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a b s t r a c t

In this paper, a novel adaptive dynamic programming (ADP) algorithm is developed to solve the nearly
optimal finite-horizon control problem for a class of deterministic nonaffine nonlinear time-delay
systems. The idea is to use ADP technique to obtain the nearly optimal control which makes the optimal
performance index function close to the greatest lower bound of all performance index functions within
finite time. The proposed algorithm contains two cases with respective different initial iterations. In the
first case, there exists control policy which makes arbitrary state of the system reach to zero in one time
step. In the second case, there exists a control sequence which makes the system reach to zero in
multiple time steps. The state updating is used to determine the optimal state. Convergence analysis of
the performance index function is given. Furthermore, the relationship between the iteration steps and
the length of the control sequence is presented. Two neural networks are used to approximate the
performance index function and compute the optimal control policy for facilitating the implementation
of ADP iteration algorithm. At last, two examples are used to demonstrate the effectiveness of the
proposed ADP iteration algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time-delay phenomenons are often encountered in physical and
biological systems, and require special attention in engineering
applications [1]. Transportation systems, communication systems,
chemical processing systems, metallurgical processing systems and
power systems are examples of time-delay systems. Delays may result
in degradation in the control efficiency even instability of the control
systems [2]. So there have been many works about systems with time
delays in various research areas such as electrical, chemical engineer-
ing and networked control [3]. In the past few decades, the stabiliza-
tion and the control of time-delay systems have always been the key
focus in the control field [4–7]. Furthermore, there are many
researchers who studied the controllability of linear time-delay
systems [8–10]. They proposed some related theorems to judge the
controllability of the linear time-delay systems. In addition, the
optimal control problem is often encountered in industrial production.
So the investigation of the optimal control for time-delay systems is
significant. In [11] Chyung has pointed out the disadvantages of
discrete time-delay system written as an extended system by

increasing the dimension method to deal with the optimal control
problem. So some direct methods for linear time-delay systems were
presented in [11,12]. While for nonlinear time-delay system, due to
the complexity of systems, the optimal control problem is rarely
researched. This motivated our research interest.

As is well known, dynamic programming is very useful in solving
the optimal control problems [13–15]. But it is often computationally
untenable to run dynamic programming [16]. In the early 1970s,
Werbos set up the basic strategy for ADP [17] to overcome the “curse
of dimensionality” of dynamic programming. In [18], Werbos classi-
fied ADP approaches into four main schemes: heuristic dynamic
programming (HDP), dual heuristic dynamic programming (DHP),
action dependent heuristic dynamic programming (ADHDP), and
action dependent dual heuristic dynamic programming (ADDHP). In
recent years, ADP algorithms have made great progress [19–24]. In
[25], an iteration ADP scheme with convergence proof was proposed
for solving the optimal control problem of nonlinear discrete-time
systems. In [26], an optimal tracking controller was proposed for a
class of nonlinear discrete-time systems with time delays based on a
novel HDP algorithm. In [27], a ADP-based optimal control is
developed for complex-valued systems. Note that most of the results
of the present study are about the infinite-horizon optimal control.
The system cannot be really stabilized or tracked until the time
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reaches infinity. While for finite-horizon control problems, the
system must be stabilized to zero or tracked to a desired trajectory
within finite time. The controller design of finite-horizon problems
still presents a challenge to control engineers as the lack of
methodology and the control step is difficult to determine. Few
results relate to the finite-horizon optimal control based on ADP
algorithm. As we know that [28] solved the finite-horizon optimal
control problem for a class of discrete-time nonlinear systems using
ADP algorithm. But the method in [28] cannot be used in nonlinear
time-delay systems. As the delay states in time-delay systems are
coupling with each other. The state of current time k is decided by the
states before k and the control law, while the control law is not
known before it is obtained. So based on the research results in [28],
we proposed a new ADP algorithm to solve the nearly finite-horizon
optimal control problem for discrete time-delay systems through the
framework of Hamilton–Jacobi–Bellman (HJB) equation.

In this paper the optimal controller is designed based on the
original time-delay systems, directly. The state updating method is
proposed to determine the optimal state of the time-delay system.
For finite-horizon optimal control, the system can reach to zero when
the final running step N is finite. But it is impossible in practice. So
the results in this paper are in the sense of an error bound. The main
contributions of this paper can be summarized as follows:

1. The finite-horizon optimal control for deterministic discrete
nonaffine time-delay systems is studied based on the ADP
algorithm.

2. The state updating is used to determine the optimal states of
HJB equation.

3. The relationship between the iteration steps and the length of
the control sequence is given.

This paper is organized as follows. In Section 2, the problem
formulation is presented. In Section 3, the nearly finite-horizon
optimal control scheme is developed based on the iteration ADP
algorithm and the convergence proof is given. In Section 4, two
examples are given to demonstrate the effectiveness of the proposed
control scheme. In Section 5, the conclusion is drawn.

2. Problem statement

Consider a class of deterministic nonaffine time-delay non-
linear systems

xðtþ1Þ ¼ FðxðtÞ; xðt�h1Þ; xðt�h2Þ;…; xðt�hlÞ;uðtÞÞ;
xðtÞ ¼ χðtÞ; �hlrtr0 ð1Þ
where xðtÞARn is the state and xðt�h1Þ;…; xðt�hlÞARn are time-
delay states. uðtÞARm is the system input. χðtÞ is the initial state,
hi, i¼ 1;2;…; l, is the time delay, set 0oh1oh2o…ohl, and they
are nonnegative integer numbers. FðxðtÞ; xðt�h1Þ; xðt�h2Þ;…; x
ðt�hlÞ;uðtÞÞ is the known function. Fð0;0;…;0Þ ¼ 0.

