
860 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 3, MARCH 2013

Robust Image Analysis With Sparse Representation
on Quantized Visual Features

Bing-Kun Bao, Guangyu Zhu, Jialie Shen, and Shuicheng Yan, Senior Member, IEEE

Abstract— Recent techniques based on sparse representation
(SR) have demonstrated promising performance in high-level
visual recognition, exemplified by the highly accurate face
recognition under occlusion and other sparse corruptions. Most
research in this area has focused on classification algorithms
using raw image pixels, and very few have been proposed
to utilize the quantized visual features, such as the popular
bag-of-words feature abstraction. In such cases, besides the
inherent quantization errors, ambiguity associated with visual
word assignment and misdetection of feature points, due to
factors such as visual occlusions and noises, constitutes the
major cause of dense corruptions of the quantized representation.
The dense corruptions can jeopardize the decision process by
distorting the patterns of the sparse reconstruction coefficients.
In this paper, we aim to eliminate the corruptions and achieve
robust image analysis with SR. Toward this goal, we introduce
two transfer processes (ambiguity transfer and mis-detection
transfer) to account for the two major sources of corruption
as discussed. By reasonably assuming the rarity of the two
kinds of distortion processes, we augment the original SR-based
reconstruction objective with �0-norm regularization on the
transfer terms to encourage sparsity and, hence, discourage dense
distortion/transfer. Computationally, we relax the nonconvex �0-
norm optimization into a convex �1-norm optimization problem,
and employ the accelerated proximal gradient method to optimize
the convergence provable updating procedure. Extensive exper-
iments on four benchmark datasets, Caltech-101, Caltech-256,
Corel-5k, and CMU pose, illumination, and expression, manifest
the necessity of removing the quantization corruptions and the
various advantages of the proposed framework.

Index Terms— Image classification, quantized visual feature,
sparse representation.
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I. INTRODUCTION

THE TECHNIQUE of Sparse Representation (SR)1 has
lent itself to numerous applications in image processing

and image analysis recently [1], e.g., image restoration [2],
image super-resolution [3], visual recognition [4], [5], and
image annotation [6]. The principal idea underpinning these
applications is embarrassingly simple: any input sample is
approximated in terms of a sparse linear combination of
atomic samples collected in a given overcomplete dictionary.
These combination coefficients and practically also the iden-
tified noises are used for the subsequent visual processing
and reasoning. Computationally, pursuit for such sparsest
representations boils down to linear programming (LP, for
data without noises) or quadratic constrained linear program-
ming (QCLP, for data contaminated with noises) problems
on �1-norm minimization, as a surrogate to the desired �0-
norm minimization [7]. Recent research has shown that SR
appears to be biologically plausible as well as empirically
effective [8], [9].

Of particular interest to the current paper is the application
of SR into visual recognition. In this regard, a frequently cited
example is the robust high-accuracy face recognition algorithm
presented by Wright et al. [4]. The input to that algorithm is
the vectorized raw image pixels, and experiments therein have
demonstrated in face recognition even this low-level simplistic
raw feature can guarantee satisfactory recognition performance
under mild conditions, powered by SR. Nevertheless, this may
not be the case for many other recognition tasks. For example,
state-of-the-art object recognition algorithms normally involve
extraction and encoding of image structures and regions of
interest, and many discriminative classification models gen-
erate a holistic feature representation by feature quantization
and summarization (see, e.g., chapter 14 in [10]). Examples
abound in the vein. Low-level representation often involves
the various kinds of salient points (corners, blobs, edges, etc.)
and their descriptors such as the SIFT descriptor [11], Local
Binary Patterns (LBPs) [12], Histogram of Oriented Gradients
(HOGs) [13], where the quantization and encoding are nor-
mally with respect to some pre-defined magnitudes, orienta-
tions, or mixture of them. Mid-level representation has seen the
popularity of the Bag-of-Words (BoW) method [13], in which
the quantization centroids are most often learnt from data.
Despite the diversity and hierarchy, a common complication

1In signal processing community and others, SR is also widely known
as compressive sensing, compressed sensing, or sparse coding with weak
distinctions. We will use these terms interchangeably.
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of these types of visual feature encoding, as compared to the
raw feature representation, is the vector quantization process.
Quantization conceivably entails inherent information loss,
and moreover sensitivity to noise and outliers, causing dense
errors in representation even with sparse noises and outliers.
These factors make SR-based robust classification with quan-
tized visual features more tricky and challenging, and the
current work is aimed at providing a timely investigation and
removing the obstacle. To make the investigation concrete and
elucidating, we focus on discussing about the mid-level BoW
representation as the first step, and expect extensions to other
quantization situations to be straightforward.

A. Problems With Quantized Visual Features

The process of BoW encoding towards representation is
essentially vector quantization. During this process, each raw
visual feature vector is assigned to its nearest prototype
centroid, and the count for the corresponding centroid is
increased by unity. A final normalization is normally taken
on the counting vector to form a normalized (e.g., �1-norm to
be unit) histogram feature representation. Obviously there is
inevitable information loss due to the assignment, commonly
known as the quantization error. While this kind of error can
be partially reduced by increasing the number of quantization
centroids/bins, we are mainly interested in the orthogonal
realm as depicted in the following two processes.

1) Ambiguity Transfer. This is the process where one raw
feature vector is assigned to the wrong centroid, perhaps
due to feature noise or numerical difficulty (middle-
way between two or more centroids). Eventually this
process will decrease the value of the true centroid bin
and increase that of the falsely assigned. Notice that the
probabilities of one particular raw feature vector to be
assigned to unintended centroid bins are different.

2) Mis-Detection Transfer. This is the process where either
positive raw feature structures are not detected (false
negative), or negative raw feature structures are detected
(false positive), possibly because of noise, occlusions or
improper setting of detection parameters. Correspond-
ingly there are missing raw feature vectors or spurious
ones. The former case causes increase in value of
its corresponding histogram bin and the latter causes
decrease. These are further complicated by the final
normalization, since sparse transfers shall result in dense
errors in final histogram.

The above two transfer processes could cause serious
corruptions to the quantized visual feature representation,
and hence hurt the subsequent SR-based recognition. They
deserve strategic treatment as we shall propose below. Before
delving in, we present in Fig. 1 an illustration on causes to
ambiguity and mis-detection processes, and their effect on
the histogram values.

