presented in Algo-

rithm 1. Note that no parameters about systems are

involved.

5 Theoretical proof

First, we give the proofs for Lemma 2 and Lemma 3.

Proof (Lemma 2) Given two functions g1 and g2, for any

s and a, we have,

1. If Ctðs; aÞ ¼ £, then T ðg1Þðs; aÞ � T ðg2Þðs; aÞj j ¼ 0.

2. If Ctðs; aÞ 6¼ £, then

Neural Comput & Applic (2015) 26:775–787 779

123

T ðg1Þj ðs; aÞ � T ðg2Þðs; aÞj

� max
ŝi2Ctðs;aÞ

r̂i þ cmax
a0
1

g1ðŝ0i; a01Þ
����

�r̂i � cmax
a0
2

g2ðŝ0i; a02Þ
����

� c max
ŝi2Ctðs;aÞ

max
a0

g1ðŝ0i; a0Þ � g2ðŝ0i; a0Þj j

� c g1 � g2k k1:

To summarize, T ðg1Þ � T ðg2Þk k1 � c g1 � g2k k1 is sat-

isfied for any s and a. The proof is completed. h

Proof (Lemma 3) With Lemma 2, we know Q̂t is the

fixed solution of operator T . Here, we divide the proof of

Lemma 3 into two cases. For any state s and action a, their

four-tuple is denoted by (s, a, r, s0).

1. If Ctðs; aÞ ¼ £, then Q̂tðs; aÞ ¼ Vmax �Qðs; aÞ.
2. If Ctðs; aÞ 6¼ £, then

Q̂tðs; aÞ � Q s; að Þ
¼ r̂min þ cmax

a0
1

Q̂tðŝ0min; a
0
1Þ

� r � cmax
a0
2

Qðs0; a02Þ

� � adþ cmin
a0

½Q̂tðŝ0min; a
0Þ � Qðs0; a0Þ�

¼ �adþ c½Q̂tðŝ0min; a
0
minÞ � Qðs0; a0minÞ�:

In the first and last equalities, for simplicity, we

denote ðŝmin; a; r̂min; ŝ
0
minÞ and a0min to specify the min-

imum sample and the minimum action. By Lemma 1,

we know that in the optimal Q function,

Qðŝ0min; a
0
minÞ

�� � Qðs0; a0minÞ
��� �xðdðŝ0min; s

0ÞÞ
� �xðbdÞ

is satisfied, where the second inequality follows (4).

Then, the following is further deduced

Q̂tðs; aÞ � Q s; að Þ
� � ad� c �xðbdÞ

þ c½Q̂tðŝ0min; a
0
minÞ � Qðŝ0min; a

0
minÞ�:

It is obvious that the result of Q̂tðŝ0min; a
0
minÞ �

Qðŝ0min; a
0
minÞ also follows the two cases.

Thus, proceeding iteratively, we can conclude a low bound

for Lemma 3:

Q̂tðs; aÞ � Qðs; aÞ�
X1

t¼0

ctð�ad� c �xðbdÞÞ

¼ � adþ c �xðbdÞ
1� c

:

h

Now, let us prove the property of neighboring set in

Lemma 4.

Proof (Lemma 4) In our algorithm, an observation can be

added into data set only if it is unknown. So, according to

the definition, for any two samples in Ctðs; aÞ, ðŝi; a; r̂i; ŝ0iÞ,
and ðŝj; a; r̂j; ŝ0jÞ, they must have

max
a0
1

Q̂tðŝ0i; a01Þ
���� �max

a0
2

Q̂tðŝ0j; a02Þ
����[eK:

Meanwhile, the range of Q value is bounded by Vb. So, the

number of samples that can be stored in Ctðs; aÞ is bounded
by Vb

�
eK

� �
. h

With the greedy policy pt from Q̂t, the implemented

algorithm’s policy is formed by At ¼ pkf g1k¼t. Next, we

discover the relationship between JAt and Q̂t.

