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Inevitable uncertainties and cross couplings between rigid and flexible modes pose huge challenges 
to control system design for flexible air-breathing hypersonic vehicles. This paper addresses an active 
robust control scheme that can simultaneously suppress diverse uncertainties and flexible modes using 
active approaches rather than inherent system robustness. Frequency-domain analysis is conducted to 
investigate the cross couplings. A novel conclusion lies in that the most significant cross couplings exist 
between the flexible modes and the rigid-body phugoid modes, followed by the altitude mode. Based on 
the analysis, a robust control scheme is proposed which consists of a stabilizing control frame and two 
active control techniques: a nonlinear extended state observer (ESO) and a notch filter. The ESO estimates 
diverse uncertainties to form a compensation law, and the notch filter is integrated to prevent the flexible 
modes from being excited by some specific high-frequency signals coming from the ESO estimated 
values. Thus, both uncertainties and flexible modes can be simultaneously suppressed. A Lyapunov-
based stability analysis is conducted for the overall closed-loop system. At last, several representative 
simulations are conducted to demonstrate the advantages of the proposed active control scheme.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Air-breathing hypersonic vehicles have been drawing lots of at-
tention in recent decades because of their dramatic advantages 
such as fast flight speed, large payload, good cost-effectiveness, 
etc. Considerable design efforts since 1960s have brought encour-
aging achievements, including the successful flight tests of NASA 
X-43A [26] and, more recently, U.S. Air Force X-51A [10]. However, 
it is still a long way for practical and affordable vehicles to be 
used in real applications due to their peculiar dynamic behavior. 
These vehicles usually consist of long, slender configurations with 
light materials, causing noticeable flexible modes that own much 
slower frequencies than normal aircraft [29,17,18,3,1]. Significant 
couplings therefore exist between rigid and flexible modes, making 
control system design a challenging task. Particularly if the flexible 
modes get excited due to, for example, extreme aerodynamic heat-
ing, these coupling effects may cause instabilities and even poten-
tial structural damages. Besides the flexibility effects, uncertainties 
also exist inevitably in practical applications because of complex, 
even unknown vehicle behaviors and environment features dur-
ing large flight envelopes [4,24,30,31,19]. In fact, the uncertainty 
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effects are tightly connected with the flexibility effects: some spe-
cific high-frequency uncertainties could excite the flexible modes 
and, in return, the excited flexibility effects could generate larger 
uncertainties. This interconnection can further degrade control per-
formances. Generally, for a flexible air-breathing hypersonic vehicle 
(FAHV), interactions of the rigid modes, flexible modes, controls, 
and uncertainties can be illustrated as in Fig. 1.

In view of the interactions mentioned above, it is quite required 
for FAHV to design a robust control scheme that can simultane-
ously achieve active suppression of both the flexible modes and 
diverse uncertainties. Here, “active” means special designs accord-
ing to vehicle characteristics are included, which differs from other 
“passive” suppression ways roughly based on inherent system ro-
bustness. However, this simultaneous active control idea is, to the 
best of our knowledge, not available in current researches. In the 
literature, linear approaches [25,28,12,15] and nonlinear control 
design such as feedback linearization [21], robust adaptive inver-
sion [6], and high-order sliding mode technique [33] were adopted. 
In these literatures, the flexibility effects were taken as uncertain-
ties to the rigid-body model and were implicitly rejected by inher-
ent system robustness. This passive idea is applicable only when 
flexible modes are not excited thus the coupling effects are not se-
vere enough. As a rare exception, [16] utilized an active idea where 
a notch filter that acted on the control inputs was designed so 
as to actively suppress the flexible modes. Unfortunately, in this 
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Fig. 1. Interactions of the rigid modes, flexible modes, controls, and uncertainties.

paper, uncertainties, as a tightly-connected factor with the flexi-
bility, were not simultaneously considered. Similarly, although the 
uncertainty rejection problem was (passively) considered in many 
literatures [28,12,21], the flexibility rejection problem was not in-
tegrated there as a whole.

Building upon our recent work on uncertainty modeling and 
analysis [22], we present here an active robust control scheme for 
uncertainty and flexible modes suppression of the FAHV model by 
Bolender and Doman [3,1]. This scheme consists of a main stabi-
lizing control frame and two active control techniques in the main 
frame: a nonlinear observer for uncertainty estimation and a notch 
filter for flexibility suppression. Based on Fig. 1, the control idea is 
addressed as follows. First, to reject diverse uncertainties existing 
in Paths 4 and 5, the nonlinear observer is designed to actively 
estimate and compensate the uncertainty effects. Therefore, infor-
mation of the uncertainties is reflected in the controls through 
estimated signals. If the original uncertainties contain some com-
ponents with frequencies closed to the flexible modes, the esti-
mated signals may achieve an opposite result: they may excite 
the flexible modes and increase the couplings between rigid and 
flexible modes through Paths 1 and 2. To suppress this potential 
excitation effect, the notch filter is further designed subsequent to 
the uncertainty observers. In a sense, this control scheme makes a 
tradeoff between estimation performance and flexibility suppres-
sion. Therefore, both uncertainties and flexible excitations can be 
actively suppressed (not implicitly suppressed by inherent system 
robustness) simultaneously.

As for relevant control methods in the proposed scheme, non-
linear dynamic inversion (NDI) [27,11] is adopted to design the 
main stabilizing control frame. Its inherent drawback of requiring 
exact knowledge of model dynamics is counteracted by uncertainty 
estimation and compensation. The uncertainty observer is imple-
mented by an active disturbance rejection control (ADRC) [8,9,32,
7,13] technique: the extended state observer (ESO) technique. ESO 
utilizes nonlinear structures which exhibit high efficiency of esti-
mating both internal and external disturbances. Its great simplic-
ity can significantly shorten online computing time and meet fast 
computation requirement in practical hypersonic missions, which 
is a great advantage over other time-consuming estimation tech-
niques such as fuzzy logic and neural network. ESO also performs 
as a good low-pass filter, thus can be used to construct the notch 
filter. In this paper, both ESO and a traditional linear approach are 
utilized to design the notch filter, and their differences are also in-
vestigated.