B. Our Remedy Scheme and Contributions

We propose an �1-norm minimization based framework to
eliminate the corruptions and to achieve robust visual recogni-
tion. We first model the two transfer processes separately via

proper transfer matrices2. By noticing the general low portion
of mis-assignment and raw feature mis-detection, we adopt
sparsity priors to both transfer processes, and instantiate the
priors with �0-norm regularization that encourages sparsity.
This regularization augmented to the original SR recognition
scheme constitutes a joint �0-norm objective subject to a linear
constraint, which can be relaxed into a convex program in the
form of constrained �1-norm minimization.

We will note that the resulting �1-norm optimization prob-
lem takes a similar form to the popular Lasso problem in statis-
tical learning [14], if only one of the variables is considered
once. Despite the availability of dozens of efficient solution
schemes for Lasso (see [15] for a brief review of state-of-
the-art algorithms), we will see that these algorithms scale
up poorly for the current problem. Instead, we will describe
a first-order optimization scheme, based on the accelerated
proximal gradient (APG) method [16], [17], to solve this
particular problem efficiently. Empirically the computational
cost of this customized scheme scales up gracefully with the
scale of the data.

The rest of this paper is organized as follows. Section II
provides the details on the causes and remedy to two kinds
of corruptions and the unified formulation. The iterative opti-
mization procedure is proposed in Section III. Section IV gives
a brief discussion on the related methods. Section V presents
the experimental results, and the conclusion remarks are given
in Section VI. Some of the technical derivation for results to
the optimization part will be deferred to the appendix.

II. MODELING AND REMEDY TO CORRUPTIONS IN

QUANTIZED VISUAL FEATURES

In this section, we describe in detail two models to describe
the ambiguity transfer and mis-detection transfer processes,
respectively. By imposing the sparsity priors, we arrive at
two separate programs to rectify the two processes. Finally
we combine these two programs with the SR-based recon-
struction and obtain a unified formulation that is expected to
achieve simultaneous corruption removal and robust analysis.
Before delving in, we fix our notation as follows. We use
normal lowercase and capital letters for vectors and matrices,
respectively, e.g., s ∈ R

n and K ∈ R
m×n . In particular, we

define 1 to be a vector of all one’s, whose dimension will be
clear from context. For vector and matrix norms, we will be
particularly interested in the �0-norm3 ‖ · ‖0 which counts the
number of non-zero elements in a vector or matrix and the
�1-norm ‖ · ‖1 which is the summation of absolute values of
all elements in a vector or matrix. The Frobenius norm ‖ · ‖F

for matrices is a straightforward extension of the �2-norm for
vectors. Matrix inner product w.r.t. the Frobenius norm will
appear as conventional, i.e., 〈A, B〉 = tr

(
A�B

)
, where tr (·)

denotes the trace of a square matrix. Other rare notations will
be defined from context.

2These two processes can be decoupled and analyzed separately.
3In fact it is not a valid norm in the algebraic sense.
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Fig. 1. Illustration on the causes and effects of ambiguity transfer and mid-detection transfer processes. (a) Assignment ambiguity causes the ambiguity
transfer; features that are spurious or missing from detection cause the mis-detection transfer. (b) Example clean counting histogram of features. (c) Counting
histogram effected using ambiguity transfer (top) and misdetection transfer (bottom). (d) and (e) Clean �1 normalized histogram and the effected ones,
corresponding to (b) and (c), respectively.

A. Model of Ambiguity Transfer and Mis-Detection Transfer

The ambiguity transfer arises from the difficulty to assign
a raw feature vector to the correct centroid, and hence causes
shift of the histogram values from one bin to another. To quan-
titatively model this shift process, we introduce an “ambiguity
transfer matrix” K . The element Kij indicates the amount of
shift in normalized histogram values from the j th to the i th

bin4. Therefore, (K1)i amounts to the total increase of value
to the i th bin, due to the shift of values from all the other bins;
similarly (K�1)i represents the amount shifted from the i th

bin to all the others. Obviously, the resultant change due to the
ambiguity transfer on the i th histogram bin is (K1)i−(K�1)i .
Thus, the overall corruptions to the histogram vector EA is
formulated as

EA = K1− K�1. (1)

Formulation 2.1 (Model of Ambiguity Transfer): Assume
assignment ambiguity only corrupts a relatively small portion
of histogram bins. The ambiguity transfer of the whole
histogram is modeled as

EA = K1− K�1. (2)
Spurious presence and missing of raw features make another

source of histogram corruptions, which we collectively term
as the mis-detection transfer. Causes to mis-detection can be
diverse and complicated. For example, during feature extrac-
tion in image analysis, prevalent image noise can easily fail
the feature detector; even the image itself is clean, feature
detectors are normally controlled by several parameters, such
as the scale, orientation, explicit thresholding, etc. In actual
practice, adaptability of feature detectors is far less rich and

4Henceforth, we will assume these bins are ordered according to ordering
of their corresponding centroids.

versatile than the image generating process, directly leading
to unsatisfactory detection.

Mis-detection quantization can be separated into two steps:
1) corrupting a certain histogram-bin, and 2) propagating the
corruption by normalization. For a certain image, the corrupted
histogram vector is denoted as y = [y1, y2, . . . , yr ]T . We
assume the corresponding non-corrupted histogram vector
is x = [x1, x2, . . . , xr ]T . To model the first process, we
introduce the “mis-detection vector” p = [p1, . . . , pr ]T ,
where the element pi indicates the unnormalized amount
of corruption in i -th histogram-bin. Then non-corrupted his-
togram vector x = [x1, . . . , xr ]T is changed to [x1 +
p1, . . . , xr+pr ]T . In the second step, x is finally normalized to
[ x1+p1

1+∑r
i=1 pi

, . . . , xr+pr
1+∑r

i=1 pi
] = y. So, xi = (1+∑r

i=1 pi)yi−pi ,

or collectively x = (1+∑
pi)y − p. The overall corruptions

EM in y is formulated as

EM = y − x = −
r∑

i=1

pi y + p = (I− y1�)p (3)

where I denotes the identity matrix of proper dimension. Let
B = I − y1�, referred as a “mis-detection transfer matrix”.
Thus, mis-detection transfer can be formulated as following.