Proof (Lemma 5) We assume the current time is t0 and

the state is st0 . Considering the implementation of At0 on

the agent for the next TeH steps, one of the following two

cases must happen:

(1) There exists at least one time t 2 ½t0; t0 þ TeH � 1�
that the pair ðst; atÞ is unknown in Dt;

(2) For every time t 2 ½t0; t0 þ TeH � 1�, ðst; atÞ is

known.

If case (1) occurs, we know that an escape event Et0ðst0Þ
happens. Then, we have max

a
Q̂t0ðst0 ; aÞ � JAt0 ðst0Þ�

IfEt0ðst0ÞgVb, based on the definition of the maximum

difference of returns.

For case (2), during the time interval ½t0; t0 þ TeH � 1�,
the pair ðst; atÞ is always known in Dt. That means Dt, Q̂t,

At remain unchanged for TeH steps starting from t0. For

simplicity, let t0 ¼ 0, D for Dt0 , Q̂ for Q̂t0 and p for pt0 . So,
we can write the history of agent’s states and actions as

ðs0; a0; s1; a1; . . .; sTeH�1; aTeH�1Þ. First, we consider s0 at the
beginning. Because p is greedy of Q̂, we have

max
a

Q̂ðs0; aÞ ¼ Q̂ðs0; a0Þ. As no escape event happens,

Cðs0; a0Þ is not empty and there exists a sample

ŝ0; a0; r̂0; ŝ
0
0ð Þ 2 Cðs0; a0Þ such that ŝ00 and s1 have

max
a0
1

Q̂ðŝ00; a01Þ �max
a0
2

Q̂ðs1; a02Þ
����

����� eK, by the definition of

known. Combined with the definition of Q̂, we have

Q̂ðs0; a0Þ ¼ min
ŝi2Cðs0;a0Þ

r̂i þ cmax
a0

Q̂ðŝ0i; a0Þ
� 	

� r̂0 þ cmax
a0

Q̂ðŝ00; a0Þ

¼ r̂0 þ ceK þ cmax
a0

Q̂ðs1; a0Þ:

Meanwhile, according to the Bellman principle,

780 Neural Comput & Applic (2015) 26:775–787

123

Jpðs0Þ ¼ r0 þ cJpðs1Þ:

In this way, we can derive that

max
a

Q̂ðs0; aÞ � Jpðs0Þ

� r̂0 þ ceK þ cmax
a0

Q̂ðs1; a0Þ � r0 � cJpðs1Þ

� adþ ceK þ c max
a0

Q̂ðs1; a0Þ � Jpðs1Þ
� 	

:

For max
a0

Q̂ðs1; a0Þ � Jpðs1Þ, the analysis is the same. So, by

iterative inferences, we have

max
a

Q̂ðs0; aÞ � Jpðs0Þ�
XTeH�1

t¼0

ctðadþ ceKÞ þ cTeHVb:

By the definition of TeH , we know cTeHVb � eH. Then,

max
a

Q̂ðs0; aÞ � Jpðs0Þ�
XTeH�1

t¼0

ctðadþ ceKÞ þ eH

�
X1

t¼0

ctðadþ ceKÞ þ eH

� ad
1� c

þ c
1� c

eK þ eH:

Summing up case (1) and (2), we can conclude that the

following inequation is satisfied for every time

max
a

Q̂tðst; aÞ � JAtðstÞ

� IfEtðstÞgVb þ
ad

1� c
þ c
1� c

eK þ eH

h

In the end, we give the proofs of our main theorems in

kd-CPAC.

Proof (Theorem 1) From Lemma 4, for any s and a, their

Ctðs; aÞ has maximum Nc samples stored in it. In other

words, at any action, an arbitrary state is surrounded by at

most Nc d-close neighboring samples. Based on Defini-

tion 6 of largest minimal cover Nd and the lemma (Lemma

4.5, Exploration Bound) in Kakade et al. [21], for Aj j
actions, at most NdNc Aj j samples can be stored in data set.