For any time step k, the performance index function for state x
(k) under the control sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;uðkþ1Þ;…;u
ðNþk�1ÞÞ is defined as

JðxðkÞ;Uðk;Nþk�1ÞÞ ¼
XNþk�1

j ¼ k

fxT ðjÞQxðjÞþuT ðjÞRuðjÞg; ð2Þ

where Q and R are positive definite constant matrixes.
In this paper, we focus on solving the nearly finite-horizon optimal

control problem for system (1). The feedback control u(k) must not
only stabilize the system within finite time steps but also guarantee
the performance index function (2) to be finite. So the control
sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;uðkþ1Þ;…;uðNþk�1ÞÞ must be
admissible.

Definition 1. N time steps control sequence: for any time step k,
we define the N time steps control sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;
uðkþ1Þ;…;uðNþk�1ÞÞ. The length of Uðk;Nþk�1Þ is N.

Definition 2. Final state: we define final state xf ¼ xf ðxðkÞ;
Uðk;Nþk�1ÞÞ, i.e., xf ¼ xðNþkÞ.

Definition 3. Admissible control sequence: an N time steps con-
trol sequence is said to be admissible for x(k), if the final state
xf ðxðkÞ;Uðk;Nþk�1ÞÞ ¼ 0 and JðxðkÞ;Uðk;Nþk�1ÞÞ is finite.

Remark 1. Definitions 1 and 2 are used to state conveniently the
admissible control sequence, i.e. Definition 3, which is necessary
for the theorems of this paper.

Remark 2. It is important to point out that the length of control
sequence N cannot be designated in advance. It is calculated by the
proposed algorithm. If we calculate that the length of optimal
control sequence is L at time step k, then we consider that the
optimal control sequence length at time step k is N¼L.

According to the theory of dynamics programming [29], the
optimal performance index function is defined as

JnðxðkÞÞ ¼ inf
Uðk;Nþk�1Þ

JðxðkÞ;Uðk;Nþk�1ÞÞ ð3Þ

JnðxðkÞÞ ¼ inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞþ Jnðxðkþ1ÞÞ� �
; ð4Þ

and the optimal control policy is

unðkÞ ¼ arg inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞþ Jnðxðkþ1ÞÞ� �
; ð5Þ

so the state under the optimal control policy is

xnðtþ1Þ ¼ FðxnðtÞ; xnðt�h1Þ;…; xnðt�hlÞ;unðtÞÞ; t ¼ 0;1;…; k;…;

ð6Þ
and then, the HJB equation is written as

JnðxnðkÞÞ ¼ JðxnðkÞ;Unðk;Nþk�1ÞÞ
¼ ðxnðkÞÞTQxnðkÞþðunðkÞÞTRunðkÞþ Jnðxnðkþ1ÞÞ: ð7Þ

Remark 3. From Remark 2, we can see that the length N of the
optimal control sequence is unknown finite number and cannot be
designated in advance. So we can say that if at time step k, the
length of the optimal control sequence is N, then at time step kþ1,
the length of the optimal control sequence is N�1. Therefore, the
HJB equation (7) is established.

In the following, we will give an explanation about the validity
of Eq. (3). First, we define Unðk;Nþk�1Þ ¼ ðunðkÞ;unðkþ1Þ;…;

unðNþk�1ÞÞ, i.e.
Unðk;Nþk�1Þ ¼ arg inf

Uðk;Nþk�1Þ
JðxðkÞ;Uðk;Nþk�1ÞÞ: ð8Þ

Then we have

JnðxðkÞÞ ¼ inf
Uðk;Nþk�1Þ

JðxðkÞ;Uðk;Nþk�1ÞÞ

¼ JðxðkÞ;Unðk;Nþk�1ÞÞ: ð9Þ
Then according to (2), we can get

JnðxðkÞÞ ¼
XNþk�1

j ¼ k

fxT ðjÞQxðjÞþðunðjÞÞTRunðjÞg

¼ xT ðkÞQxðkÞþðunðkÞÞTRunðkÞþ⋯þxT ðNþk�1ÞQxðNþk�1Þ

þðunðNþk�1ÞÞTRunðNþk�1Þ: ð10Þ
Eq. (10) can be written as

JnðxðkÞÞ ¼ xT ðkÞQxðkÞþðunðkÞÞTRunðkÞþ⋯þxT ðNþk�2ÞQxðNþk�2Þ
þðunðNþk�2ÞÞTRunðNþk�2Þ
þ inf

uðNþk�1Þ
fxT ðNþk�1ÞQxðNþk�1Þ

þuT ðNþk�1ÞRuðNþk�1Þg: ð11Þ
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We also obtain

JnðxðkÞÞ ¼ xT ðkÞQxðkÞþðunðkÞÞTRunðkÞ
þ⋯þ inf

uðNþk�2Þ
fxT ðNþk�2ÞQxðNþk�2Þ

þuT ðNþk�2ÞRuðNþk�2Þ
þ inf

uðNþk�1Þ
fxT ðNþk�1ÞQxðNþk�1Þ

þuT ðNþk�1ÞRuðNþk�1Þgg: ð12Þ
So we have

JnðxðkÞÞ ¼ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞ

þ⋯þ inf
uðNþk�2Þ

fxT ðNþk�2ÞQxðNþk�2Þ

þuT ðNþk�2ÞRuðNþk�2Þ
þ inf

uðNþk�1Þ
fxT ðNþk�1ÞQxðNþk�1Þ

þuT ðNþk�1ÞRuðNþk�1Þgg⋯g: ð13Þ
Thus according to (9), Eq. (10) is expressed as

JnðxðkÞÞ ¼ inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞ�
þ inf

Uðkþ1;Nþk�1Þ
Jðxðkþ1Þ;Uðkþ1;Nþk�1ÞÞg

¼ inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞ�

þ Jnðxðkþ1ÞÞ�: ð14Þ
Therefore, Eqs. (3) and (4) are established.
In the following part we will give a novel iteration ADP

algorithm to get the nearly optimal solution.