Formulation 2.2 (Model of Mis-Detection): Assume mis-
detection only corrupts a small portion of histogram bins.
Then the mis-detection transfer the whole histogram is
modeled as

EM = Bp, where B = I− y1�. (4)

B. Remedy to Ambiguity Transfer and Mis-Detection Transfer

Under the known of ambiguity transfer value EA, we
do not expect too much ambiguity associated with vector
assignment (otherwise it means we have generated a bad
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set of quantization centroids and need to refine the choice).
This implies that there are only a relatively small portion of
histogram bins affected by the ambiguity shift. Hence we can
reasonably adopt the sparsity prior to the transfer matrix K .
Mathematically we hope the number of nonzero elements in
K , or exactly the ‖K‖0 to be small. On the other hand, we
have to take care of the locality nature of mis-assignment.
In other words, assignment ambiguity normally occurs when
the query feature vector has similar distances to two or more
centroids. This mostly happens when these centroids are close
to each other, whence minor noise or corruption to the query
vector will simply cause wrong assignment. By contrast, this
kind of ambiguity is rare for centroids that are far apart.
The modeled ambiguity transfer should be with the ability to
correct the error from nearby centroid and avoid the error shift
from distant centroid, therefore, we give a larger penalty for
distant centroids to suppress this kind of ambiguity transfer in
our model. In accordance with this, we introduce a weighting
matrix W to weight transfer amount in K delicately based on
their mutual distances. Specifically, given the i th centroid ci

and the j th centroid c j , and a bandwidth parameter σ , we
define the corresponding weight to be

Wij = 1− exp

(
−‖ci − c j‖2

σ 2

)
(5)

which is large for distant centroids and small for nearby
centroids. Hence continuing with the argument for instanti-
ation of the sparsity prior, we now want the weighted transfer
counts ‖W � K‖0 to be small, where � denotes the element-
wise matrix multiplication. Note that the non-vanishing values
of K tends to concentrate on elements modeling nearby
centroids (upon correct identification of the corrupted bins by
assignment ambiguity), whereas W will put a small weight on
these elements. Hence towards minimization of the objective,
we expect assignment ambiguity to be rare, concurring with
our previous assumption. Thus, we can formulate the following
objective function to remedy to ambiguity transfer

min
K

‖W � K‖0.
s.t . EA = K1− K�1. (6)

However, direct search for the sparsest solution leads to
combinatorial problems that are NP hard [18]. Nevertheless,
recent development of compressed sensing reveals that �1-
norm minimization can be an effective convex surrogate to
�0-norm minimization, when the desired solution is sparse
enough [19]. Under mind conditions, the surrogate can find
out the exact solution to the �0-norm minimization problem.
Hence instead of minimizing ‖W � K‖0 directly, we seek to

min
K

‖W � K‖1
s. t. EA = K1− K�1. (7)

With the known of mis-detection value EM , if we reasonably
assume cases of feature mis-detection are rare and only a
small proportion of histogram bins are affected by this transfer,
we expect p to be sparse in practice. Running the similar
argument about the surrogation of the �1-norm to the �0-norm

for sparse recovery, we arrive at the following formulation
with the corruption removal objective

min
p
‖p‖1

s. t. EM = Bp. (8)

C. Unified Objective Optimization Formulation for RIASR

We set out to translate the SR-based robust recognition
framework on raw image features [4] to that on quantized
visual representation, mostly mid-level histograms. To accom-
plish this, we base our computational model on the original
SR framework, meanwhile handling the distinctive forms of
corruptions, i.e., ambiguity transfer and mis-detection transfer,
with innovative ingredients. We will unify the SR recon-
struction framework and our corruption removal methods as
described in Formulations 2.1 and 2.2 in this section.

For a typical classification problem, let matrix D collect all
the training samples, i.e., D = [x1, . . . , xn] for xi ∈ R

r+,∀i ∈
[1, . . . , n], where R+ indicates non-negative real number. Here
xi is a quantized histogram representation for each sample. For
a given test sample y, we expect a sparse linear reconstruction
over the training samples in the form y = Ds + E , where s
is the reconstruction coefficient vector that is expected to be
sparse, and E accounts for errors and corruptions associated
with y. Appendix VI-A shows that the corruptions caused by
ambiguity transfer and that caused by mis-detection transfer
are linearly additive, hence we can decompose the error term
further as E = EA + EM , that is

y = Ds + EA + EM . (9)

Substituting the analytic forms of these error terms as proposed
in Formulation 2.1 and 2.2 and collecting all the sparsity-
encouraging objectives, we arrive at a unified optimization
problem for all our purposes:

min
s,K ,p

‖s‖1 + λ1‖K �W‖1 + λ2‖p‖1
s. t. y = Ds + [

K1− K�1+ Bp
]
, s ≥ 0. (10)

For the sake of treatment, we make a trivial change of variables
by making E = K � W , then the program we will attack in
the rest of the paper will be

min
s,E,p

‖s‖1 + λ1‖E‖1 + λ2‖p‖1,
s. t. y = Ds + [

(E ./W )1− (E ./W )�1+ Bp
]
, s ≥ 0.

(11)

where we employ ./ to denote element-wise division of
matrices henceforth and B = I− y1�.

III. PRACTICAL OPTIMIZATION VIA THE ACCELERATED

PROXIMAL GRADIENT (APG) METHOD

In this section, we purpose a computationally efficient attack
of the optimization in Eqn. (11). We start with a naive solution
to the problem which can be built on the Lasso [15] and
its numerous solvers, and explain about the computational
limitation and then alter to our proposal. We propose an
accelerate proximal gradient algorithm [16], [17] to efficiently
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solve the problem. In comparison to the Lasso solution with
poor scaling-up capacity, our proposal is especially promising
in this aspect. Some technical deductions of results presented
in this section are provided in Appendix.

A. Two Solution Schemes

Since it is hard to handle the equality constraint about recon-
struction in Eqn. (11) directly, we propose to progressively
solve a subproblem in this form

min
s,E,p

‖Ds − y + [(E ./W )1− (E ./W )�1+ Bp]‖2F
+μ(‖s‖1 + λ1‖E‖1 + λ2‖p‖1),

with s ≥ 0 (12)

each time, while gradually decreasing the value of parameter
μ over iterations. This is justified in view that as μ→ 0 the
variant problem is approaching the original.

For Eqn. (12), it is immediately apparent that the objective
can be separated into three subproblems while fixing any two
unknown terms and optimizing the remaining one. While it is
obvious optimizing w.r.t. s and p respectively boils down to
standard Lasso problems (i.e., �1 constrained linear regression,
see [20]), it also holds for optimizing w.r.t. E as shown below.