Considering the worst case, each sample corresponds to an

escape event with TeH length. So, in the whole process of

kd-CPAC, the total number of steps when escape event

happens is bounded by NdNc Aj jTeH .
Meanwhile, combine Lemma 3 and Lemma 5 and let

e ¼ 2adþc �xðbdÞ
1�c þ c

1�c eK þ eH, we have JAtðstÞ� max
a

Qðs; aÞ � e� IfEtðstÞgVb: So, at one moment, if escape

event is not encountered, the greedy action of kd-CPAC is

near-optimal. Then, it is inferred that the sum of steps when

implemented policies are non-optimal is no more than the

number of steps when escape event happens, namely

PMCðeÞ�
X1

t¼0

fEtðstÞg�NdNC Aj jlog1=c
Vb

eH

The proof is completed. h

Proof (Theorem 2) Based on the supposition of the online

problem, during the implementation of kd-CPAC, if no

escape event happens in one episode, it is indicated that in

the following episodes, trajectories are all the same and no

more samples are stored in data set. Then, the algorithm

stops and outputs a near-optimal policy from the result of

Theorem 1.

From the above analysis, the maximum number of

stored samples is NdNc Aj j. Considering the worst case, the

upper bound of episodes that encounter escape events is

NdNc Aj j. So, after this maximum number of episodes, kd-

CPAC is determinate to stop and output a near-optimal

policy. In other words, the upper bound of running time is

NdNc Aj jTepisode steps. h

6 Examples

In this section, we apply kd-CPAC to three different

problems, mountain car, inverted pendulum, and cart–pole

balancing. Mountain car is a two-dimensional system with

failure and success terminals. Inverted pendulum is also

two-dimensional but without terminals. And cart–pole

balancing problem has four state variables, and it has only

a failure terminal but no success one.

In the implementation, a distance metric d is required.

Here, we choose d in a modified version of maximum

norm. For two states s1 and s2, their distance is defined by

dðs1; s2Þ ¼ max
j

s
j
1 � s

j
2

S
j
sup � S

j
inf

�����

�����

where Ssup and Sinf are the upper and lower bound of the

state space, and the superscript j indicates the j-th dimen-

sion. The value is normalized by Ssup and Sinf , which is

based on the same consideration in the calculation of

variances when choosing split dimension in kd-tree.

6.1 Mountain car

The mountain car is a widely used system to test RL

algorithms [24, 31]. A schematic is illustrated in Fig. 1. At

the beginning, the car is initialized at the bottom position

(p = -0.5). By applying a horizontal force, the car can

move left and right. The target is to reach the top of the

mountain (p = 1). The system dynamics is denoted by

Neural Comput & Applic (2015) 26:775–787 781

123

€p ¼ 1

1þ dHðpÞ
dp

 �2
u� g

dHðpÞ
dp

� _p2
dHðpÞ
dp

d2HðpÞ
d2p

� �

where p 2 ½�1; 1� m is the horizontal position of the car,

_p 2 ½�3; 3� m/s is its velocity, u 2 ½�4; 4� N is the hori-

zontal force, g = 9.81 m/s2 is the gravitational accelera-

tion, and H denotes the shape of the hill, defined as

HðpÞ ¼
p2 þ p; if p\0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5p2

p ; if p� 0

8
<

: :

In the simulation, the state variable is s ¼ ½p; _p�T and the

action set is discretized by A = {-4,4}. Whenever the car

passes the left edge (p = -1) or its velocity is over three

ð _pj j[3Þ, we regard it as a failure and stop the driving. The

success condition is the car reaching the right edge (p = 1)

within the speed limit ð _pj j � 3Þ. So, the failure terminal is

assigned with a low value, V(sfailure) = -100, while the

success one with VðssuccessÞ ¼ 0. In the middle of the

process, each step has a reward r = -1. The discounted

factor is c ¼ 0:95, and the sample time is 0.1 s. The epi-

sode length Tepisode is set to 10 s and the initial state

s0 ¼ ½�0:5; 0�T. The split condition Nsplit chooses 20.