The primary contributions of this paper lie in that: (a) model 
characteristics associated with uncertainties and cross flexibility 
couplings are analyzed; (b) based on the analysis, uncertainty 
rejection and flexibility suppression are treated as one intercon-
nected problem; (c) for this interconnected problem, an active 
scheme is proposed that can achieve simultaneous suppression 
Fig. 2. Geometry of the FAHV model.

by ESO and notch filter, respectively. The paper is organized as 
follows. The FAHV motion equations, together with model analy-
sis, are given in Section 2. Section 3 addresses the active control 
scheme. A main stabilizing control frame is firstly designed. Then 
uncertainty observers and flexible mode notch filters are devel-
oped. The frequency properties of the notch filters are also dis-
cussed in this section. Stability of the closed-loop system is derived 
based on Lyapunov theories in Section 4. Several representative 
simulations are conducted in Section 5. Section 6 concludes the 
paper and points out some future works.

2. Model description and analysis

2.1. Vehicle model

The vehicle studied in this paper is the model developed by 
Bolender and Doman [3,1] for the longitudinal dynamics of an
FAHV with the sketch illustrated in Fig. 2. Flexibility effects are 
included by modeling the fuselage as a free–free beam so that 
the flexible modes are orthogonal to the rigid-body modes and 
the coupling effects between the flexible and rigid dynamics oc-
cur through the forces and moments [5]. Assume a flat Earth and 
normalize the vehicle to unit depth. Nominal motion equations of 
FAHV without extra disturbances are described as

V̇ = (T cosα − D)/m − g sinγ (1)

γ̇ = (L + T sinα)/(mV ) − g cosγ /V (2)

ḣ = V sinγ (3)

α̇ = Q − γ̇ (4)

Q̇ = M/I yy (5)

η̈i = −2ξiωi η̇i − ω2
i ηi + Ni, i = 1,2,3 (6)

This model consists of eleven flight states: x = [V , γ , h, α, Q ]T

for the rigid-body with velocity V , flight-path angle (FPA) γ , 
altitude h, angle of attack (AOA) α, pitch rate Q , and η =
[η1, η̇1, η2, η̇2, η3, η̇3]T for the first three flexible modes. Here m
denotes mass, I yy is moment of inertia, and g represents gravita-
tional acceleration. The nominal modal frequencies are set as ω1 =
21.17 rad/s, ω2 = 53.92 rad/s, and ω3 = 109.1 rad/s [25], while 
for all flexible modes the damping ratio is constant: ξi = 0.02, in-
dicating a severe mode vibration. As depicted in Fig. 2, a canard is 
included as an extra actuator to overcome the nonminimum phase 
feature of the flight-path dynamics reported in [2]. Its deflection 
δc is ganged with the elevator deflection δe with a negative gain 
kec : δc = kecδe . Therefore, the actual control input that needs con-
trol law design is u = [δe, φ]T , where φ is the fuel equivalence 
ratio. The output to be controlled is selected as y = [V , h]T . The 
lift L, drag D , thrust T , pitching moment M , and generalized forces 
Ni are complicated nonlinear functions of the flight states and con-
trol inputs. For the sake of control design and stability analysis, 
Fiorentini [5] developed a control design model (CDM) to approx-
imate the forces and moment based on curve fitting. In the CDM, 
the forces and moment are described as
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T ≈ q̄S
[
CT ,φ(α)φ + CT (α) + Cη

T η
]

L ≈ q̄SCL(α, δ,η), D ≈ q̄SC D(α, δ,η)

M ≈ zT T + q̄Sc̄CM(α, δ,η)

Ni ≈ q̄S
[
Nα2

i α2 + Nα
i α + Nδe

i δe + Nδc
i δc + N0

i + Nη
i η

]
,

i = 1,2,3

(7)

where δ = [δc, δe]T , S , zT , and c̄ are the reference area, thrust 
moment arm, and mean aerodynamic chord, respectively. The co-
efficients are expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CT ,φ(α) = Cφα3

T α3 + Cφα2

T α2 + Cφα
T α + Cφ

T

CT (α) = C3
T α3 + C2

T α2 + C1
T α + C0

T

CL(α, δ,η) = Cα
L α + C δe

L δe + C δc
L δc + C0

L + Cη
L η

C D(α, δ,η) = Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2
e + C δe

D δe + C
δ2

c
D δ2

c

+ C δc
D δc + C0

D + Cη
Dη

CM(α, δ,η) = Cα2

M α2 + Cα
Mα + C δe

Mδe + C δc
Mδc + C0

M + Cη
Mη

Cη
j =

[
Cη1

j 0 Cη2
j 0 Cη3

j 0
]
, j = T , L, D, M

Nη
i = [

Nη1
i 0 Nη2

i 0 Nη3
i 0

]
, i = 1,2,3

(8)

The reader is referred to [5] for the numerical values of these 
coefficients. The dynamic pressure is calculated as q̄ = 0.5ρV 2, 
where the air density ρ is modeled as ρ = ρ0 exp(−h/h0) with 
ρ0 = 1.2266 kg/ m3 and h0 = 7315.2 m. Actuators are modeled as 
first-order low-pass filters with certain gains. Limits on the actua-
tor outputs are set as

−20 deg ≤ δc, δe ≤ 20 deg, 0.05 ≤ φ ≤ 1.5 (9)

2.2. Model analysis

Diverse uncertainties exist inevitably in practical flight. In our 
recent work [22], major uncertainties were divided into four cat-
egories: uncertainties relevant to flexibility, environment, rigid-
body aerodynamic coefficients, and control-oriented modeling er-
rors. Then a uniform uncertain model based on the nominal model 
(1)–(6) can be derived as