If one converts matrix E = [e1, . . . , er ] ∈ R
r×r into its

vector form e = [e1; . . . ; er ] ∈ R
r2×1 by stacking all columns,

the optimization turns out to be

min
s,e,p

‖Ds−y+Ae+Bp‖2F+μ(‖s‖1+λ1‖e‖1+λ2‖p‖1),
with s ≥ 0, (13)

where B = I− y1�, and A ∈ R
r×r2

is defined as

Ai, j =

⎧
⎪⎪⎨

⎪⎪⎩

1
Wi, j

if j = 1, 2, · · · , r& j �= i,

− 1
W

i, j−i
r +1

if j = i, i + r, · · · , i + (r − 1)r,

0 otherwise.

Hence if one wishes to optimize e while fixing s and p,
one can apply the “flatting” trick as introduced above and
convert back and forth between the vector and matrix forms.
This however immediately reveals one potential problem: the
dimension of the vector will grows very quickly with the
dimension of the matrix, as dictated by the r2 term.

We wish to avoid the awkward conversion that causes
the dimensionality problem, and also to employ simple opti-
mization techniques with good convergence rate guarantee.
The shrinkage operator for matrices recently employed in
several works, e.g., [21], and the innovative first-order method
introduced by Nestorov [22], [23] combined with the proximal
gradient method jointly offer the promise. In fact, the acceler-
ate proximal gradient (APG) method has been described and
applied with success in several remarkable pieces of reports,
e.g., [16], [17], and [24]. We will next briefly review the
basics of APG method and several useful shrinkage operator
results, before presenting our solution scheme that exhibits
excellent scalability and convergence. Meanwhile we would
like to note that the first-order acceleration method has recently
been employed to solve the Lasso problem with insightful
analysis [15]. There instead of applying the proximal method

Algorithm 1 Accelerate Proximal Gradient Method
1: While not converged do
2: Yk ← Xk + bk−1−1

bk
(Xk − Xk−1);

3: Gk ← Yk − 1
L f
∇ f (Yk);

4: Xk+1 ← arg minX

{
μg(X)+ L f

2 ‖X − Gk‖2
}

;

5: bk+1 ← 1+
√

4b2
k+1

2 , k ← k + 1;
6: end

to the smooth term only, the authors employ the smoothing
technique as presented in Nestorov [23] and smoothed the �1
norm which is not smooth.

B. The Accelerate Proximal Gradient Method and Shrinkage
Operators

Given an unconstrained convex problem

min
X∈H

F(X)
.= μg(X)+ f (X) (14)

for a real Hilbert space H endowed with an inner product 〈·, ·〉
and a corresponding norm ‖·‖ and dual norm ‖·‖∗, with μ > 0
being a balancing parameter. Suppose both g(X) and f (X) are
convex, and further f (X) is continuously differentiable and
∇ f (X) is Lipschitz continuous with constant L f , i.e.,

‖∇ f (X1)−∇ f (X2)‖∗ ≤ L f ‖X1 − X2‖. (15)

Instead of directly minimizing F(X), proximal gradient algo-
rithms minimize a sequence of separable local quadratic
approximations to F(X) (specifically local approximation to
the smooth term f (X) while keeping g(X) intacted), denoted
as Q(X, Y ) which is formed at tactically chosen points Y :

Q(X, Y )
.= f (Y )+〈∇ f (Y ), X−Y 〉+ L f

2
‖X−Y‖2+μg(X).

(16)

Let G = Y − 1
L f
∇ f (Y ), then

X = arg min
X

Q(X, Y )

= arg min
X

{
μg(X)+ L f

2
‖X − G‖2

}
. (17)

Hence to solve the optimization in (14), one may repeatedly
set Xk+1 = arg minX Q(X, Yk) with Yk chosen based on the
sequence X0, . . . , Xk , and the convergence of this iterative
process depends strongly on the choice of points Yk on which
local approximations Q (X, Y ) are formed. The computational
complexity is O(L/ε) [16]. The general accelerated version
of the proximal gradient method is presented in Algorithm 1.

The major purposes of forming sequentially the separable
quadratic approximations in proximal methods lie at that many
cases of interest admit simple or even closed-form solutions
to the proximal optimization in Eqn (17). And this dictates
the per-iteration complexity for the whole problem whatever
convergence rate obtained. Hence before applying APG to our
particular problem, we present two closed-form solutions to
two generic optimization problems. First we introduce two
shrinkage (also termed as soft-thresholding operators in some
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articles [25]) operators. Specifically, for matrix X ∈ R
m×n and

ε > 0, we have the symmetric shrinkage operator

Sε [X] =

⎧
⎪⎨

⎪⎩

Xij − ε Xij > ε,

Xij + ε Xij < −ε,

0 otherwise

(18)

and the asymmetric shrinkage operator

Tε[X] =
{

Xij − ε Xij > ε,

0 otherwise
(19)

where we use the subscript i j to denotes element-wise oper-
ations to all elements of the matrix X . And simple exercising
of the classic shrinkage operator analysis (e.g., [26]) reveals
that the above shrinkage operators are closed-form solutions to
two optimization problems of particular interest to our work.

Proposition 3.1 [20]: For matrix X ∈ R
m×n , we have

Sε[Gk] = arg min
X

ε‖X‖1 + 1

2
‖X − Gk‖2F . (20)

Tε[Gk] = arg min
X≥0

ε‖X‖1 + 1

2
‖X − Gk‖2F . (21)

One can easily verify these results by noticing that the opti-
mizations are separable w.r.t. matrix elements and hence the
problems each reduce to scalar optimization ones.

C. Accelerate Proximal Gradient Method for RIASR

We are now ready to zoom in to our particular problem
and apply the APG algorithm. By comparing Eqn. (12) and
Eqn. (14), we have the component objectives as

f (X) =
∥
∥
∥Ds − y + [(E ./W )1− (E ./W )�1+ Bp]

∥
∥
∥

2

F
g(X) = ‖s‖1 + λ1‖E‖1 + λ2‖p‖1 (22)

where X = (s, E, p)� and B = I − y1� as a constant
matrix. We note that we still have one additional constraint
s ≥ 0, but we can efficiently handle them in the respective
proximal problems (as shown in detail in the appendix).
Formally, by composition rules of convexity (see e.g., Boyd
and Vandenberghe [27]), we assert the convexity of both f (X)
and g(X) and further the smoothness of f (X).

Next we will show that f (X) in Eqn. (22) satisfies Lipschitz
continuous condition and also identify the Lipschitz constant.