First, we fix the value of neighboring distance d as 0.01

and study the impact of different known errors eH on the

final learned policies of kd-CPAC. To evaluate a policy,

the time length in an episode to success is adopted as its

performance. The results are illustrated in Table 1. Viewed

from the tendency, it is obvious that smaller known errors

lead to more optimal policies. This is consistent with our

theoretical results. Furthermore, if the known error is too

large, the policy can fail to move the car to the goal like the

last experiment in Table 1.

Then, we fix known error eH to 1.0 and examine the

influence of neighboring distance d. Similarly, we can

conclude from Table 2 that a large neighboring distance

leads to a bad policy. These two groups of experiments are

agreed with our theoretical results that the smaller values d
and eH choose, the more optimal policy kd-CPAC learns.

Next, let d = 0.02 and eH ¼ 1:0 and observe the process

of kd-CPAC. After 100 trials of running, the algorithm

stops and a total of 1,216 samples are stored. The stored

samples at each action are presented in Fig. 2, combined

with the partitions of state space by the leaves in kd-trees.

These figures illustrate that kd-tree can efficiently store

samples for our algorithm. Apply the learned policy to the

system starting from the initial state, the trajectories are

depicted in Fig. 3. It is revealed that after 1.9 s, the car

successfully reaches the goal. Besides, the policy is so

efficient that only one turn of actions in the episode leads to

the success.

6.2 Inverted pendulum

In the second simulation, we adopt the inverted pendu-

lum. It is a common example to estimate online algo-

rithms [2].The inverted pendulum is a device that rotates

a mass in a vertical plane and is driven by a DC motor. A

schematic is presented in Fig. 4, and its dynamics can be

denoted by

€a ¼ 1

J
mgl sinðaÞ � b _a� K2

R
_aþ K

R
u

� �

where a and _a are the angle and angular velocity of the

pendulum, satisfying the bound [-p, p] rad and [-15p,
15p] rad/s, respectively. u is the control action applied to

the DC motor and constrained to [-3, 3]V. For simulation,

dynamics parameters are adopted the same as [2], given in

Table 3, and the sample time is set to 0.01 s.

The goal is to swing up the pendulum from the bottom

and balance it at the top. So, the state input is s ¼ ½a; _a�T
and the control action is discretized into three discrete

values, A = {-3, 0, 3}. The reward is designed by

rðs; aÞ ¼ �sTQs, where Q = diag(5, 0.1). The discounted

factor is set c = 0.98. The episode length Tepisode is 6 s and

each trial starts from ½p; 0�T.
In this experiment, we still choose NSplit = 20 but set

d = 0.005 and eK ¼ 30:0. After 143 episodes of learning,

the algorithm stops and it stores 29,684 samples. Stored

−1 −0.5 0 0.5 1
−0.5

0

0.5

p

H
(p

)

Fig. 1 Schematic of mountain car system

Table 1 Mountain car: learned policies’ performance of kd-CPAC at

different known errors when d = 0.01

eH 1.0 3.0 5.0 7.0 9.0

Length to success(s) 1.9 1.9 4.0 6.2 Fail

Table 2 Mountain Car: Learned policies’ performance of kd-CPAC

at different neighboring distances when eH ¼ 1:0

d 0.01 0.015 0.02 0.025 0.03

Length to success(s) 1.9 1.9 1.9 2.0 Fail

782 Neural Comput & Applic (2015) 26:775–787

123

samples in three kd-trees are depicted in Fig. 5. As the

problem is complicated, more samples are stored and the

state space is partitioned by kd-trees to smaller sizes. Still,

space is split based on the samples’ distribution in a high

efficient way of utilization.

Next, the learned policy is applied to the system to

observe its performance. For comparison, an offline model-

based Fuzzy Q-Iteration from [2] is also applied to the

same system. In its implementation, we set triangular fuzzy

partitions with 51 equidistant cores for both state variables.

After the offline learning, a convergent policy is obtained.