3. The iteration ADP algorithm and its convergence

3.1. The novel ADP iteration algorithm

In this subsection we will give the novel iteration ADP algo-
rithm in detail. For the state x(k) of system (1), there exists two
cases. Case 1: (Uðk; kÞ which makes xðkþ1Þ ¼ 0. Case 2:
(Uðk; kþmÞ, m40, which makes xðkþmþ1Þ ¼ 0. In the following
part, we will discuss the two cases, respectively.

Case 1: There exists Uðk; kÞ ¼ ðβðkÞÞ which makes xðkþ1Þ ¼ 0 for
system (1). We set the optimal control sequence Unðkþ1;
kþ1Þ ¼ ð0Þ. The states of the system are driven by a given initial
state χðtÞ; �hlrtr0 and the initial control policy βðtÞ. We set
V ½0�ðxðkþ1ÞÞ ¼ Jðxðkþ1Þ;Unðkþ1; kþ1ÞÞ ¼ 0, 8xðkþ1Þ, then for time
step k, we have the following iterations:

u½1�ðkÞ ¼ arg inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½0�ðxðkþ1ÞÞg;

s:t: FðxðkÞ; xðk�h1Þ; xðk�h2Þ;…; xðk�hlÞ;uðkÞÞ ¼ 0 ð15Þ
and

V ½1�ðx½1�ðkÞÞ ¼ ðx½1�ðkÞÞTQx½1�ðkÞþðu½1�ðkÞÞTRu½1�ðkÞþV ½0�ðx½0�ðkþ1ÞÞ;
ð16Þ

where the states in (16) are obtained as follows:

x½1�ðtþ1Þ ¼ Fðx½1�ðtÞ; x½1�ðt�h1Þ; x½1�ðt�h2Þ;…; x½1�ðt�hlÞ;u½1�ðtÞÞ;
t ¼ 0;1;…; k�1 ð17Þ

and

x½0�ðtþ1Þ ¼ Fðx½1�ðtÞ; x½1�ðt�h1Þ; x½1�ðt�h2Þ;…; x½1�ðt�hlÞ;u½1�ðtÞÞ;
t ¼ k; kþ1;⋯ ð18Þ

For the iteration step i ¼ 1, 2, …we have the iterations as
follows:

u½iþ1�ðkÞ ¼ arg inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½i�ðxðkþ1ÞÞg; ð19Þ

and

V ½iþ1�ðx½iþ1�ðkÞÞ ¼ ðx½iþ1�ðkÞÞTQx½iþ1�ðkÞþðu½iþ1�ðkÞÞTRu½iþ1�ðkÞ
þV ½i�ðx½i�ðkþ1ÞÞ; ð20Þ

where V ½i�ðxðkþ1ÞÞ in (19) is obtained as follows:

V ½i�ðxðkþ1ÞÞ ¼ arg inf
uðkþ1Þ

fxT ðkþ1ÞQxðkþ1ÞþuT ðkþ1ÞRuðkþ1Þ

þV ½i�1�ðxðkþ2ÞÞg; ð21Þ
and the states in (20) are updated as follows:

x½iþ1�ðtþ1Þ ¼ Fðx½iþ1�ðtÞ; x½iþ1�ðt�h1Þ; x½iþ1�ðt�h2Þ;…;

x½iþ1�ðt�hlÞ;u½iþ1�ðtÞÞ; t ¼ 0;1;…; k�1 ð22Þ
and

x½i�ðtþ1Þ ¼ Fðx½iþ1�ðtÞ; x½iþ1�ðt�h1Þ; x½iþ1�ðt�h2Þ;…;

x½iþ1�ðt�hlÞ;u½iþ1�ðtÞÞ; t ¼ k; kþ1;⋯ ð23Þ
Case 2: There exists finite-horizon admissible control sequence

Uðk; kþmÞ ¼ ðβðkÞ;…;βðkþmÞÞ whichmakes xf ðxðkÞ;Uðk; kþmÞÞ ¼ 0.
We suppose that for xðkþ1Þ, there exists optimal control sequence
Unðkþ1; kþ j�1Þ ¼ ðunðkþ1Þ;unðkþ2Þ;…;unðkþ j�1ÞÞ. For time
step k, the iteration ADP algorithm between

u½1�ðkÞ ¼ arg inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½0�ðxðkþ1ÞÞg; ð24Þ

and

V ½1�ðx½1�ðkÞÞ ¼ ðx½1�ðkÞÞTQx½1�ðkÞþðu½1�ðkÞÞTRu½1�ðkÞþV ½0�ðx½0�ðkþ1ÞÞ;
ð25Þ

where 8xðkþ1Þ, V ½0�ðxðkþ1ÞÞ in (24) is obtained as

V ½0�ðxðkþ1ÞÞ ¼ Jðxðkþ1Þ;Unðkþ1; kþ j�1Þ
¼ Jnðxðkþ1ÞÞ: ð26Þ

In (25), V ½0�ðx½0�ðkþ1ÞÞ is obtained by the similar equation (26). The
states in (25) are obtained as

x½1�ðtþ1Þ ¼ Fðx½1�ðtÞ; x½1�ðt�h1Þ; x½1�ðt�h2Þ;…;

x½1�ðt�hlÞ;u½1�ðtÞÞ; t ¼ 0;1;…; k�1; ð27Þ
and

x½0�ðtþ1Þ ¼ Fðx½1�ðtÞ; x½1�ðt�h1Þ; x½1�ðt�h2Þ;…;

x½1�ðt�hlÞ;u½1�ðtÞÞ; t ¼ k; kþ1;⋯ ð28Þ
For the iteration step i¼ 1;2;…, the iteration algorithm will be

implemented as follows:

u½iþ1�ðkÞ ¼ arg inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½i�ðxðkþ1ÞÞg; ð29Þ

and

V ½iþ1�ðx½iþ1�ðkÞÞ ¼ ðx½iþ1�ðkÞÞTQx½iþ1�ðkÞþðu½iþ1�ðkÞÞTRu½iþ1�ðkÞ
þV ½i�ðx½i�ðkþ1ÞÞ; ð30Þ