Proposition 3.2: f (X) defined in Eqn. (22) is Lipschitz
continuous with constant

L f = max{
√

16‖D‖4 + 64‖1./W‖2‖D‖2 + 16‖B‖2‖D‖2,
√

32m‖D‖2‖1./W‖2+128m2‖1./W‖4+32m‖B‖2‖1./W‖2,
√

16‖D‖2‖B‖2 +64m2‖B‖2‖1./W‖2 + 16‖B‖4} (23)

where we have for the moment reserved ‖ · ‖ to denote the
operator norm (i.e., the largest singular value) of a matrix.

Proof: Noting that ‖A‖2F = tr
(
A�A

)
and tr (AB) =

tr (B A) and some properties in trace derivatives, we can

calculate ∇ f (X) based on Eqn. (22) as

∇s f (X)= 2D�Ds+2D�
[
−y+(E ./W )1−(E ./W )�1+Bp

]
;

∇E f (X)= 2
[
(E ./W )1− (E ./W )�1+ Ds − y + Bp

]
1�

×(1./W )−21(1./W )

[
(E ./W )1−(E ./W )�1

+ Ds − y + Bp

]�
;

∇p f (X)= 2B�
[

Ds−y+(E ./W )1−(E ./W )�1+Bp
]

+2B�Bp. (24)

For any pairs of X1 = (s1, E1, p1)
�, and X2 =

(s2, E2, p2)
�, some hand-waving shows that

‖∇ f (X1)− ∇ f (X2)‖2F ≤ L2
f

∥
∥
∥
∥
∥
∥

s1 − s2
E1 − E2
p1 − p2

∥
∥
∥
∥
∥
∥

2

F

(25)

where we have employed the inequality 〈A, B〉 ≤ ‖A‖‖B‖F

extensively to obtain the upper bound. The last inequality
and the definition for Lipschitz continuity verify the
proposition.

Upon launching this, the application of APG is straightfor-
ward and we leave the detailed deductions to the appendix for
completeness. With the knowledge of the sparse reconstruction
coefficient s, the classification process is similar to [4]. For
each class i ∈ {1, 2, . . . , c}, let δi : R

n → R
n be the

characteristic function which selects the coefficients associated
with the i -th class. For s ∈ R

n , δi (s) ∈ R is a new vector
whose only nonzero entries are the entries in s that are
associated with class i . The whole optimization is presented in
Algorithm 2. In implementation, we empirically set λ1

r = λ2 =
λ to considerably reduce the number of tunable parameters,
where r is the size of feature dimension. Moreover, we use the
continuation technique to speed up overall convergence, i.e.,
we do not wait until convergence of the proximal problem to
update the parameter μ, but update it after each iteration by a
multiplicative factor that is slightly less than 1. This technique
has been widely applied in existing literature on APG, e.g.,
[16], [17], [24].

IV. DISCUSSION

There exists quite a few works related to the proposed
RIASR method, including Robust Sparse Coding (RSC) [28]
and Gabor Feature based Robust Sparse Coding (GSRC) [29].
Although the objectives of SRC and GSRC are similar as
ours, the scopes and limitations to handle are different. For
RSC, it assumes that the errors on each feature element are
independently and identically distributed, while our algorithm
reveals the relationship among them, that is ambiguity transfer
and mis-detection transfer for errors among different histogram
bins. For GSRC, it is based on the Gabor features, which effec-
tively extract the image local directional features at multiple
scales, while we target quantized histogram features, which are
widely used for the superiority in encoding image structures
or interest regions. Thus, RIASR is essentially different from
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Algorithm 2 Robust Image Analysis with SR Algorithm

1: Input: Let training samples be D ∈ R
r×n . The weighting

matrix is W ∈ [0, 1]r×r , a test sample is y ∈ R
r , and

weighting parameters is μ, λ, let the decreasing factor be
η < 1.
Initialization: s0 = s−1 = 0; E0 = E−1 = 0; p0 = p−1 =
0; b0 = b−1 = −1; μ̄ = 10−8μ0;

2: While not converged do
3: Y s

k = sk + bk−1−1
bk

(sk − sk−1),

Y E
k = Ek + bk−1−1

bk
(Ek − Ek−1),

Y p
k = pk + bk−1−1

bk
(pk − pk−1);

4: Os
k =2D�DY s

k+2D�[−y+(Y E
k ./W )1−(Y E

k ./W )�1+BY p
k ];

O E
k = 2[(Y E

k ./W )1 − (Y E
k ./W )�1 + DY s

k − y +
BY p

k ]1�(1./W )− 21(1./W )[(Y E
k ./W )1− (Y E

k ./W )�1+
DY s

k − y + BY p
k ]�;

O p
k = 2B�[DY s

k −y+(Y E
k ./W )1−(Y E

k ./W )�1+BY p
k ]+

2B�BY p
k ;

5: Gs
k = Y s

k − 1
L f

Os
k , GE

k = Y E
k − 1

L f
O E

k , G p
k = Y p

k − 1
L f

O p
k ;

6: sk+1 = T μ
L f
[Gs

k], Ek+1 = S μλ
L f

[GE
k ], pk+1 = S μλ

L f

[G p
k ];

7: bk+1 = 1+
√

4b2
k+1

2 , μk+1 = max(ημk, μ̄), k = k + 1;
8: end
9: s = sk+1

10: Compute the residuals ri (y) = ‖y − Dδi (s)‖2, for i =
1, . . . , c

11: Output: class(y) = arg mini ri (y).

these methods and of its own perspective, so we do not plan
to compare with these algorithms in experiment part.

V. EXPERIMENTS

In this section, we first demonstrate empirically the speed
advantage of optimizing E in Eqn. (12) using APG style
proximal operator on matrix function over the naive translated
Lasso problem (ref. Sec-III-A). Then we evaluate systemat-
ically the proposed Robust Image Analysis with SR frame-
work (RIASR) for robust image analysis, on three benchmark
datasets, Caltech-101 [30], Caltech-256 [31], Corel-5k [32],
and CMU PIE [33], respectively.

A. Standard Lasso Solution Versus APG Method on Matrix
Function With �1-Norm Regularizer

As discussed in Sec. III-A, it is prohibitive to optimize the
matrix E in Eqn. (12) with standard Lasso solving routines
when the matrix dimension grows large. Instead the APG kind
algorithm would be preferable due to the amendable closed-
form solution to the proximal matrix subproblem.