We apply the two policies learned by kd-CPAC and Fuzzy

Q-Iteration to inverted pendulum, and their results are

presented in Fig. 6. It is revealed that the policy of kd-

CPAC (blue solid lines) takes less steps to swing up and

balance the pendulum than Fuzzy Q-Iteration (green

dashed lines). So, it is indicated that our algorithm can

derive a more optimal policy than Fuzzy Q-Iteration, even

though it is online and has no information about the sys-

tem, while Fuzzy Q-Iteration is offline. The reason can be

explained by the following analysis. Observing the chosen

actions of Fuzzy Q-Iteration from the beginning to about

0.75 s, the policy almost selects the same action. This

selection at first is good to push the pendulum, but when

the pendulum cannot be pushed further more (at 0.4 s), the

old action is in fact a resistance for the movement. But in

kd-CPAC, actions are changed earlier and more frequently

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p [m]

p’
 [

m
/s

]

(a) u=−4

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p [m]

p’
 [

m
/s

]

(b) u=4Fig. 2 Mountain car: partitions

of state space and the stored

samples at each action of kd-

trees with d = 0.02 and

eH ¼ 1:0

0 0.5 1 1.5 2
−1

0

1

2

1.9

p
[m

]

0 0.5 1 1.5 2
−2

0

2

4

1.9

p’
 [

m
/s

]

0 0.5 1 1.5 2
−5

0

5

1.9

u
[N

]

t [s]

Fig. 3 Mountain car: trajectories of states and actions under the

learned policy of kd-CPAC with d = 0.02 and eH ¼ 1:0

Fig. 4 Schematic of the

inverted pendulum

Table 3 Parameters of inverted pendulum

Symbol Value Meaning

m 0.055 Mass

g 9.81 Gravitational acceleration

l 0.042 Distance from center to mass

J 1.91e-4 Moment of inertia

b 3e-6 Viscous damping

K 0.0536 Torque constant

R 9.5 Rotor resistance

Neural Comput & Applic (2015) 26:775–787 783

123

to adjust for the movement of the pendulum. In this way,

the pendulum in kd-CPAC is swung up more quickly.

In [23], Bernstein and Shimkin apply their ARL algo-

rithm, which is also a PAC algorithm, to the same problem.

However, their implementation relies on some system

parameters which is commonly unknown in practice. While

in our algorithm, no system information is required and this

benefits a wider application for our algorithm compared to

them.

6.3 Cart–pole balancing problem

The last example is a cart–pole balancing problem. The

task is to balance a pole upwards, which is hinged on a cart

(as illustrated in Fig. 7). The system has four state vari-

ables: the position of the cart x, the pole angle with respect

to the vertical axis h, and their derivatives ð _x; _hÞ. A force u

is applied to the cart in the x-direction to control the sys-

tem. The dynamics can be denoted by

lmp cos h �ðmcþmpÞ

4

3
l � cos h

2
4

3
5 €x

€h

� 	
¼

lmp
_h
2
sin hþlcsignð _xÞ

g sin h�
lp _h

lmp

2
64

3
75þ

u

0

� 	

where parameters are adopted the same values as in [32],

listed in Table 4.

In our experiment, the state vector is s ¼ ½x; _x; h; _h�T and

the control actions include 2 values, A = {-5, 5}. The

failure condition is whenever the cart drives outside the

track ð xj j[2:4Þ or the pole drops over 20	 ð hj j[20
180

pÞ.
Besides, we support the derivatives are bounded by _xj j � 8

and j _hj � p. Considering the goal is to balance the pole

around the vertical position and drive the cart near x = 0,

the reward function is defined considering the difference

between two adjacent states. Given ½xk; _xk; hk; _hk�T and

½xkþ1; _xkþ1; hkþ1; _hkþ1�T, the reward at the k-th step is

denoted by

rk ¼ 100 hk � hkþ1j j þ 5 xk � xkþ1j j:

Actions that make states closer to the vertical and zero-

point position gain more rewards. Moreover, the value for

failure is assigned by V(sfailure = 1,000). The length of an

episode is set to 60 s, and the sample time is 0.05 s. The

discounted factor is c = 0.95. The starting state is

½0; 0; 10
180

p; 0�T.