[ẋ, η̇]T = f (x,η, u, t) +
4∑

i=1

f 
i(x,η, u, t) (10)

where f (x, η, u, t) ∈ �11 denotes the nominal dynamics, while 
f 
i(x, η, u, t) represents different uncertainties. Detailed uncer-
tainty modeling procedure can be found in [22]. These uncer-
tainties affect the vehicle behaviors significantly. Take the dy-
namic pressure uncertainty (one of the environmental uncertain-
ties) for demonstration. For different dynamic pressures ranging 
from 2000 psf to 500 psf, the poles and zeros of the open-loop 
vehicle model migrate as shown in Fig. 3. It is seen that both 
the rigid and flexible modes are severely affected by the vary-
ing dynamic pressure. For example, the poles corresponding to the 
short period dynamics for q̄ = 500 psf reduces to about 50% of the 
values for q̄ = 2000 psf. This is reasonable because, as indicated 
in (7), a larger dynamic pressure yields larger forces and moments, 
thus drives the poles away from the imaginary axis. Fig. 3 also 
shows unstable poles of the short period dynamics and nonmini-
mum phase zeros of the flight-path dynamics, both of which pose 
huge challenges to control design. Uncertainties such as dynamic 
pressure variation may drive a stable system out of its inherent 
stability margin, thus should be suppressed by active approaches.
Fig. 3. Pole-zero map with dynamic pressure variation.

Table 1
Initial trim condition.

State Value State Value Input Value

V 7846.4 ft/s η1 0.594 ft
√

slug δe 0.12 rad
γ 0 rad η2 −0.0976 ft

√
slug φ 0.12

h 85 000 ft η3 −0.0335 ft
√

slug
α 0.0219 rad η̇i 0
Q 0 rad/s2

Besides diverse uncertainties, couplings between the rigid and 
flexible dynamics pose another challenge to control design. To as-
sess the influence of the flexible modes to the rigid-body dynam-
ics, the vehicle model is linearized under an initial trim condition 
listed in Table 1 [25]. Then the magnitude frequency responses 
of the linearized plant from the control input u to the regulated 
output y are depicted in Fig. 4. As expected, the lightly damped 
phugoid mode is noticeable in all of the four Bode plots (labeled 
as P at the frequency of 0.0485 rad/sec). The altitude response 
is primarily impacted by the flexible modes at the frequencies 
21.17 rad/sec, 53.92 rad/sec, and 109.1 rad/sec (labeled as F1, F2, 
and F3, respectively). The elevator deflection dominates the rota-
tional dynamics, thus has a stronger coupling than the fuel equiv-
alence ratio input. On the contrary, the coupling effect to the ve-
locity response is much milder. Particularly, the flexibility almost 
has no impact on the transfer function from the fuel equivalence 
ratio to the velocity.

In order to investigate these couplings in a more straightfor-
ward way, contributions of the flexibility to the lift, drag, and 
thrust are assessed. Based on (7), the flexibility component in 
the forces is defined as F j_flex = q̄SCη

j η, j = L, D, T . Accordingly, 
the rigid-body component is calculated as F j_rigid = j − F j_flex , 
j = L, D, T . Under these definitions, the three forces in a closed-
loop simulation run that aims to track reference velocity and al-
titude commands (the control law design is addressed later) are 
depicted as Fig. 5. It is seen that in all forces the flexibility com-
ponents are quite small (generally less than 10% of the rigid-body 
components). This indicates that under the conditions where the 
flexible modes are not excited and there are no additional uncer-
tainties, the couplings from the flexibility to the rigid-body states 
are relatively weak. Therefore, they can be implicitly suppressed by 
system robustness, as done in most of current literatures.

However, implicit suppression by system robustness may be 
degraded in other situations. On one hand, if the flexible modes 
get excited by, for example, external disturbances, the cross cou-
pling effects may become more significant; on the other hand, 
uncertainties of the coupling force/moment coefficients could be 
quite large for the current FAHV model due to our limited under-
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Fig. 4. Magnitude frequency responses from u to y.

Fig. 5. Contributions resulting from rigid and flexible components to the aerodynamic forces: a) lift, b) drag, and c) thrust.
standing of practical flexibility behaviors and lack of flying data 
support. In both situations, the system could be driven out of its 
stability margin. Here define {Cη1

j , Cη2
j , Cη3

j }, j = T , L, D, M , as the 
coupling coefficients from flexibility to the rigid-body dynamics, 
constituting a parameter set Θ1; define {Nα2

i , Nα
i , Nδe

i , Nδc
i , N0

i }, 
i = 1, 2, 3, as the coupling coefficients from the rigid-body to flex-
ibility dynamics, constituting another parameter set Θ2. To assess 
the flexibility influences on the rigid-body dynamics with coupling 
coefficient uncertainties, separately set the parameter uncertainty 
level of Θ1 as −100% (no flexibility coupling), 0% (nominal cou-
pling), and +100% (increased flexibility coupling). Under the trim 
condition given in Table 1, the open-loop poles corresponding to 
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Table 2
Eigenvalues under different coupling coefficient uncertainties.

