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SUMMARY

In this paper, a direct adaptive state-feedback control approach is developed for a class of nonlinear systems
in discrete-time (DT) domain. We study MIMO unknown nonaffine nonlinear DT systems and employ a
two-layer NN to design the controller. By using the presented method, the NN approximation is able to can-
cel the nonlinearity of the unknown DT plant. Meanwhile, pretraining is not required, and the weights of
NN used in adaptive control are directly updated online. Moreover, unlike standard NN adaptive controllers
yielding uniform ultimate boundedness results, the tracking error is guaranteed to be uniformly asymptot-
ically stable by utilizing Lyapunov’s direct method. Two illustrative examples are provided to demonstrate
the effectiveness and the applicability of the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Neural networks are considered as powerful tools for modeling nonlinear functions because of their
properties of nonlinearity, adaptivity, self-learning, and fault tolerance. Especially, with the intro-
duction of the back-propagation learning algorithm by Werbos [1] (1974 PhD Thesis), multilayer
NNs have become one of the most popular architectures for practical applications in many areas,
including signal processing, pattern classification, and system identification. During the past several
decades, research on NN-based adaptive control problems had drawn considerable attention [2—15],
mainly credited to the establishment of the universal approximation theory [16], which guarantees
that feedforward multilayer NNs can approximate any nonlinear function defined on a compact
set to the prescribed accuracy. As a result, a huge number of methods have been developed and
successfully applied to adaptive control problems.

Nevertheless, most of the previous approaches focused on nonlinear autoregressive moving aver-
age with exogenous input systems. This form is not convenient for purposes of adaptive control
using NNs because of its lack of knowledge of nonlinear dynamic systems. Hence, state-space rep-
resentation of nonlinear systems becomes popular. With the development of the theory of adaptive
control, an increasing number of researchers pay their attention to affine nonlinear systems and little
attention to nonaffine nonlinear systems. A typical feature of the affine nonlinear system is that the
output of this type of systems is linear with respect to the control input. Consequently, it is easy to
design an adaptive controller for such a nonlinear system by using feedback linearization methods.
However, a significant difference between affine nonlinear systems and nonaffine nonlinear systems
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is that the output of the nonaffine nonlinear system depends nonlinearly on the control signal. Under
this circumstance, feedback linearization methods cannot be implemented. Consequently, it gives
birth to a great challenge for researchers to design efficient controllers for such nonaffine nonlinear
systems, which aims at deriving the prescribed output. Moreover, if the nonaffine nonlinear system
is unknown, it will be more intractable to be dealt with.

Recently, NN adaptive control for nonaffine nonlinear systems has been an active research area for
its practical interest. In [17] and [18], an adaptive state and output feedback neuro-control was devel-
oped for SISO nonaffine nonlinear continuous-time (CT) systems. By using a high-gain observer,
semi-global uniform ultimate boundedness of the closed-loop system was obtained, and the output
tracking error converging to an adjustable neighborhood of the origin was derived, respectively. In
[19] and [20], NN-based adaptive feedback controls were proposed for SISO nonaffine nonlinear
CT systems and SISO uncertain nonlinear CT systems, respectively. Uniform ultimate boundedness
of all signals involved in the closed-loop system was derived through Lyapunov’s direct method.
In [21], a direct adaptive control was presented for SISO nonaffine nonlinear CT systems. Based
on self-structuring NNs and Lyapunov’s direct method, uniform asymptotic stability of the tracking
error was obtained.

However, little literature about nonaffine nonlinear discrete-time (DT) systems exists. It is well
known that DT adaptive control design is far more complex than CT adaptive controller design, due
primarily to the fact that DT Lyapunov derivatives are quadratic in the state’s first difference, while
for CT nonlinear systems, the Lyapunov derivative is linear in the state’s derivative [22]. Although
there exists literature corresponding to MIMO affine nonlinear DT systems [23-26], there are rather
few investigations on MIMO nonaffine nonlinear DT systems. Moreover, uniform asymptotic sta-
bility of the tracking error of DT closed-loop systems is seldom obtained. In this paper, we develop
a direct adaptive state-feedback control methodology for a class of MIMO nonaffine nonlinear DT
systems using the two-layer NN.

The main contributions of this paper include the following:

1. To the best of our knowledge, it is the first time that a direct neuro-based adaptive state-
feedback control for unknown MIMO nonaffine nonlinear DT systems is studied.

2. Unlike standard NN-based adaptive controllers generally yielding uniform ultimate bound-
edness results, we derive that the adaptive NN controller can guarantee tracking errors to be
uniformly asymptotically stable (UAS) based on Lyapunov’s direct method.

3. Pretraining is not required, and the weights of NNs used in the adaptive control are directly
updated online.

4. By using the Implicit Function Theorem, the NN approximation is guaranteed to cancel the
nonlinearity of unknown MIMO nonlinear DT systems. Based on the developed approach,
feedback linearization methods can be used to design a robust adaptive controller for unknown
MIMO nonaffine nonlinear systems.

5. Persistent excitation (PE) assumption is not required in the adaptive NN controller design.

The rest of the paper is organized as follows. In Section 2, preliminaries of adaptive control
problems are provided. In Section 3, the control structure is first developed. Then, NN implementa-
tion is discussed, and the control algorithm is proposed. Finally, the stability analysis is developed.
In Section 4, two simulation examples are presented to verify the effectiveness of the established
theorem in Section 3. Finally, in Section 5, several conclusions are drawn.