α

α

α

α

α

α

(a) (b) (c)

Fig. 5 Inverted pendulum: partitions of state space and the stored samples at each action of kd-trees with d = 0.005 and eK ¼ 30:0

0 0.5 1 1.5 2
−4

−2

0

2

4

α
[r

ad
]

0 0.5 1 1.5 2
−20

−10

0

10

α’
 [

ra
d/

s]

0 0.5 1 1.5 2
−4

−2

0

2

4

u
[V

]

0 0.5 1 1.5 2
−100

−50

0

r
[−

]

t [s]

Fig. 6 Inverted pendulum: trajectories of states, actions, and rewards.

The blue solid lines indicate the policy of kd-CPAC, while the green

dashed lines refer to the policy of Fuzzy Q-Iteration with 51 9 51

triangular fuzzy partitions

784 Neural Comput & Applic (2015) 26:775–787

123

However, the learning of cart–pole balancing problem

is difficult. On the one hand, the states include four

variables, while the previous two systems include only

two. It is more complicated to control four variables.

Besides, it is much easier for the pole to loss balance in

the system. It can fall down after only few steps from the

beginning, which makes the learning process has to restart

again and again frequently. In this way, the implemen-

tation is much longer with more episodes to stop and

output a satisfying policy.

In kd-CPAC, split condition Nsplit is still equal to 20.

The neighboring distance d is set to 0.02, and the known

error eK is 100. After learning, the final policy is applied to

the system from the starting state and the system can be

controlled within the limit of h and x successfully. The

corresponding trajectories are depicted in Fig. 8. To dis-

play clearly, only the first 20 s are presented in the figure. It

is revealed that the cart and the pole are conducted toward

zero point from the initial deflected position after few

seconds. So, the learned policy from kd-CPAC can suc-

cessfully balance the system around zero-point area. This

simulation illustrates that our algorithm can perform well

even for complicated systems.

7 Conclusion

In this paper, we consider continuous deterministic systems

and propose a new online RL algorithm, kd-CPAC. During

the online running, the algorithm selectively stores samples

and utilizes them directly to produce policies. These

policies are prone to explore unvisited areas, which helps

to collect system information. By rigorous theoretical

analysis, we prove the algorithm satisfies the PAC princi-

ple. During the whole process, the sum of steps when

algorithm implements non-optimal actions is finite and

bounded. Furthermore, for online cases, the running time

for kd-CPAC to produce a near-optimal policy also has an

upper bound.

The near optimality and the finite time bound are the

main advantages of our algorithm compared to conven-

tional online RL algorithms. These conventional algo-

rithms consider less about the optimality of their final

learned policies and the running time of their implemen-

tation. Besides, our algorithm is totally model-free. It

directly utilizes the online data, and no system parameters

are required.

To avoid the dependence on approximation structures in

the implementation, we utilize the online data directly. It

benefits the algorithm with high efficient utilization of

online data. To store samples, a kd-tree technique is used.

It helps to divide the state space according to samples and

store them in a tree structure. Based on kd-tree, it is con-

venient for the algorithm to locate samples and search for

neighboring samples for arbitrary states.

Acknowledgments This work is supported by National Natural

Science Foundation of China (NSFC) under Grants No. 61273136,

No. 61034002, and Beijing Natural Science Foundation under Grant

No. 4122083.

Fig. 7 Schematic of the cart–pole system

Table 4 Parameters of cart–pole

Symbol Value Meaning

umax 5 Maximal force

g 9.81 Gravity acceleration

mp 0.5 Mass of the pole

mc 1.0 Mass of the cart

l 0.5 Length of the pole

lc 1.0 Coefficient of friction of cart on track

lp 0.1 Coefficient of friction of pivot

L 2.4 Half length of the track

0 5 10 15 20
−2

0

2

x
[m

]

0 5 10 15 20
−2

0

2

x’
 [

m
/s

]

0 5 10 15 20
−0.2

0

0.2

θ
[r

ad
]

0 5 10 15 20
−1

0

1

θ’
 [

ra
d/

s]

0 5 10 15 20
−5

0

5

u
[N

]

0 5 10 15 20
−5

0

5

r
[−

]

t [s]