Uncertainty 
level

Short 
period

Short 
period

Phugoid Altitude

−100% −6.27 6.09 −0.00014 ± 0.0547 j 1.32 × 10−5

0% −5.96 5.83 −0.00043 ± 0.0485 j 7.89 × 10−5

+100% −5.62 5.56 −0.00083 ± 0.0403 j 2.72 × 10−4

the rigid-body dynamics are listed in Table 2. One interesting phe-
nomenon lies in that, it is the phugoid and altitude modes that 
are dominantly affected by the flexibility uncertainty, while the 
couplings to the short-period modes are relatively weaker. This 
conclusion is novel and makes the free-free beam fuselage model 
different from the clamped cantilever beam model reported in [1]. 
This makes sense because in the free-free beam model, as ex-
pressed in (7), the flexible modes appear explicitly in all forces 
and moments, thus have direct influences on the phugoid and al-
titude modes, while in the clamped cantilever beam model the 
couplings only explicitly appear in the pitch rate motion equation. 
This conclusion can also be drawn from the magnitude frequency 
response shown in Fig. 6, where the flight-path angle, altitude, an-
gle of attack, and pitch rate are separately set as the single output, 
and the elevator deflection is selected as the single control input. 
From an opposite perspective, set the parameter uncertainty level 
of Θ2 as +100%. Separately select the three flexible modes as the 
single output, and still select the elevator deflection as the sin-
gle control input. Then Fig. 7 shows how the rigid-body dynamics 
affect the flexible modes. Each plot contains two peaks: one re-
siding at its natural flexibility frequency, the other residing at a 
common frequency labeled by the red ellipses. This common fre-
quency (about 0.0415 rad/sec) is quite close to the frequency of 
the phugoid modes (0.0404 rad/sec). Therefore, another interesting 
phenomenon lies in that the phugoid modes (especially the FPA) 
have great impacts on all the three flexible modes. The two phe-
nomena observed from Table 2 and Figs. 6–7 tell that the most 
significant cross coupling exists between the phugoid modes and 
the flexible modes.
3. Active robust control scheme design

In this section, we design the active robust control scheme. As 
observed in Fig. 6, the rigid-body dynamics exhibit multiple time 
scales. Therefore, based on the time-scale separation and singu-
lar perturbation theories [20], the starting point of control design 
is to decouple the tedious rigid-body motion equations into five 
functional subsystems, namely, the velocity, altitude, FPA, AOA, and 
pitch rate subsystems. Accordingly, the overall control scheme con-
sists of five subsystem controllers. The flexible states are assumed 
not to be available for feedback and taken as disturbances to the 
rigid-body dynamics [14]. Fig. 8(a) shows the structure of the over-
all control scheme. Here, inner control inputs are drawn as dashed 
lines and feedback signals to the subsystem controllers are omitted 
for simplicity. Fig. 8(b) shows the inner structure of each sub-
system controller, where i = V , γ , h, α, Q . NDI, combined with a 
linear system stabilizer, constructs a main stabilizing control frame. 
As for the active control idea, ESO estimates diverse uncertainties 
to form a compensation control law, and notch filter is integrated 
to prevent the flexible modes from being excited by the estimated 
signals generated by the ESO. As indicated in Figs. 6–7, the primary 
cross coupling exists between the phugoid modes and the flexi-
ble modes, followed by the altitude mode, thus the notch filters 
are only integrated in the FPA and altitude subsystem controllers, 
whereas the ESO output signals in other subsystems are directly 
utilized for compensation. This strategy makes a good tradeoff be-
tween the accuracy of uncertainty estimation and the performance 
of flexibility suppression. At last, a command processor based on 
tracking differentiator (TD) technique [7] is added to make the ref-
erence command more realizable.

3.1. Main stabilizing control law design

In this subsection, NDI is applied to design five stabilizing con-
trol frame, respectively for the five subsystems. A thorough theo-
retical discussion on NDI can be found in [11], thus is omitted here 
for simplicity.
Fig. 6. Magnitude frequency responses from δe to: a) FPA, b) altitude, c) AOA, and d) pitch rate.
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Fig. 7. Magnitude frequency responses from δe to: a) η1 , b) η2, and c) η3.

Fig. 8. Block diagram of the active control scheme: a) the overall control scheme; b) inner structure of each subsystem controller.
In view of the drag and thrust expressions in (7)–(8), the nom-
inal velocity dynamics (1) can be written in the form of:

V̇ = f V + gV ũV + 
V 1 (11)

where

f V = q̄S
[
CT (α) cosα − (

Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2
e + C δe

D δe + C
δ2

c
D δ2

c

+ C δc
D δc + C0

D

)]
/m − g sinγ

gV = q̄SCT ,φ(α) cosα/m, 
V 1 = q̄S
(
Cη

T η cosα − Cη
Dη

)
/m,

ũV = φ

The stabilizing control frame only considers the nominal vehicle 
model, so the flexibility uncertainty item 
V 1 is not explicitly 
considered. Thus an affine form of the velocity dynamics can be 
obtained as

V̇ = f V + gV ũV (12)
Denote the velocity tracking error as eV = V − V̄ , where V̄ is the 
reference velocity command generated by a command processor 
which has bounded derivative ˙̄V . The tracking error dynamics can 
then be derived as

ėV = f V + gV ũV − ˙̄V (13)

Considering the expression of gV in (11), we can easily verify that 
gV is invertible in the whole admissible flight envelope. Thus, se-
lect the basic control law as

ũV = (v V − f V + ˙̄V )/gV (14)

where v V is a virtual control input. Substituting (14) into (13)
yields a linear velocity tracking error dynamics:

ėV = v V (15)

Designing a state feedback control law to stabilize system (15) as

v V = −kV eV (16)
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gives the closed-loop system as ėV = −kV eV . Thus, choosing 
kV > 0 can guarantee the closed-loop stability. Substituting (16)
back to (14) produces the final stabilizing control law:

ũV = (−kV eV − f V + ˙̄V )/gV (17)

The reference command V̄ and its derivative ˙̄V are generated 
by a command processor. In this paper, this command processor is 
implemented by the TD technique which is another component of 
ADRC method. Details about TD are omitted here to avoid clouding 
the main idea of this paper, while they can be found in [22].