where V ½i�ðxðkþ1ÞÞ in (29) is updated as

V ½i�ðxðkþ1ÞÞ ¼ inf
uðkþ1Þ

fxT ðkþ1ÞQxðkþ1ÞþuT ðkþ1ÞRuðkþ1Þ

þV ½i�1�ðxðkþ2ÞÞg; ð31Þ
and the states in (30) are obtained as

x½iþ1�ðtþ1Þ ¼ Fðx½iþ1�ðtÞ; x½iþ1�ðt�h1Þ; x½iþ1�ðt�h2Þ;…;

x½iþ1�ðt�hlÞ;u½iþ1�ðtÞÞ; t ¼ 0;1;…; k�1 ð32Þ
and

x½i�ðtþ1Þ ¼ Fðx½iþ1�ðtÞ; x½iþ1�ðt�h1Þ; x½iþ1�ðt�h2Þ;…;

x½iþ1�ðt�hlÞ;u½iþ1�ðtÞÞ; t ¼ k; kþ1;… ð33Þ
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This completes the iteration algorithm. From the two cases we
can see that, if V ½0� ¼ 0 in (25), then Case 1 is a special one of Case 2.
In the following, the algorithms are summarized as follows.

Remark 4. For the state x(k) of system (1), which is driven by the fixed
initial states χðtÞ; �hlrtr0. If there exists a control sequence
Uðk; kÞ ¼ ðβðkÞÞ, which makes xðkþ1Þ ¼ 0 hold, then we will use
Case 1 of the algorithm to obtain the optimal control. Otherwise, i.e.,
there does not exist Uðk; kÞ, which makes xðkþ1Þ ¼ 0 hold. But there is
a control sequence Uðk; kþmÞ ¼ ðβðkÞ;…;βðkþmÞÞ which makes
xf ðxðkÞ;Uðk; kþmÞÞ ¼ 0, then we will adopt Case 2 of the algorithm.
The detailed implementation process of the second algorithm is as
follows.

For system (1), there exists arbitrary finite-horizon admissible
control sequence Uðk; kþmÞ ¼ ðβðkÞ;…;βðkþmÞÞ and the corre-
sponding state sequence ðxðkþ1Þ;…; xðkþmÞ; xðkþmþ1ÞÞ in which
xðkþmþ1Þ ¼ 0. It is clearly that Uðk; kþmÞ may not be optimal
one. Which means two points: (1) the length mþ1 of control
sequence Uðk; kþmÞ may not be optimal. (2) The law of control
sequence Uðk; kþmÞ may not be optimal. So it is necessary to use
the proposed algorithm to obtain the optimal one.

We start to discuss the proposed algorithm from the state xðkþmÞ
now. Obviously, the situation of xðkþmÞ is belongs to Case 1, so the
optimal control for xðkþmÞ can be obtained by Case 1 of the
proposed algorithm. Although the state xðkþmÞ can reach to zero
in one step, the optimal control step number may be more than one,
this property can be seen in Corollary 1. Next, we can obtain the
optimal control for xðkþm�1Þ according to Case 2 of the proposed
algorithm. Continue this process, until the optimal control of state x
(k) is obtained. From [28] we known that if the optimal control
length of state xðkþm1þ1Þ is the same as the one of xðkþm1Þ, then
we say that the two states xðkþm1Þ and xðkþm1þ1Þ are in the same
circular region. The finite-horizon optimal control for the two states
are same. The detailed analysis can be seen in [28].

Remark 5. The proposed algorithm is novel and different from the
algorithms in [28,30–32].

(a) Reference [28] is about the nonlinear systems without delays.
While this paper considers the time-delay systems. So the
algorithm in [28] cannot be used to deal with optimal control
problem of time-delay systems.

(b) To overcome the difficulty of time delay, the state updating is
used to determine the optimal states of time-delay system. So
in this paper, besides the performance index function iteration
and control iteration, the state updating is necessary, which is
the lacking one in reference [28,30,32].

(c) The algorithm in [31] is about the multi-objective optimal control,
which considers the infinite-horizon situation. While in this
paper, the finite-horizon optimal control method is presented.

Algorithm 1. ADP algorithm.

Initialization:
Compute u½1�ðkÞ and V ½1�ðx½1�ðkÞÞ by (15) and (16) in Case 1, or
by (24) and (25) in Case 2;

Update:

Update u½iþ1�ðkÞ and V ½iþ1�ðx½iþ1�ðkÞÞ by (19) and (20) in Case 1,
or by (29) and (30) in Case 2.

3.2. Convergence analysis of the improved iteration algorithm

In the above subsection, the novel algorithm for finite-horizon
time-delay nonlinear systems has been proposed in detail. In the
following part, we will prove that the algorithm is convergent and

the limitation of the sequence of performance index functions
V ½iþ1�ðx½iþ1�ðkÞÞ satisfies the HJB equation (7).

Theorem 1. For system (1), the states of the system are driven by a
given initial state χðtÞ; �hlrtr0, and the initial finite-horizon
admissible control policy βðtÞ. The iteration algorithm is as in
(15)–(33). For time step k, 8x(k) and Uðk; kþ iÞ, we define

Λ½iþ1�ðxðkÞ;Uðk; kþ iÞÞ ¼ xT ðkÞQxðkÞþuT ðkÞRuðkÞ
þxT ðkþ1ÞQxðkþ1ÞþuT ðkþ1ÞRuðkþ1Þ
þ⋯þxT ðkþ iÞQxðkþ iÞþuT ðkþ iÞRuðkþ iÞ
þV ½0�ðxðkþ iþ1ÞÞ; ð34Þ

where V ½0�ðxðkþ iþ1ÞÞ as in (26) and V ½iþ1�ðxðkÞÞ is updated as (31).
Then we have