Fig. 8 Cart–pole balancing: trajectories of states and actions under

the learned policy of kd-CPAC with d = 0.02 and eH ¼ 100

Neural Comput & Applic (2015) 26:775–787 785

123

Appendix

Based on value iteration, to calculate Q̂t, we first initialize a

function Q̂
ð0Þ
t which can be assigned to any value. Usually,

Q̂
ð0Þ
t is equal to 0 or Vmax. Then, calculate the Q values of

stored samples ðŝ; â; r̂; ŝ0Þ 2 Dt by

q̂
ð0Þ
t ðŝ; âÞ ¼ r̂ þ cmax

a0
Q̂

ð0Þ
t ðŝ0; a0Þ:

Furthermore, a new Q̂
ð1Þ
t can be obtained by

Q̂
ð1Þ
t ðs; aÞ ¼

min
ŝi2Ctðs;aÞ

q̂
ð0Þ
t ðŝi; aÞ; if Ctðs; aÞ 6¼ £

Vmax; otherwise

8
<

:

The above equation is totally equal to the process of cal-

culating Q̂
ð1Þ
t from Q̂

ð0Þ
t by (5). Then, this calculation is

iterated.

In conclusion, suppose we have Q̂
ðjÞ
t of the j-th iteration,

calculate Q values of stored samples using

q̂
ðjÞ
t ðŝ; âÞ ¼ r̂ þ cmax

a0
Q̂

ðjÞ
t ðŝ0; a0Þ:

Then, Q̂
ðjþ1Þ
t at the ðjþ 1Þ-th iteration is obtained by

Q̂
ðjþ1Þ
t ðs; aÞ ¼

min
ŝi2Ctðs;aÞ

q̂
ðjÞ
t ðŝi; aÞ; if Ctðs; aÞ 6¼ £

Vmax; otherwise

8
<

:

As the above process is a variant of solving (5) by value

iteration, so it is convergent and the result is the same with

directly calculating Q̂t by value iteration. Moreover, in the

process, the only need is storing Q values of samples, and

the values of Q̂t over the whole state space are easy to

obtain.

References

1. Sutton RS, Barto AG (1998) Reinforcement learning: an intro-

duction. MIT Press, Cambridge

2. Busoniu L, Babuska R, De Schutter B, Ernst D (2010) Rein-

forcement learning and dynamic programming using function

approximators. CRC Press, New York

3. Tan AH, Ong YS, Tapanuj A (2011) A hybrid agent architecture

integrating desire, intention and reinforcement learning. Expert

Syst Appl 38(7):8477–8487

4. Tang L, Liu Y-J, Tong S (2014) Adaptive neural control using

reinforcement learning for a class of robot manipulator. Neural

Comput Appl 25(1):135–141

5. Wang D, Liu D, Zhao D, Huang Y, Zhang D (2013) A neural-

network-based iterative GDHP approach for solving a class of

nonlinear optimal control problems with control constraints.

Neural Comput Appl 22(2):219–227

6. Wei Q, Liu D (2014) Stable iterative adaptive dynamic pro-

gramming algorithm with approximation errors for discrete-time

nonlinear systems. Neural Comput Appl 24(6):1355–1367

7. Wang B, Zhao D, Alippi C, Liu D (2014) Dual heuristic dynamic

programming for nonlinear discrete-time uncertain systems with

state delay. Neurocomputing 134:222–229

8. Watkins C (1989) Learning from delayed rewards. PhD thesis,

Cambridge University, Cambridge

9. ten Hagen S, Kröse B (2003) Neural Q-learning. Neural Comput

Appl 12(2):81–88

10. Rummery GA, Niranjan M (1994) On-line Q-learning using

connectionist systems. Tech. Rep. TR 166, Cambridge University

Engineering Department, Cambridge, England

11. Liu D, Wang D, Zhao D, Wei Q, Jin N (2012) Neural-network-

based optimal control for a class of unknown discrete-time

nonlinear systems using globalized dual heuristic programming.