Following the procedure from (11) to (17), stabilizing control 
laws for another four subsystems can be similarly designed, thus 
their details are omitted. The key design step is to derive an affine 
form of the subsystem model, for example, (12) for the velocity 
subsystem, to make the DI method applicable. However, the affine 
form for the FPA subsystem cannot be directly obtained. Consid-
ering the lift and thrust expressions in (7)–(8) and taking the 
flexibility as disturbances, we can rewrite the FPA dynamics (2)
into

γ̇ = fγ 1(α) + fγ 2 (18)

where

fγ 1(α) = q̄S
[
Cα

L α + (
Cφα3

T α3φ + Cφα2

T α2φ + Cφα
T αφ + Cφ

T φ

+ C3
T α3 + C2

T α2 + C1
T α + C0

T

)
sinα

]
/(mV )

fγ 2 = q̄S
(
C δe

L δe + C δc
L δc + C0

L

)
/(mV ) − g cosγ /V

Here fγ 2 is independent of α (the control input of FPA subsystem), 
while fγ 1 is a nonlinear function of α. In order to derive an affine 
form of the FPA dynamics with respect to its control input α, we 
utilize the first-order Taylor expansion at the last sampling value 
α0 to approximate the nonlinear function fγ 1, which is expressed 
as

fγ 1(α) ≈ fγ 1(α0) + f ′
γ 1(α0)(α − α0)

= [
fγ 1(α0) − f ′

γ 1(α0)α0
] + f ′

γ 1(α0)α (19)

where

fγ 1(α0) = q̄S
[
Cα

L α0 + (
Cφα3

T α3
0φ + Cφα2

T α2
0φ + Cφα

T α0φ + Cφ
T φ

+ C3
T α3

0 + C2
T α2

0 + C1
T α0 + C0

T

)
sinα0

]
/(mV )

f ′
γ 1(α0) = q̄S

[
Cα

L + (
3Cφα3

T α2
0φ + 2Cφα2

T α0φ + Cφα
T φ + Cφ

T φ

+ 3C3
T α2

0 + 2C2
T α0 + C1

T

)
sinα0

+ (
Cφα3

T α3
0φ + Cφα2

T α2
0φ + Cφα

T α0φ + Cφ
T φ + C3

T α3
0

+ C2
T α2

0 + C1
T α0 + C0

T

)
cosα0

]
/(mV )

Note that fγ 1(α) only consists of polynomial and sine functions 
of α, so it is continuous differentiable, which indicates that f ′

γ 1(α)

does exist. Substituting (19) into (18) yields an affine form as

γ̇ ≈ fγ + gγ uγ (20)

where

fγ = fγ 1(α0) − f ′
γ 1(α0)α0 + fγ 2,

gγ = f ′
γ 1(α0), uγ = α

As the Taylor expansion is updated during every sampling period, 
it can be verified that the error o(α − α0) incurred in the ap-
proximation is quite small. Therefore, the approximation is highly 
reliable. In addition, the approximation error is further considered 
as modeling error which is contained in the uniform uncertain 
model (10), and compensation control law is designed later to 
eliminate its influence.
3.2. Extended state observer design

The NDI control frame is designed for the nominal vehicle 
dynamics. When flexibility coupling effects and extra uncertain-
ties are considered, the inherent closed-loop stability margin may 
shrink and this main control frame may be degraded. Still take the 
velocity dynamics for demonstration. Based on the uniform uncer-
tain model (10), the disturbed velocity dynamics is assumed to be 
written as

V̇ = f V + gV uV +
4∑

i=1


V i

︸ ︷︷ ︸

V

(21)

Here diverse uncertainties are lumped together into the to-
tal velocity uncertainty 
V . 
V 1, expressed in (11), denotes 
the flexibility coupling effect that is directly derived from (1), 
whereas 
V 2 ∼ 
V 4 separately denote additional environmental 
disturbances, rigid-body aerodynamic coefficient uncertainties, and 
control-oriented modeling errors.

Nonlinear ESO is constructed to estimate the total uncertainty 
in this sub-section. The core idea of ESO is to take all internal 
and external uncertainties as a new extended state, and then es-
tablish a nonlinear state observer to estimate these uncertainties. 
Consider the disturbed velocity dynamics (21). Define xV 1 = V and 
xV 2 = 
V , where xV 2 is an extended state. Suppose 
̇V = −w V (t)
with w V (t) unknown but bounded. Then (21) can be written as a 
second-order extended system:{

ẋV 1 = f V + gV uV + xV 2
ẋV 2 = −w V (t)

(22)

A nonlinear ESO can be established for (22) as⎧⎨
⎩

e1 = zV 1 − xV 1
żV 1 = f V + gV uV + zV 2 − βV 1e1
żV 2 = −βV 2 fal(e1,αV , δV )

(23)

where zV i denotes the estimation value of xV i , e1 is the estimation 
error of the velocity, and βV i > 0 is the observer gain, i = 1, 2. fal is 
a function of e1, expressed as [8]

fal(e1,αV , δV ) =
{ |e1|αV · sign(e1), |e1| > δV

e1/δ
1−αV , |e1| ≤ δV

(24)

where δV and αV , subjecting to δV > 0 and αV > 0, are extra 
parameters needed to be tuned. If αV 	= 1, (24) indicates a nonlin-
ear structure; while if αV = 1, it becomes a normally used linear 
structure. A specific feature of ESO lies in that, if αV is chosen 
as 0 < αV < 1, the nonlinear ESO performs much higher estima-
tion efficiency than linear observers. A graphical interpretation of 
fal(e1, αV , δV ) with different parameters αV is illustrated in Fig. 9. 
By properly choosing the parameters βV 1, βV 2, αV , and δV , we 
have zV 1 → V , zV 2 → 
V . The observer gains βV 1 and βV 2 affect 
both the dynamic estimation process and static estimation error. 
A thorough investigation on influences of the observer gains and 
their tuning procedure can be found in [23].

Once the total uncertainty is estimated by zV 2, a compensation 
control law can be designed as

uV
com = g−1

V zV 2 (25)

This together with the basic control law (17) yields the total robust 
control law for the velocity subsystem:

uV = ũV − uV
com (26)

ESOs for other four subsystems can be similarly constructed, thus 
of which the details are omitted.
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Fig. 9. Nonlinear function f al(e1,αV , δV ) with different values of αV .
Remark 1. By separating the whole rigid-body dynamics into five 
interconnected subsystems, uncertainties existing in all five chan-
nels can be viewed as matched uncertainties and suppressed by 
ESO. This provides an alternative way to solve the mismatched un-
certainty attenuation problem investigated in, for instance, [31].