V ½iþ1�ðxðkÞÞ ¼ inf
Uðk;kþ iÞ

Λ½iþ1�ðxðkÞ;Uðk; kþ iÞÞ: ð35Þ

Proof. From (31) we have

V ½iþ1�ðxðkÞÞ ¼ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞ

þ inf
uðkþ1Þ

fxT ðkþ1ÞQxðkþ1ÞþuT ðkþ1ÞRuðkþ1Þ

þ⋯þ inf
uðkþ iÞ

fxT ðkþ iÞQxðkþ iÞþuT ðkþ iÞRuðkþ iÞg

þV ½0�ðxðkþ iþ1ÞÞg⋯gg: ð36Þ
So we can further obtain

V ½iþ1�ðxðkÞÞ ¼ inf
Uðk;kþ iÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞ

þxT ðkþ1ÞQxðkþ1ÞþuT ðkþ1ÞRuðkþ1Þ
þ⋯þxT ðkþ iÞQxðkþ iÞþuT ðkþ iÞRuðkþ iÞ
þV ½0�ðxðkþ iþ1ÞÞg; ð37Þ

Thus we can have

V ½iþ1�ðxðkÞÞ ¼ inf
Uðk;kþ iÞ

Λ½iþ1�ðxðkÞ;Uðk; kþ iÞÞ:□ ð38Þ

Based on Theorem 1, we give the monotonicity theorem about
the sequence of performance index functions V ½iþ1�ðx½iþ1�ðkÞÞ,
8x½iþ1�ðkÞ.

Theorem 2. For system (1), let the iteration algorithm be as in
(15)–(33). Then we have V ½iþ1�ðx½i�ðkÞÞrV ½i�ðx½i�ðkÞÞ, 8 i40, for Case 1;
V ½iþ1�ðx½i�ðkÞÞrV ½i�ðx½i�ðkÞÞ, 8 iZ0, for Case 2.

Proof. We first give the proof for Case 2. Define Û ðk; kþ iÞ ¼
ðu½i�ðkÞ;…;u½1�ðkþ i�1Þ;unðkþ iÞÞ, then according to the definition
of Λ½iþ1�ðxðkÞ; Û ðk; kþ iÞÞ in (34), we have

Λ½iþ1�ðxðkÞ; Û ðk; kþ iÞÞ ¼ xT ðkÞQxðkÞþðu½i�ðkÞÞTRu½i�ðkÞ
þ⋯þxT ðkþ i�1ÞQxðkþ i�1Þ
þðu½1�ðkþ i�1ÞÞTRu½1�ðkþ i�1Þ
þxT ðkþ iÞQxðkþ iÞþðunðkþ iÞÞTRunðkþ iÞ
þV ½0�ðxðkþ iþ1ÞÞ:□ ð39Þ

From (26) and (4), we get

V ½0�ðxðkþ iÞÞ ¼ Jnðxðkþ iÞÞ
¼ xT ðkþ iÞQxðkþ iÞþðunðkþ iÞÞTRunðkþ iÞ
þ Jnðxðkþ iþ1ÞÞ
¼ xT ðkþ iÞQxðkþ iÞþðunðkþ iÞÞTRunðkþ iÞ
þV ½0�ðxðkþ iþ1ÞÞ: ð40Þ
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On the other side, from (31), we haveget

V ½i�ðxðkÞÞ ¼ xT ðkÞQxðkÞþðu½i�ðkÞÞTRu½i�ðkÞ
þ⋯þxT ðkþ i�1ÞQxðkþ i�1Þþðu½1�ðkþ i�1ÞÞTRu½1�ðkþ i�1Þ
þV ½0�ðxðkþ iÞÞ: ð41Þ

So according to (40), we obtainget

Λ½iþ1�ðxðkÞ; Û ðk; kþ iÞÞ ¼ V ½i�ðxðkÞÞ: ð42Þ
From Theorem 1, we can get

V ½iþ1�ðxðkÞÞrΛ½iþ1�ðxðkÞ; Û ðk; kþ iÞÞ: ð43Þ
So we have 8xðkÞ

V ½iþ1�ðxðkÞÞrV ½i�ðxðkÞÞ; ð44Þ
i.e., for x½i�ðkÞ

V ½iþ1�ðx½i�ðkÞÞrV ½i�ðx½i�ðkÞÞ: ð45Þ
For Case 1, we set V ½0� ¼ 0, the proof is similar with Case 2.
From Theorem 2, we can conclude that the performance index

function fV ½iþ1�ðxðkÞÞg is a monotonically nonincreasing sequence.
As the performance index function is positive definite, so we can
say that the performance index function is convergent. Thus we
define V1ðxðkÞÞ ¼ limi-1V ½iþ1�ðxðkÞÞ, u1ðkÞ ¼ lim i-1u½iþ1�ðkÞ and
x1ðkÞ is the state under u1ðkÞ. In the following, we give a theorem
to indicate that V1ðx1ðkÞÞ satisfies HJB equation.

Theorem 3. For system (1), the iteration algorithm is as in (15)–(33).
Then we haveget

V1ðx1ðkÞÞ ¼ ðx1ðkÞÞTQx1ðkÞþðu1ðkÞÞTRu1ðkÞþV1ðx1ðkþ1ÞÞ:
ð46Þ

Proof. Let ϵ be an arbitrary positive number. Since V ½iþ1�ðxðkÞÞ is
nonincreasing and V1ðxðkÞÞ ¼ lim i-1V ½iþ1�ðxðkÞÞ, there exists a
positive integer p such thatget

V ½p�ðxðkÞÞ�ϵrV1ðxðkÞÞrV ½p�ðxðkÞÞ: ð47Þ
So we have

V1ðxðkÞÞZ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½p�1�ðxðkþ1ÞÞg�ϵ: ð48Þ

According to Theorem 2, we have

V1ðxðkÞÞZ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV1ðxðkþ1ÞÞg�ϵ ð49Þ

hold. Since ϵ is arbitrary, we have

V1ðxðkÞÞZ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV1ðxðkþ1ÞÞg: ð50Þ

On the other side, according to Theorem 2, we haveget

V1ðxðkÞÞrV ½iþ1�ðxðkÞÞ
¼ inf

uðkÞ
fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½i�ðxðkþ1ÞÞg: ð51Þ

Let i-1, we haveget

V1ðxðkÞÞr inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV1ðxðkþ1ÞÞg: ð52Þ