IEEE Trans Autom Sci Eng 9(3):628–634

12. Thrun SB (1992) The role of exploration in learning control. In:

White D, Sofge D (eds) Handbook for intelligent control: neural,

fuzzy and adaptive approaches. Van Nostrand Reinhold, Flor-

ence, Kentucky 41022

13. Zhao D, Hu Z, Xia Z, Alippi C, Wang D (2014) Full range

adaptive cruise control based on supervised adaptive dynamic

programming. Neurocomputing 125:57–67

14. Zhao D, Wang B, Liu D (2013) A supervised actor-critic approach

for adaptive cruise control. Soft Comput 17(11):2089–2099

15. Zhao D, Bai X, Wang F, Xu J, Yu W (2011) DHP for coordinated

freeway ramp metering. IEEE Trans Intell Transp Syst

12(4):990–999

16. Bai X, Zhao D, Yi J (2009) The application of ADHDPðkÞ
method to coordinated multiple ramps metering. Int J Innov

Comput 5(10(B)):3471–3481

17. Kearns M, Singh S (2002) Near-optimal reinforcement learning

in polynomial time. Mach Learn 49(2–3):209–232

18. Brafman RI, Tennenholtz M (2003) R-max—a general polyno-

mial time algorithm for near-optimal reinforcement learning.

J Mach Learn Res 3:213–231

19. Strehl AL, Littman ML (2005) A theoretical analysis of model-

based interval estimation. In: Proceedings of 22nd international

conference on machine learning (ICML’05), pp 856–863

20. Strehl AL, Li L, Wiewiora E, Langford J, Littman ML (2006)

PAC model-free reinforcement learning. In: Proceedings of 23rd

international conference on machine learning (ICML’06),

pp 881–888

21. Kakade S, Kearns MJ, Langford J (2003) Exploration in metric

state spaces. In: Proceedings of 20th international conference on

machine learning (ICML’03), pp 306–312

22. Pazis J, Parr R (2013) PAC optimal exploration in continuous

space markov decision processes. In: AAAI conference on arti-

ficial intelligence

23. Bernstein A, Shimkin N (2010) Adaptive-resolution reinforce-

ment learning with polynomial exploration in deterministic

domains. Mach Learn 81(3):359–397

24. Munos R, Moore A (2002) Variable resolution discretization in

optimal control. Mach Learn 49(2–3):291–323

25. Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode

reinforcement learning. J Mach Learn Res 6:503–556

26. Preparata FP, Shamos MI (1985) Computational geometry: an

introduction. Springer, Berlin

27. Li H, Liu D (2012) Optimal control for discrete-time affine

nonlinear systems using general value iteration. IET Control

Theory Appl 6(18):2725–2736

28. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time

nonlinear HJB solution using approximate dynamic program-

ming: convergence proof. Trans Syst Man Cyber Part B

38(4):943–949

29. Liu D, Yang X, Li H (2013) Adaptive optimal control for a class

of continuous-time affine nonlinear systems with unknown

internal dynamics. Neural Comput Appl 23(7–8):1843–1850

786 Neural Comput & Applic (2015) 26:775–787

123

30. Zuo L, Xu X, Liu C, Huang Z (2013) A hierarchical reinforce-

ment learning approach for optimal path tracking of wheeled

mobile robots. Neural Comput Appl 23(7–8):1873–1883

31. Schoknecht R, Riedmiller M (2003) Reinforcement learning on

explicitly specified time scales. Neural Comput Appl 12(2):61–80

32. Neumann G (2005) The reinforcement learning toolbox: rein-

forcement learning for optimal control tasks. Master’s thesis,

Technischen Universität (University of Technology) Graz

Neural Comput & Applic (2015) 26:775–787 787

123

	A data-based online reinforcement learning algorithm satisfying probably approximately correct principle
	Abstract
	Introduction
	Formulation of online reinforcement learning
	Kd-tree for the storage of samples
	Kd-tree-based continuous PAC algorithm
	Data set
	Data-based Q-Iteration
	Escape event
	Main theorem

	Theoretical proof
	Examples
	Mountain car
	Inverted pendulum
	Cart--pole balancing problem

	Conclusion
	Acknowledgments
	Appendix
	References