Remark 2. In the velocity ESO (23), the known model information 
f V + gV uV can also be lumped into the uncertainty item, and ESO 
can also estimate it with high accuracy. In this sense, ESO is a real 
model-independent approach for observer design. However, in this 
paper we separate the known model information from unknown 
disturbances to decrease the estimating burden of ESO.

3.3. Notch filter design

Notch filters are integrated in the phugoid and altitude dynam-
ics to suppress specific high-frequency compensation signals gen-
erated by ESOs to avoid exciting the flexible modes. As reported in 
[25], the frequencies of flexible modes could be time-varying due 
to aerodynamic heating. However, the uncertain ranges are limited 
within about 30% [16]. In this paper, because ESO is adopted to 
estimate diverse uncertainties (including flexibility uncertainties), 
the system robustness is notably improved. Therefore, the central 
frequencies of notch filters are viewed as known and fixed, al-
though the frequencies of the flexible modes are still considered 
as uncertain in the simulation model. This simplification makes 
adaptive techniques that aim to estimate the flexible frequencies 
[16] unnecessary, thus relevant sensor signals for the estimation 
are also unnecessary to avoid introducing additional uncertain-
ties. The central frequencies of the notch filters are chosen as the 
natural flexible frequencies, i.e., 21.17 rad/sec, 53.92 rad/sec, and 
109.1 rad/sec, respectively, for the first three modes.

In this paper, we present two approaches to the notch filter 
design. The first one is ESO. In fact, ESO can behave not only as an 
observer, but also as a low-pass filter. Without loss of generality, 
consider a first-order disturbed system

ẋe = fe(xe, ue, t) + 
e︸ ︷︷ ︸

e_tot

(27)

where xe and ue are the state and control input, fe represents 
the nominal system dynamics, while 
e denotes extra disturbance. 
Lump fe and 
e together as a total disturbance 
e_tot , with the 
assumption that 
̇e_tot = we where we is unknown but bounded. 
Then a nonlinear ESO is designed as
⎧⎨
⎩

z̃e = ze1 − xe

że1 = ze2 − βe1 z̃e

że2 = −βe2 fal(z̃e,αe,de)

(28)

With proper parameters βe1, βe2, αe , and de , we have ze1 → xe

and ze2 → 
e_tot . Assuming the total disturbance as 
e_tot =
Ae sin(ωet), we have its observed value that almost converges 
to another sine signal, denoted as ze2 ≈ A′

e sin[ωe(t + ϕe)]. Then 
the magnitude and phase of the frequency response of ESO (28)
can be approximated as (lg(ωe), 20 lg(A′

e/Ae)) and (lg(ωe), ϕ). Let 
some parameters fixed as βe1 = 15, αe = 0.5, and de = 5h0 where 
h0 = 0.01 sec is the sampling period. The frequency response of 
ESO (28) with different βe2 and Ae is depicted as Fig. 10. As (28)
is a nonlinear plant, the frequency response can only be obtained 
by numerical approach, so the phase plot exhibits a small oscilla-
tion in the high-frequency domain. The nonlinear ESO performs as 
a good low-pass filter. For ωe < ωc where ωc denotes the corner 
frequency, the amplitude has A′

e/Ae ≈ 1 and the phase lag is small; 
for ωe > ωc , the amplitude approaches to a straight line with its 
slope about −30 dB/dec and the phase lag rapidly decreases to 
−180◦ . The observer gain has a great impact on the frequency re-
sponse: a larger observer gain corresponds to a wider passband. 
In addition, the amplitude of the input signal also affects the fre-
quency response, which is quite different from other linear filters.

With proper parameters, such two ESO-based low-pass filters in 
parallel can construct a notch filter. This approach shows an advan-
tage that the uncertainty observers are simultaneously designed as 
low-pass filters, thus we do not need to design additional filters 
subsequent to the ESOs. The drawback lies in that because known 
model information ( f V + gV uV in (23), for example) is explicitly 
utilized, frequency characteristics of the five ESOs could be differ-
ent, thus ESO parameter tuning could be time-consuming. For this 
consideration, a second approach to notch filter design is presented 
in this paper, where the notch filter is independently designed to 
filter the ESO output signals. The notch filter has the linear form 
as

N(s) = s2 + ω2
jk

s2 + ω jks/Q jk + ω2
jk

(29)

where ω jk and Q jk , j = γ , h, k = 1, 2, 3, separately denote the 
central frequency and quality factor of the notch filter. Here the 
central frequency is separately chosen as the nominal natural fre-
quencies of the first three flexible modes. As depicted in Fig. 11
(setting ω j1 = 21.17 rad/sec for demonstration), a larger quality 
factor provides a narrower stopband and a smaller phase lag at the 
passband frequencies, which is beneficial for expanding the band-
width of rigid-body controllers. However, due to the uncertainty of 
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Fig. 10. Bode Diagram of ESO with different βe2 and Ae .

Fig. 11. Bode diagram of the linear notch filter with varying quality factor.
the flexible natural frequency and other physical limits, the qual-
ity factor cannot be infinitely increased. In this paper, we choose 
Q jk = 1.

A primary advantage of linear notch filter (29) lies in that the 
parameters ω jk and Q jk are easy to be tuned, although we need 
to explicitly design filters apart from the ESOs. In this paper, we fi-
nally take this linear approach to the notch filter design, while the 
nonlinear approach demonstrated in (28) is designed as an alter-
native and also for the theoretical completeness of nonlinear ESO 
investigation.

4. Stability analysis

In this section, we first discuss the stability of each subsystem 
with the control structure shown in Fig. 8(b), and then investigate 
the stability of the overall closed-loop system depicted in Fig. 8(a). 
For each subsystem, the TD-based command processor is proved 
to be finite-time stable [7]. The notch filters integrated in the al-
titude and FPA subsystems are asymptotically stable with positive 
ω jk and Q jk . Therefore, in the following analysis, the command 
processors and the notch filters are ignored. We still take the ve-
locity subsystem for demonstration to analyze the stability for each 
subsystem.