So from (50) and (52), we can getget

V1ðxðkÞÞ ¼ inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV1ðxðkþ1ÞÞg; 8xðkÞ: ð53Þ

According to (29), we obtain u1ðkÞ. From (32) and (33), we have
the corresponding state x1ðkÞ, thus the following expression:

V1ðx1ðkÞÞ ¼ ðx1ðkÞÞTQx1ðkÞþðu1ðkÞÞTRu1ðkÞþV1ðx1ðkþ1ÞÞ ð54Þ
holds, which completes the proof. □

So we can say that V1ðx1ðkÞÞ ¼ JnðxnðkÞÞ. Until now, we have
proven that for 8k, the iteration algorithm converges to the optimal
performance index functionwhen the iteration index i-1. For finite-
horizon optimal control problem of time-delay systems, another
aspect is the length N of the optimal control sequence. In this paper,
the specific value of N is not known, but we can analyze the
relationship between the iteration index i and the terminal time N.

Theorem 4. Let the iteration algorithm be in (24)–(33). If
V ½0�ðxðkþ iþ1ÞÞ ¼ Jðxðkþ iþ1Þ;Unðkþ iþ1; kþ iþ j�1ÞÞ; 8xðkþ iþ1Þ,
then the state at time step k of system (1) can reach to zero in N¼ iþ j
steps for Case 2.

Proof. For Case 2 of the iteration algorithm, we have

V ½iþ1�ðx½iþ1�ðkÞÞ ¼ ðx½iþ1�ðkÞÞTQx½iþ1�ðkÞþðu½iþ1�ðkÞÞTRu½iþ1�ðkÞ
þðx½i�ðkþ1ÞÞTQx½i�ðkþ1Þþðu½i�ðkþ1ÞÞTRu½i�ðkþ1Þ
þ⋯

þðx½1�ðkþ iÞÞTQx½1�ðkþ iÞþðu½1�ðkþ iÞÞTRu½1�ðkþ iÞ
þV ½0�ðx½0�ðkþ iþ1ÞÞ:□ ð55Þ

According to [28], we can see that the optimal control sequence
for x½iþ1�ðkÞ is Unðk; kþ iÞ ¼ ðu½iþ1�ðkÞ;u½i�ðkþ1Þ;…;u½1�ðkþ iÞÞ. As we
have V ½0�ðx½0�ðkþ iþ1ÞÞ ¼ Jðx½0�ðkþ iþ1Þ;Unðkþ iþ1; kþ iþ j�1ÞÞ, so
we can obtain N¼ iþ j.

For Case 1 of the proposed iteration algorithm, we have the
following corollary.

Corollary 1. Let the iteration algorithm be in (15)–(23). Then for
system (1), the state at time step k can reach to zero in N¼ iþ1 steps
for Case 1.

Proof. For Case 1, we have

V ½iþ1�ðx½iþ1�ðkÞÞ ¼ ðx½iþ1�ðkÞÞTQx½iþ1�ðkÞþðu½iþ1�ðkÞÞTRu½iþ1�ðkÞ
þðx½i�ðkþ1ÞÞTQx½i�ðkþ1Þþðu½i�ðkþ1ÞÞTRu½i�ðkþ1Þ
þ⋯

þðx½1�ðkþ iÞÞTQx½1�ðkþ iÞþðu½1�ðkþ iÞÞTRu½1�ðkþ iÞ
þV ½0�ðx½0�ðkþ iþ1ÞÞ
¼ Jðx½iþ1�ðkÞ;Uðk; kþ iÞÞ; ð56Þ

where Unðk; kþ iÞ ¼ ðu½iþ1�ðkÞ;…;u½1�ðkþ iÞÞ, and each element of
Unðk; kþ iÞ is obtained from (29). According to Case 1, x½0�ðkþ iþ1Þ ¼
0. So the state at time step k can reach to zero in N¼ iþ1 steps. □

We can see that for time step k the optimal controller is
obtained when i-1, which induces the time steps N-1
according to Theorem 4 and Corollary 1. In this paper, we want
to get the nearly optimal performance index function within finite
N time steps. The following corollary is used to prove the
existences of nearly optimal performance index function and
nearly optimal control.

Corollary 2. For system (1), the iteration algorithm is as in
(15)–(33), then 8ε40, ( IAN , 8 i4 I, we have

V ½iþ1�ðx½iþ1�ðkÞÞ� JnðxnðkÞÞ
��� ���rε: ð57Þ

Proof. From Theorems 2 and 3, we can see that limi-1
V ½i�ðx½i�ðkÞÞ ¼ JnðxnðkÞÞ, then from the limitation definition, the con-
clusion is obtained easily. □
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So we can say that V ½i�ðx½i�ðkÞÞ is the nearly optimal performance
index function in the sense of ε, the corresponding nearly optimal
control is defined as follows:

uεðkÞ ¼ arg inf
uðkÞ

fxT ðkÞQxðkÞþuT ðkÞRuðkÞþV ½i�ðxðkþ1ÞÞg; ð58Þ

Remark 6. From Theorem 4 and Corollary 1, we can see that the
length of the control sequence N is dependent on the iteration
step. In addition, from Corollary 2, we know that the iteration step
is dependent on ε. So it is concluded that the length of the control
sequence N is dependent on ε.

From (57), we can see that the inequality is hard to satisfy. So in
practice, we adopt the following standard to substitute (57):

V ½iþ1�ðx½iþ1�ðkÞÞ�V ½i�ðx½i�ðkÞÞ
��� ���rε: ð59Þ

3.3. Neural network implementation of the iteration ADP algorithm

The nonlinear optimal control solution relies on solving the HJB
equation, and the exact solution of which is generally impossible to
be obtained for nonlinear time-delay system. So we employ neural
networks for approximations of u½i�ðkÞ and J½iþ1�ðxðkÞÞ in this section.