We perform contrived simulations on toy data that is
randomly generated, with the feature dimensionality r rang-
ing from 200 to 1800. Correspondingly the matrix E is of
r × r ; in comparison, the regressor matrix has a dimension of
r × r2. We use two lasso solvers: Least Angle Regression
(LARS) method [34] and block-coordinate descent (BCD)
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Fig. 2. Comparison of running times among the LARS solution (blue bar),
BCD solution (red bar), and the APG solution (green bar) to optimize with
respect to E . The x-axis indicates the feature dimension. The running times
of two standard Lasso solutions quickly increase as the feature dimension
grows, while that of the APG solution grows reasonably slowly.

method5 [35]. Figure 2 shows the comparison of running time
among LARS, BCD and APG method, with the growth of
dimensionality (hence the problem scale). From the figure,
we can see when the feature dimension is small (=200),
the running times of three methods are comparable; however,
when the feature dimension increases through 800, the APG
method turns out to be much faster than LARS and BCD
solver. When the feature dimension goes up to near 1800, the
running time of APG method is 1/75 of the cost by LARS and
1/10 of the cost by BCD solver.

We also empirically compare the overall running time for
solving the RIASR problem over real data with: 1) alternating
optimization based on LARS and BCD solvers; and 2) the
APG algorithm proposed in our Algorithm 2. Here we just
briefly report the running time on Caltech 101 [36], of which
the feature dimension is set as 1000. When using LARS and
BCD solvers, it respectively needs 3087s and 945s to process
one image, while using the APG method, the running time
decreases to 150s, which is 1/20 cost of that by LARS and 1/6

cost of that by BCD.

B. Evaluation on Robust Image Analysis

The four benchmark datasets used in our experiments are
Caltech-101 [36], Caltech-256 [31], Corel-5K [37] image
datasets, and CMU PIE face dataset [38]. Caltech-101 is one
of the most popular benchmark datasets for object recognition,
containing 101 distinct categories and one background class
with tens of samples per class. Caltech-256 is an extension of
the Caltech-101 dataset. It consists of 256 object categories
and contains from 80 to 827 images percategory. The total
number of images is 30608. This dataset possesses larger
intra-class variability than the Caltech-101 and thus is more
challenging. Corel-5K is composed of 50 categories and each
containing 100 images culled from the COREL image CDs.
The CMU PIE (Pose, Illumination and Expression) database
contains more than 40, 000 facial images of 68 people. The
images were acquired across different poses, under variable

5The code is downloaded at http://www.mathworks.com/matlabcentral/
fileexchange/25680-coordinate-descent-for-compressed-sensing.
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illumination conditions, and with different facial expressions.
We choose one near frontal pose C07, which includes 1629
images of 68 people in our experiment. Each image is aligned
by fixing the location of the two eyes and normalized to 64-by-
64 pixels. We choose sparse representation (SR) and support
vector machines (SVM), which do not includes the process
of eliminating the corruptions, as our baseline classifiers to
show the performance for our proposed method in corrupted
samples recognition.

1) Object Recognition: We first demonstrate the effective-
ness of our RIASR framework on object recognition with
Caltech-101, Caltech-256, and Corel-5k datasets. In Caltech-
101 and Caltech-256, we randomly select 15 images for each
category to form the training set, and the remaining 7614 and
26768 images for test respectively. In Corel-5k, 66 images out
of 100 of each class are randomly selected as labeled samples,
then the rest as unlabeled, leading to a train/test ratio of 3300
versus 1700.

For Caltech-101 and Caltech-256, we extract the fea-
tures by following LLC method [39], which archives good
performance on classification. Dense Scale-Invariant-Feature-
Transform (SIFT) features [11] are extracted from densely
located patches centered at every 4 pixels for each image
and the size of the pixel is fixed as 16 × 16. We construct
a visual word dictionary containing K words via K -means
clustering. We choose two values of K for Caltech-101
and Caltech-256 respectively. One is set as 256, and the
other one is 2048 for Caltech-101 and 4096 for Caltech-
256, which is the same setting as state-of-the-arts reported
by [39]. The corresponding feature size is 5376-dim for 256
codebook bases, 43008-dim for 2048 bases, and 86016-dim
for 4096 bases. Due to memory limitation in our method,
we use Marginal Fisher Analysis (MFA) [40] to reduce the
feature dimension to 5000 for 21504-dim and 43008-dim
features by feature selection. For Corel-5k, we extract 1000-
dim dense SIFT feature to demonstrate the performance for
the proposed algorithm on traditional Bag-of-Words features.
All the features are L1 normalized into a histogram form. We
choose linear support vector machines (SVM), which is based
on one-vs-all strategy, and sparse representation (SR) as our
baselines.

In order to demonstrate the robustness of our method, we
randomly add some corruptions into every test sample. The
corruption-adding process simulates the two transfer processes
that concern us in the current work. Hence there are two
(concurrent) steps6 in the process. To introduce ambiguity
corruptions, we randomly select x non-zero histogram-bins to
corrupt, for x ∈ {0, �0.1m�, �0.2m�, �0.3m�, �0.4m�}, where
m is the number of non-zero histogram-bins, and �·� indicates
the flooring operation. The discrete selection for x simulates
different levels of corruptions. The histogram bin that to be
“mixed” with each bin in {x} (we denote the set by {x} for con-
venience) will be selected with probability in accordance with
the weighting matrix W . The selected bin will then be added

6Due to the linearly additive nature of corruptions caused by these two
processes as discussed previously, there is no difference by implementing the
concurrent corruptions sequentially as we describe here.

TABLE I

RECOGNITION ACCURACY (%) COMPARISON AGAINST DIFFERENT

CORRUPTION RATES ON CALTECH-101 DATASET. THE FIFTH ROW

SHOWS THE RESULTS FROM STATE-OF-THE-ARTS ALGORITHM

Algorithm 0% 10% 20% 30% 40%

linear-
SVM

60.25 54.78 50.44 46.34 40.58

K=256 SR 50.36 46.23 44.1 42.08 40.2

SIASR 58.28 55.85 54.44 53.68 52.11

linear-
SVM

67.35
[39]