The stabilizing control law and ESO compensation law for the 
velocity subsystem are separately given in (17) and (25). From 
(21)–(23) and (26), the closed-loop tracking error system and the 
ESO estimating error system can be separately written as

ėV = −kV eV − e2 (30)

and
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{
ė1 = e2 − βV 1e1
ė2 = w V (t) − βV 2 fal(e1,αV , δV )

(31)

Here eV = V − V̄ is the velocity tracking error, e1 = zV 1 − xV 1 and 
e2 = zV 2 − xV 2 are the estimating errors.

Consider the system (31). Define fc1(e1) = e1 and fc2(e1) =
fal(e1, αV , δV ). Then define W1 = 1

2 g2
2(e1, e2), where

g2(e1, e2) =
{ |h(e1, e2)|, |h(e1, e2)| > g1(e1)

g1(e1), otherwise

h(e1, e2) = e2 − βV 1 fc1(e1) + βV 2

βV 1
fc2(e1)

g1(e1) = βV 2

kβV 1

∣∣ fc2(e1)
∣∣, k > 1

In view of Theorem 4 of [13], the following lemma for the velocity 
subsystem ESO can be obtained.

Lemma 1. Assuming that for the total uncertainty 
V = xV 2 , ẋV 2 =
−w V (t) is bounded, that is, |−w V (t)| < MV , for some MV > 0. If 
β2

V 1 >
(1+k)2

k c2βV 2| f ′
c2|, c2 > 1, then Ẇ1 < 0 when βV 1 g2(e1, e2) >

c2
c2−1 MV .

Lemma 1 tells that W1 is a Lyapunov function of the ESO es-
timating error system (31). Furthermore, an upper bound for the 
steady estimating error can be derived as follows [13].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e∗
1 = sup

{∣∣e1(∞)
∣∣} =

⎧⎨
⎩

( kc2 MV
βV 2(c2−1)

) 1
αV ,

kc2 MV
βV 2(c2−1)

≥ δV

kc2 MV
βV 2(c2−1)

, otherwise

e∗
2 = sup

{∣∣e2(∞)
∣∣} = βV 1e∗

1 − (k − 1)c2MV

βV 1(c2 − 1)

(32)

Lemma 1 and (32) describe the stability and the ultimate es-
timating errors of the ESO for a general class of uncertainties. 
Particularly, for a class of absolutely integrable uncertainties, the 
following lemma can be obtained [23].

Lemma 2. For system (31), suppose that w V (t) is continuous and abso-
lutely integrable such that W (t) = ∫ t

0 |w V (s)|ds < ∞, then all solutions 
of (31) satisfy e1 → 0, e2 → 0 as t → ∞.

Lemma 2 tells that for absolutely integrable uncertainties, the 
estimating error system is asymptotically stable. As it is a special 
case of Lemma 1, the Lyapunov function W1 and the error bounds 
(32) still holds in this case. Based on these lemmas, the stability of 
the overall velocity subsystem can be concluded in the following 
theorem.

Theorem 1. For the disturbed velocity subsystem (21), a robust control 
law is selected as (26) which consists of a stabilizing control law (17)
and a compensation law (25). Suppose the uncertainties and the ESO 
parameters satisfy the conditions given in Lemma 1. Then the velocity 
tracking error dominated by the dynamics (30) is bounded.

Proof. Define W2 = 1
2 e2

V . From (32), suppose |e2| ≤ E2. Then

Ẇ2 = eV ėV = −kV e2
V − eV e2 ≤ −kV |eV |2 + E2|eV |

Therefore, Ẇ2 < 0 if |eV | > E2/kV . That means an upper bound of 
the velocity tracking error can be obtained as

|eV | < E2/kV (33)
Table 3
Control parameters.

NDI 
parameter

Value ESO 
parameter

Value Notch filter 
parameter

Value

kV 0.1 βi1 15 ω j1 21.17
kγ 0.9 βi2 15 ω j2 53.92
kh 0.1 αi 0.5 ω j3 109.1
kα 0.6 δi 0.02 Q jk 1
kQ 2.5

Finally, define W V = W1 +W2. It is obvious that W V is a Lyapunov 
function of the overall velocity subsystem (30)–(31). The ESO esti-
mating errors and the velocity tracking error are separately given 
in (32) and (33). �

For the other four subsystems, we can similarly construct four 
Lyapunov functions Wh , Wγ , Wα , and W Q . Then W = W V +
Wh + Wγ + Wα + W Q is the total Lyapunov function of the overall 
closed-loop system. Thus, the stability can be guaranteed.

Remark 3. In view of (32), when βV 2 >
kc2 MV
(c2−1)

, a smaller αV and 
a larger observer gain βV 2 yields a smaller uncertainty estimating 
error |e2|. Additionally based on (33), a smaller |e2| and a larger 
control gain kV finally produces a smaller steady tracking error 
|eV |. This provides a principle to select the relevant parameters. 
However, parameters such as αV , βV 2, and kV also have direct 
impacts on the transient tracking process. Thus, a good tradeoff 
should be made during parameter tuning to guarantee required 
transient and steady performances.

5. Simulations

Several representative simulations are conducted to demon-
strate the effectiveness of the ESO and notch filter in the active 
robust control scheme derived in Section 3. Simulation step is set 
as 0.01 sec. The initial trim condition is given in Table 1. Parame-
ter values for the five NDI frames, five ESOs, and the notch filters 
in the altitude and FPA subsystems are given in Table 3, where 
i = V , γ , h, α, Q , j = γ , h, k = 1, 2, 3. The five ESOs utilize the 
same set of parameter values, which indicates a great parameter 
adaption property of nonlinear ESO method.

The first simulation studies a constant dynamic pressure case. 
The altitude command is given to let the vehicle climb from 
85 000 ft to 95 000 ft, while the velocity command is generated 
by solving the air density model to maintain the dynamic pres-
sure to its initial value (about 2076 psf). The flexibility is taken as 
disturbance to the rigid-body dynamics, while no additional un-
certainties are added. Simulation comparisons between the active 
robust scheme and the scheme that only contains basic NDI frames 
are illustrated in Figs. 12–13. It is seen in Fig. 12 that, for this nom-
inal case, both schemes can stabilize the vehicle. However, due to 
the weak flexibility disturbance, the basic NDI scheme exhibits a 
steady velocity tracking error and a worse dynamic process of the 
altitude tracking error. In Fig. 13, the control inputs increase in the 
first half of transient time and decrease in the second half due to 
the effects of the command processor based on TD technique.