Assume that the number of hidden layer neurons is denoted by
l, the weight matrix between the input layer and the hidden layer
is denoted by V, the weight matrix between the hidden layer and
the output layer is denoted by W, then the output of three-layer
neural network is represented by

F̂ ðX;W ; Ŵ Þ ¼WTσðŴ T
XÞ; ð60Þ

where σðŴ T
XÞARl; ½σðzÞ�i ¼ ðezi �e� zi Þ=ðezi þe� zi Þ; i¼ 1;…l, are the

activation function. The gradient descent rule is adopted for the
weight update rules of each neural network.

Here, there are two networks, which are critic network and
action network. Both neural networks are chosen as three-layer
back-propagation (BP) neural networks. The whole structure
diagram is shown in Fig. 1.

3.3.1. The critic network
The critic network is used to approximate the performance

index function V ½iþ1�ðxðkÞÞ. The output of the critic network is
denoted as follows:

V̂
½iþ1�ðxðkÞÞ ¼ ðw½iþ1�

c ÞTσððv½iþ1�
c ÞTxðkÞÞ: ð61Þ

The target function can be written as follows:

V ½iþ1�ðxðkÞÞ ¼ xT ðkÞQxðkÞþðû ½iþ1�ðkÞÞTRû ½iþ1�ðkÞþ V̂
½i�ðxðkþ1ÞÞ: ð62Þ

Then we define the error function for the critic network as
follows:

e½iþ1�
c ðkÞ ¼ V̂

½iþ1�ðxðkÞÞ�V ½iþ1�ðxðkÞÞ: ð63Þ

The objective function to be minimized in the critic network is

E½iþ1�
c ðkÞ ¼ 1

2
ðe½iþ1�

c ðkÞÞ2: ð64Þ

So the gradient-based weights update rule for the critic net-
work is given by

w½iþ2�
c ðkÞ ¼w½iþ1�

c ðkÞþΔw½iþ1�
c ðkÞ;

v½iþ2�
c ðkÞ ¼ v½iþ1�

c ðkÞþΔv½iþ1�
c ðkÞ; ð65Þ

where

Δw½iþ1�
c ðkÞ ¼ �αc

∂E½iþ1�
c ðkÞ

∂w½iþ1�
c ðkÞ

;

Δv½iþ1�
c ðkÞ ¼ �αc

∂E½iþ1�
c ðkÞ

∂v½iþ1�
c ðkÞ

; ð66Þ

and the learning rate αc of critic network is positive number.

3.3.2. The action network
In the action network the states xðkÞ;…; xðk�hlÞ are used as

inputs to create the optimal control, û ½i�ðkÞ as the output of the
network. The output can be formulated as follows:

û ½i�ðkÞ ¼ ðw½i�
a ÞTσððv½i�a ÞTYðkÞÞ; ð67Þ

where YðkÞ ¼ ½xT ðkÞ;…; xT ðk�hlÞ�T .
We define the output error of the action network as follows:

e½i�a ðkÞ ¼ û ½i�ðkÞ�u½i�ðkÞ: ð68Þ
The weights in the action network are updated to minimize the

following performance error measure:

E½i�a ðkÞ ¼
1
2
ðe½i�a ðkÞÞTe½i�a ðkÞ: ð69Þ

The weights updating algorithm is similar to the one for the
critic network. By the gradient descent rule, we can obtain

w½iþ1�
a ðkÞ ¼w½i�

a ðkÞþΔw½i�
a ðkÞ;

v½iþ1�
a ðkÞ ¼ v½i�a ðkÞþΔv½i�a ðkÞ; ð70Þ

where

Δw½i�
a ðkÞ ¼ �αa

∂E½i�a ðkÞ
∂w½i�

a ðkÞ
;

Δv½i�a ðkÞ ¼ �αa
∂E½i�a ðkÞ
∂v½i�a ðkÞ

; ð71Þ

and the learning rate αa of action network is the positive number.
In the next section, we will give the simulation study to explain

the proposed iteration algorithm in details.

4. Simulation study

4.1. Example 1

We take the example in [28] with modification

xðtþ1Þ ¼ xðt�2Þþ sin ð0:1x2ðtÞþuðtÞÞ: ð72Þ
We give the initial states as χ1ð�2Þ ¼ χ1ð�1Þ ¼ χ1ð0Þ ¼ 1:5, and

the initial control policy as βðtÞ ¼ sin �1ðxðtþ1Þ�xðt�2ÞÞ�0:1x2ðtÞ.
We implement the proposed algorithm at the time instant k¼3.

First, according to the initial control policy βðtÞ ¼ sin �1ðxðtþ1Þ�
xðt�2ÞÞ�0:1x2ðtÞ of system (72), we give fist group of state data:
xð1Þ ¼ 0:8, xð2Þ ¼ 0:7, xð3Þ ¼ 0:5, xð4Þ ¼ 0. We also can get the second
group of state data: xð1Þ ¼ 1:4, xð2Þ ¼ 1:2, xð3Þ ¼ 1:1, xð4Þ ¼ 0:8,
xð5Þ ¼ 0:7, xð6Þ ¼ 0:5, xð7Þ ¼ 0. Obviously, for the first sequences of
states we can get the optimal controller by Case 1 of the proposed
algorithm. For the second one, the optimal controller can be obtained

Critic Network

Action Network

* *( ( ))J x k

*( )v k

( ), , ( )lx k x k h

( )x k
Plant

Plant

Critic Network

*( )x k

Fig. 1. The structure diagram of the algorithm.
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by Case 2 of the proposed algorithm, and the optimal control
sequence Uoðkþ1; kþ jþ1Þ can be obtained in the first group of state
data. We select Q ¼ R¼ 1.