64.37 60.28 57.33 54.75

K=2048 SR 57.52 53.81 50.06 48.4 46.12

SIASR 66.39 65.23 64.43 63.28 61.87

TABLE II

RECOGNITION ACCURACY (%) COMPARISON AGAINST DIFFERENT

CORRUPTION RATES ON CALTECH-256 DATASET. THE FIFTH ROW

SHOWS THE RESULTS FROM STATE-OF-THE-ARTS ALGORITHM

Algorithm 0% 10% 20% 30% 40%

linear-
SVM 10.97 8.48 6.75 5.43 5.28

K=256 SR 8.4 7.28 5.84 5.22 5.22

SIASR 10.53 9.32 8.84 8.42 7.23

linear-
SVM

34.36
[39] 31.52 27.33 25.26 23.15

K=4096 SR 25.54 22.72 19.80 18.14 16.82

SIASR 32.92 31.05 29.87 29.05 27.33

to a corruption value z ∼ U(0, yi ) that distributed uniformly
between 0 and the original histogram value yi . And the source
bin will be deducted by the value z accordingly. Moreover to
simulate the mis-detection corruptions, we similarly selected
different levels of source bins as above. We empirically assume
the mis-detection transfer process does make the histogram
denser in this experiment. Then, for the i th selected bin, we
randomly decide whether the corruption decrease value yi or
not. If “decrease”, we assume the corruption value to be the
smallest value z of all other non-zero histogram-bins. Finally
we add (m − 1) × z to yi , and minus z from all the other
non-zero ones. If “increase”, we again generate a corruption
value z from the uniform distribution U(0, yi ), and decrease
the selected bin by z, and add z to each of the other bins.

For parameter tuning, μ is tuned from 10−5 to 10−1, λ
is tune from 1 to 150, and η is tuned from 0.7 to 0.995.
We uniformly select 10 values form each of parameter range,
then choose the highest one to fine tune. In Caltech-101, the
parameters of RIASR are set as μ = 5−3, λ = 5, η = 0.985
when K = 256, and μ = 10−4, λ = 5, η = 0.99 when K =
2048. The parameter C in linear-SVM is set as 50 both at K =
256 and K = 2048. ε in SR is set as 0.08. In Caltech-256, the
parameters of RIASR are set as μ = 10−3, λ = 50, η = 0.98
when K = 256, and μ = 10−4, λ = 50, η = 0.975 when
K = 2048. The parameter C in linear-SVM is set as 50 both at
K = 256 and K = 2048. ε in SR is set as 0.1 In Corel-5k, the
parameters of RIASR are set as μ = 10−3, λ = 100, η = 0.7,
and that of linear-SVM is set as C = 100. In SR, ε is set as
0.002.
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TABLE III

RECOGNITION ACCURACY (%) COMPARISON AGAINST DIFFERENT

CORRUPTION RATES ON COREL-5 K DATASET

Algorithm 0% 10% 20% 30% 40%

Linear-SVM 62.44 57.52 56.83 50.26 48.32

SR 57.57 49.58 47.36 42.58 40.31

SIASR 64.30 63.92 63.14 62.56 61.2

Table I shows the classification performance against corrup-
tion rate on Caltech-101. For clean test data, the accuracy of
linear-SVM is (67.35%) when K = 2048 and 60.25% when
K = 256, while our results are slight lower, that is 66.39%
(1% lower) and 58.28% (2% lower) respectively. However,
the proposed method is more robust on corrupted data. From
clean data to 40% corrupted data, the decrease of accuracy
for RIASR is 6.17% when K = 256, and 4.52% when
K = 2048, while whose for SR are 10.16% and 11.4%, whose
for linear-SVM are 19.67% and 12.6%. Table I clearly shows
that the decrease of accuracy in RIASR (5.17%) is much less
than those in linear-SVM (19.7%) and SR (10.2%) when the
corruption rate for test data reaches 40%.

Table II shows the classification performance against cor-
ruption rate on Caltech-256. The result is similar to that on
Caltech-101. RIASR achieves more robust performance when
the corruption rate reaches to 40% than SR and linear-SVM.

We also demonstrate the performance for our method with
other histogram feature, SIFT-Bows, on Corel-5k. As shown in
Table III, the accuracy of RIASR reaches 64.3% for clean test
data, which is higher than that of linear-SVM (62.44%), and
that of SR (57.57%) For the corrupted test data, the figure also
shows that the decrease of accuracy in RIASR (3.1%) is much
less than those in linear-SVM (14.12%) and SR (17.26%).

2) Face Recognition: In this experiment, we randomly
select 10 images in every category as the training samples,
and hence split the dataset into 680 training samples and 1012
test samples.

Whereas the corruptions in previous experiments are sim-
ple and only occurs at the BoW level, this time we make
a more complicated scenario whereby corruptions occur in
multiple levels of quantization and the relatively clean data are
unknown to us (recall in the last experiment, we artificially
introduced corruptions to histograms that we assumed to
contain no corruptions). To this end, we corrupt a certain
percentage of randomly chosen pixels from each of the test
images, replacing their values with iid samples from a uniform
distribution. The corrupted pixels are randomly chosen for
each test image and the locations are unknown to the computer.
We vary the percentage of corrupted pixels from 0% to 40%.

We extract two kinds of features to demonstrate the per-
formance of our algorithm, one is pixel-based raw feature,
the other one is LBP feature. All the images are cropped with
dimension 64×64, and converted to grayscale. For pixel-based
raw feature, each feature is normalized into histogram feature.
For LBP feature, the LBPu2

8,1 [12] raw feature is extracted for
every pixel. Then the image is divided into 7× 7 rectangular
regions, and a histogram is computed independently within
every region. At last, these 49 (=7 × 7) histograms are
merged into one histogram by lining them up with different

TABLE IV

DETAILED CLASSIFICATION ACCURACIES (%) AGAINST DIFFERENT

CORRUPTION RATES (RIASR VERSUS SR ON PIE)

Algorithm 0% 10% 20% 30% 40%

Raw + SR 94.35 91.81 88.64 83.42 75.38

Raw + SIASR 96.34 95.85 93.22 91.68 88.04

LBP + SR 82.93 77.69 68.42 41.57 15.46

LBP + SIASR 92.20 90.02 85.34 78.38 69.87

TABLE V

RECOGNITION ACCURACIES (%) AGAINST DIFFERENT NUMBERS OF

TRAINING SAMPLES ON PIE DATASET. THE FIRST COLUMN LISTS THE

ALGORITHMS TO EVALUATE, AND OTHER COLUMNS SHOW THE

AVERAGE VALUES AND STANDARD DEVIATIONS AGAINST

DIFFERENT NUMBERS OF TRAINING SAMPLES FROM

10 RANDOM SPLITS OF THE DATASETS

Algorithm 5 10 15 20

SR 71.02(±1.66) 84.25(±1.41) 88.80(±1.32) 91.10(±1.01)

SIASR 82.93(±1.67) 92.20(±1.31) 95.23(±0.82) 96.56(±0.72)

weights. The extraction process and weights selection are
according to [41]. The parameters in this experiment are set
as μ = 10−5, λ = 100, η = 0.98.