The next simulation study considers a more practical case, 
where the velocity and altitude reference commands are indepen-
dently given as 10 500 ft/sec and 110 000 ft, indicating a very large 
maneuver. In addition, multiple uncertainties are considered. In 
the first 400 sec, a complex combination of parameter uncertainty 
is added, including +40% uncertainty of the drag coefficient C D

and −40% uncertainties of the lift coefficient CL , the thrust coeffi-
cients CT ,φ , CT , and the pitching moment coefficient CM . Recalling 
the uniform uncertain model defined in (21), these uncertainties 
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Fig. 12. Comparisons of the outputs (constant dynamic pressure; no additional uncertainties): a) velocity, b) altitude, c) velocity tracking error, and d) altitude tracking error.

Fig. 13. Comparisons of the states and control inputs (constant dynamic pressure; no additional uncertainties): a) AOA, b) pitch rate, c) elevator deflection, and d) fuel 
equivalence ratio.
implicitly form the item 
i3, i = V , γ , h, α, Q . Between 400 sec 
and 500 sec, environmental disturbances are added to the veloc-
ity and pitching rate dynamics. For demonstration, these distur-
bances are chosen as sine wave forms, where 
V 2 = 2 sin t and 

Q 2 = 0.05 sin(2t). Besides, the flexibilities are also taken as dis-
turbances to the rigid-body dynamics within the whole simulation. 
Here we add different categories of uncertainties in different stages 
to separately study the effects of the active robust scheme to dif-
ferent uncertainties. Comparisons between the robust scheme and 
the basic NDI scheme are given in Fig. 14. It is seen that the basic 
NDI scheme performs a large velocity tracking error and a much 
worse dynamic process of the altitude tracking error in the pa-
rameter uncertainty stage, and also an oscillation in the sine wave 
disturbance stage. However, the robust scheme performs quite well 
for all of these uncertainties, mostly due to the excellent uncer-
tainty estimation ability of ESO. The estimation values of the un-
certainties in the velocity and pitch rate dynamics are also given 
in Fig. 14.

The two simulations conducted above reveal that: (a) with the 
flexible modes not excited and no additional flexibility uncertain-
ties added, the flexibility coupling effects to the rigid dynamics 
are relatively weak; (b) ESO shows great uncertainty estimation 
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Fig. 14. Comparisons of the outputs and the estimated uncertainties in velocity and pitch rate dynamics (varying dynamic pressure; multiple uncertainties): a) velocity 
tracking error, b) altitude tracking error, and estimated uncertainties in c) velocity dynamics and d) pitch rate dynamics.

Fig. 15. Comparisons of the outputs and flexible modes (high-frequency disturbance added to the FPA dynamics): a) velocity, b) altitude, and flexible modes in the scheme 
that is c) without notch filter and d) with notch filter.
ability. In the next simulation, a high-frequency disturbance is 
added to the FPA dynamics between 400 sec to 500 sec, i.e., 

γ 2 = 0.005 sin(21t). This disturbance has a frequency that is 
quite close to the first flexible mode. Simulation results of the 
control scheme that is without and with the notch filter in the 
FPA dynamics are depicted in Fig. 15. Without the notch filter, the 
high-frequency uncertainty is estimated by ESO, forming a com-
pensation control law that can excite the first flexible mode. Then 
this excited flexible mode reacts on the rigid dynamics. Following 
this cross coupling loop, a large oscillation occurs in the altitude 
tracking; meanwhile, all other flexible modes are also excited. On 
the contrary, the active robust scheme that contains the notch fil-
ter in the FPA dynamics still performs well. The high-frequency 
signal induced by ESO is suppressed by the notch filter, thus the 
cross coupling is kept weak. Therefore, the altitude tracking is 
not influenced; meanwhile, the oscillation of the first mode is 
kept small and the other two flexible modes are not excited. It 
should be also noted that the velocity tracking is not significantly 
influenced by the flexibility coupling for the reasons given in Sec-
tion 2.
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6. Conclusions and future works

Robustness enhancement to significant uncertainties and strong 
couplings between rigid-body dynamics and flexible modes is a 
challenging task for the control system design of flexible air-
breathing hypersonic vehicles. Differing from most of current re-
searches, where the uncertainties and flexibilities are implicitly 
suppressed by the inherent system robustness, this paper presents 
an active robust control scheme that can simultaneously sup-
press diverse uncertainties and the flexible cross couplings. In this 
scheme, the nonlinear ESOs estimate the uncertainties to form 
the compensation law, and the notch filters suppress the high-
frequency estimated signals that could excite the flexible modes 
and strengthen the cross couplings. It is noteworthy that the most 
significant cross coupling occurs between the flexible modes and 
the rigid-body phugoid modes, followed by the altitude mode, thus 
the notch filters are only added in the subsystem controllers cor-
responding to these modes. This strategy makes a good tradeoff 
between the uncertainty estimation accuracy and flexibility sup-
pression. Simulations have demonstrated the effectiveness of the 
proposed active robust control scheme.

As uncertainty rejection and flexibility suppression are inte-
grated as one combined problem, a potential limit of the proposed 
scheme lies in that it requires deep understandings of the interac-
tions of the uncertainty and flexibility in order to find an optimal 
combination of ESOs and notch filters. In the future works, we 
will, on one hand, apply the active scheme to other different ve-
hicle models for verification and, on the other hand, develop an 
adaptive way that can automatically make a good tradeoff between 
uncertainty rejection and flexibility suppression according to dif-
ferent flight regimes or missions, so as to reduce the requirement 
of comprehensive model knowledge.
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