The three-layer BP neural networks are used to approach the
critic network and the action network with the structure 2�8�1
and 6�8�1. The iteration times of the weights updating for two
neural networks are 200. The initial weights are chosen randomly
from ð�0:1;0:1Þ, and the learning rates are αa ¼ αc ¼ 0:05. The
performance index trajectories for the first and the second state data
group are shown in Figs. 2 and 3, respectively. According to Theorem
2, for the first state group, the performance index is decreasing as
i40. For the second state group, the performance index is decreas-
ing as iZ0. The state trajectory and the control trajectory of the
second state data are shown in Figs. 4 and 5. From the figures, we can
see that the system is asymptotically stable. The simulation study
shows the new iteration ADP algorithm is very feasible.

4.2. Example 2

For demonstrating the effectiveness of the proposed iteration
algorithm in this paper, we give a more substantial application.

Consider the ball and beam experiment. A ball is placed on a beam
as shown in Fig. 6.

The beam angle α can be expressed in terms of the servo gear
angle θ as α� ð2d=LÞθ. The equation of motion for the ball is given
as follows:

M

R2þm
� �

€rþmg sinα�mrð _αÞ2 ¼ 0; ð73Þ

where r is the ball position coordinate. The mass of the ball m ¼
0.1 kg, the radius of the ball R ¼ 0.015 m, the radius of the lever gear
d ¼ 0.03 m, the length of the beam L ¼ 1.0 m and the ball's moment
of inertia M ¼ 10�5 kg m2. Given the time step Δh, let rðtÞ ¼ rðtΔhÞ,
αðtÞ ¼ αðtΔhÞ and θðtÞ ¼ θðtΔhÞ, then Eq. (73) is discretized as

xðtþ1Þ ¼ xðtÞþyðtÞ�A sin
2d
L
θðtÞ

� �
þBxðtÞðθðtÞ�zðtÞÞ2

yðtþ1Þ ¼ yðtÞ�A sin
2d
L
θðtÞ

� �
þBxðtÞðθðtÞ�zðtÞÞ2

zðtþ1Þ ¼ θðtÞ;

8>>>>><
>>>>>:

ð74Þ

where A¼mgΔh2R2=ðMþmR2Þ and B¼ 4d2mR2=ðL2ðMþmR2ÞÞ. The
state XðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞT , in which xðtÞ ¼ rðtÞ, yðtÞ ¼ rðtÞ�rðt�1Þ
and zðtÞ ¼ θðt�1Þ. The control input is uðtÞ ¼ θðtÞ. For the convenience
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Fig. 2. The performance trajectory for xð3Þ ¼ 0:5.
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Fig. 3. The performance trajectory for xð3Þ ¼ 1:1.
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Fig. 4. The state trajectory using the second state data group.
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Fig. 5. The control trajectory using the second state data group.
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of analysis, system (74) is rewritten as follows:

xðtþ1Þ ¼ xðt�2ÞþyðtÞ�A sin
2d
L
θðtÞ

� �
þBxðtÞðθðtÞ�zðtÞÞ2

yðtþ1Þ ¼ yðtÞ�A sin
2d
L
θðtÞ

� �
þBxðtÞðθðtÞ�zðt�2ÞÞ2

zðtþ1Þ ¼ θðtÞ:

8>>>>><
>>>>>:

ð75Þ

In this paper,Δh is selected as 0.1, the states of time-delay system
(75) are Xð1Þ ¼ ½1:0027;0:0098;1�T , Xð2Þ ¼ ½0:0000;0:0057;1:0012�T ,
Xð3Þ ¼ ½1:0000;0:0016;1:0000�T , Xð4Þ ¼ ½1:0002; �0:0025;0:9994�T
and Xð5Þ ¼ ½0;0;0�T . The initial states are χð�2Þ ¼ ½0:9929;0:0221;
1:0000�T , χð�1Þ ¼ ½�0:0057;0:0180;1:0000�T and χð0Þ ¼ ½0:9984;
0:0139;1:0000�T . The initial control sequence is (1.0000, 1.0012,
1.0000, 0.9994, 0.0000). Obviously, the initial control sequence and
states are not the optimal ones, so the proposed algorithm in this
paper is adopt to obtain the optimal solution. We select Q ¼ R¼ 1.
The iteration times of the weights updating for two neural networks
are 200. The initial weights of critic network are chosen randomly
from (�0.1, 0.1), the initial weights of action network are chosen
randomly from ½�2;2�, and the learning rates are αa ¼ αc ¼ 0:001.
For the state Xð4Þ ¼ ½1:0002; �0:0025;0:9994�T . For the state
Xð1Þ ¼ ½1:0027;0:0098;1�T . Obviously, for the state Xð4Þ we can get
the optimal controller by Case 1 of the proposed algorithm. For the

state Xð1Þ, the optimal controller can be obtained by Case 2 of the
proposed algorithm. Then we obtain the performance index function
trajectories of the two states as shown in Figs. 7 and 8, which satisfy
Theorem 2, i.e., for the state Xð4Þ, the performance index is

Fig. 6. Ball and beam experiment.
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Fig. 7. The performance trajectory for Xð4Þ.
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Fig. 8. The performance trajectory for Xð1Þ.
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Fig. 9. The state trajectory of x(t).
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Fig. 10. The state trajectory of y(t).
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decreasing as i40, for the state Xð1Þ, the performance index is
decreasing as iZ0. The state trajectories and the control trajectory of
state Xð1Þ are shown in Figs. 9–12. From the figures, we can see that
the states of the system are asymptotically stable. Based on the above
analysis, we can conclude that the proposed iteration ADP algorithm
is satisfactory.

5. Conclusion

This paper proposed a novel ADP algorithm to deal with the
nearly finite-horizon optimal control for a class of deterministic
nonaffine time-delay nonlinear systems. For determining the
optimal state, the state updating was contained in the novel ADP
algorithm. The results of theorems showed the proposed iteration
algorithmwas convergent. Moreover, the relationship between the
iteration steps and time steps was given. The simulation study has
demonstrated the effectiveness of the proposed control algorithm.
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