Table IV presents the classification performances against
different corruption rates on CMU PIE dataset when the
number of training data is set as 10. We demonstrate two
kinds of features, LBP and raw feature, and two kinds of
algorithms, SR and our proposed one. As the corruption rate
increases from 0% to 40%, the degradation for the accuracy
of SR is much sharper than that of RIASR both on LBP and
raw feature. We also experiment on the original PIE images,
which are not artificially corrupted, to verify the classification
performance of our algorithm in practice. We randomly select
nl ∈ {5, 10, 15, 20} images for training, and the rest for test.
The reported mean and standard deviation of the recognition
accuracy are estimated over 10 random splits. Table V shows
the recognition accuracies against different numbers of training
samples on PIE dataset. From the table, we can see SIASR
algorithm performs considerably better than the original SR
algorithm.

VI. CONCLUSION

In this paper, we have proposed the Robust Image Analysis
with Sparse Representation (RIASR) algorithm, which not
only remedies the corruptions caused by ambiguity transfer
and mis-detection transfer in quantized visual features, but is
also verified to be efficient in optimization. The experiments
on three benchmark object recognition datasets, Caltech-101,
Caltech-256 and Corel-5k, and one popular face recognition
dataset, CMU PIE, have demonstrated strongly the practical
effectiveness and efficiency, both on the contrived scenarios
and the real. This is just the start of this line of work
that has a strong practical flavor, e.g., we can extend our
basic ideas from dealing with quantization corruptions to
other processes that cause corruptions, e.g. feature extraction
process. In this way, the feature extraction will be more
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robust and accurate. From another perspective, our framework
only considers the corruptions contaminating the test sample
with clean training samples for the SR reconstruction. It
would be interesting to extend to a more realistic model,
where the training samples also contain corruptions. The
analysis would be more challenging and rewarding. Our last
experiment on the original CMU PIE data has produced
encouraging results in this line. And some of the recent works
in the signal processing community also share the same spirit,
e.g., [42].

APPENDIX

A. Proof of Corruption Additivity

In this subsection, we will prove two corruptions, ambiguity
transfer and mis-detected transfer, are linear additive. For the
sake of simplicity, the ambiguity transfer is assumed to occur
from i -th bin to j -th, and the mis-detected transfer is from
i -th bin to any others.

For a certain image, let clean data be x = {x1,
x2, . . . , xi , . . . , x j , . . . , xr }T . For ambiguity transfer, let the
amount of shift in normalized histogram values from i -th bin
to j -th bin be k j i . For mis-detection transfer, let the “mis-
detection vector” p = {p1, . . . , pr }T , where the element pi

indicates the unnormalized amount of corruption in i -th bin.
So the corrupted data y = {y1, . . . , yi , . . . , y j , . . . , yr }T are
equal to

y1 = x1 + p1

1+∑
p
, . . . , yi = xi + pi − k j i

1+∑
p

, . . . ,

y j = x j + p j + k j i

1+∑
p

, . . . , yr = xr + pr

1+∑
p
.

Then original clean data x = {x1, . . . , xi , . . . , x j , . . . , xr }T
can be calculated as

x1 = (1+
∑

p)y1− p1, . . . , xi=(1+
∑

p)yi− pi + k j i ,

x j = (1+
∑

p)y j− p j − k j i , . . . , xr=(1+
∑

p)yr− pr .

Then, the overall corruptions E = {E1, E2, . . . , Ei , . . . , E j ,
. . . , En} is

E1 = y1 − x1 = −
∑

py1 + p1, . . . ,

Ei = yi − xi = −
∑

pyi + pi − k j i , . . . ,

E j = y j − x j = −
∑

py j + p j + k j i , . . . ,

Er = yr − xr = −
∑

pyr + pr .

Since EM = ∑
py + p, which is deduced in Eqn. (3), and

EA = K1 − K�1, where K is matrix with ki j = 0, other
elements are equal to 0. Therefore, E = EM + EA, which is
linear additive.

B. Proof of Algorithm Convergence

We present the detailed derivation of the iterative process
with APG to optimize the problem in Eqn. (12). Specifically,
we derive the rules to update s, E and p in each iteration.

From Eqn. (16), (17), and (24), we get the update for X
as

Xk+1 = arg min
X

Q(X, Yk)

= arg min
X

f (Yk)+ 〈∇ f (Yk), X − Yk〉

+ L f

2
‖X − Yk‖2F + μg(X) (26)

where X = (s, E, p)� and Yk =
(
Y s

k , Y E
k , Y p

k

)�
. Observing

the separability of each additive term w.r.t. components of X
in Eqn. (26), we have the following updating equations.

1) Optimizing s:

sk+1 = arg mins≥0
L f
2 ‖s − Y s

k ‖2F + μ‖s‖1 +
〈
J, s − Y s

k

〉

where J = 2DT DY s
k+2D�[−y+(Y E

k ./W )1−(Y E
k ./W )�1+

BY p
k ]. Let Os

k = 2D�DY s
k + 2DT [−y + (Y E

k ./W )1 −
(Y E

k ./W )T 1+ BY p
k ], we then have

sk+1 = arg min
s≥0

L f

2

∥
∥
∥∥s − Y s

k +
1

L f
Os

k

∥
∥
∥∥

2

F

+ μ‖s‖1 (27)

where above we have dropped constant terms due to the fixed
E and p. It follows immediately from Proposition 3.1

sk+1 = T μ
L f

[
Y s

k −
1

L f
Os

k

]
. (28)

2) Optimizing E: Similar to the deduction procedure of s,
we have

Ek+1 = arg min
E

Q(E, Yk)

= arg min
E

L f

2

∥
∥∥
∥E − Y E

k +
1

L f
O E

k

∥
∥∥
∥

2

F

+ μλ1‖E‖1

where we have made similar substitution using O E
k for

the gradient term. The updating equation follows from
Proposition 3.1

Ek+1 = Sμλ1
L f

[
Y E

k +
1

L f
O E

k

]
. (29)

3) Optimizing p:

pk+1 = arg min
p

Q(p, Yk)

= arg min
p

L f

2

∥
∥
∥
∥p − Y p

k +
1

L f
O p

k

∥
∥
∥
∥

2

F

+ μλ2‖p‖1.
(30)

We figure out the solution as

pk+1 = Sμλ2
L f

[
Y p

k +
1

L f
O p

k

]
. (31)
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