2. PRELIMINARIES OF ADAPTIVE CONTROL PROBLEMS

For convenience, the notations, which will be used throughout the paper, are listed as follows:

e R denotes the real number, and R™ and R™*" denote the real m-vectors and the real m x n
matrices, respectively. T represents transposition.

e Qand Q;(i = 1,2,...,n) are compact sets of R™" and R™, respectively. Let Q' C © and
UCR™ Q' xU = {(x,u)|x € Q',u € U} stands for the Cartesian product of ' and U.
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e || - || stands for any suitable norm. When z is a vector, ||z|| denotes Euclidean norm of z. When
A is a matrix, || A|| denotes two-norm of A.

e [, and I,,, represent the m x m identity matrix and the mn x mn identity matrix, respectively.
Cm(Q)={f™ecC|f:Q—R"}.

2.1. Description of discrete-time nonaffine nonlinear systems

For purpose of the present paper, we consider an mnth-order MIMO nonaffine nonlinear DT system
described by

x1(k + 1) = xa(k)

Xp—1(k + 1) = x, (k) ey
xp(k + 1) = F(x(k),u(x(k)))
y(k) = x1(k)
with the state x(k) = [xf(k),xg(k),...,xg(k)]T € Q C R™ and each x;(k) € Q; C R™,
i =1,2,...,n.u(x(k)) € R™ is the control input, which is the continuous function with respect

to x (k). For convenience, we denote that v(k) = u(x(k)). y(k) € R™ is the output vector, and
F(x(k),v(k)) € R™ is an unknown nonaffine nonlinear function with F(0,0) = 0. It is assumed
that the state x (k) is available at the kth step for the state-feedback controller. Meanwhile, we need
the following assumption, which is made for the controllability of the system.

Assumption 1
The m x m matrix dF (x (k), v(k))/dv (k) is a positive definite matrix for V(x (k), v(k)) € Q x R™
with the compact region Q2 C R™".

Remark 1

From Assumption 1, one can easily derive that

 IF(x(k). v(k))
duv(k)

for V(x(k),v(k)) € Q x R™, where 2 C R™" is the compact region.

de #0 2)

Before continuing our discussion, we provide the following definitions that are utilized through-
out this paper. These definitions are introduced in [22, 27], and readers can refer to these literature
for further details.

Definition 1

The equilibrium point x, of system (1) is said to be uniformly ultimately bounded if there exists a
compact set 2 C R™” such that for all xo € Q(xo = x(ko), ko is the initial time), there exists a
bound € > 0 and a positive number N(xg, €) such that ||x (k) — x.|| < € forallk = ko + N.

Definition 2

The equilibrium point x, of system (1) is stable in the sense of Lyapunov at kg € R if for Ve > 0,
there exists a §(¢, ko) > 0 such that ||xo —x.|| < (¢, ko)(xo = x(ko), ko is the initial time) implies
that ||x (k) — xe|| < € for k = ko = 0. The equilibrium point is said to be uniformly stable if the
conditions hold for all k¢. The equilibrium point x, of system (1) is said to be UAS if it is uniformly
stable and there is a positive constant ¢, independent of kg, such that || xo — x| < c implies that
klim lx (k) — xe|| = 0.

—>00

Objective of control: The main objective of this paper is to develop a robust adaptive NN con-
troller for unknown MIMO nonaffine DT system (1) such that the tracking error between the system
state x (k) and the desired trajectory x4 (k) = [xT,(k),x] ,(k),....x}, (k)]T € Q C R™ is UAS.
Or equivalently, the closed-loop system output y(k) € R™ can asymptotically track the desired
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trajectory y4 (k) € R™. Meanwhile, all the signals involved in the corresponding closed-loop system
are guaranteed to be bounded.

2.2. Feedback linearizing controller design

Because system (1) is an unknown nonaffine nonlinear system, the controller cannot be directly
designed by feedback linearization methods. The purpose of this section is to develop a controller
that is similar to the feedback linearizing controller of the affine nonlinear system. The presented
approach for designing such a controller is based on the schemes proposed in [20] and [21], which
deal with CT adaptive control problems.

From system (1), we have that

y(k +n) = F(x(k),v(k))
= av(k) + [F(x(k), v(k)) — av(k)]

where & > 0 is a design constant. Denote i (x(k), v(k)) = F(x(k),v(k)) — av(k). The controller
for system (1) is chosen as

3)

v(k) = é [vi (k) = ve (k) + v (k)] 4)

where v; (k) is a feedback controller to stabilize the linearized dynamics, v, (k) is a feedforward con-
troller designed to cancel the unknown nonlinear term /4 (x (k), v(k)) via the design of a two-layer
NN, and v, (k) is a function to be detailed subsequently, which provides robustness.

By using (4), one shall find that (3) can be rewritten as

y(k +n) = vi(k) + [h(x(k), v(k)) = ve (k)] + vr (k) o)

Remark 2

As mentioned before, for convenience, we denote v(k) = u(x(k)). Hence, v; (k), v.(k), and v, (k)
should be the functions with respect to x (k). That is, in this paper, v; (k) = u;(x(k)), ve(k) =
uc(x(k)), and vy (k) = u,(x(k)).

Assumption 2

Let the desired state trajectory of system (1) be xq (k) = [x],(k),x],(k),....x}, (k)]T ,xig (k) is
selected arbitrarily and satisfies x;4(k +1) = x4+1)a(k).i = 1,...,n—1. Meanwhile, the desired
output trajectory y4 (k) is bounded by a known smooth function over the compact set 2.

Remark 3
From Assumption 2 and system (1), we can obtain that x; 1)q(k) = ya(k +1i),i =0,...,n — 1.
Hence, we can define the tracking error as

ei(k) = yalk +1i)—y(k +1)

= X(i+1)d (k) = Xi41) (k) ©
wherei =0,...,n—1.
In view of the task of vy (k), we define v; (k) as
vi(k) = ya(k +n) + Aien—1(k) + -+ + Aneo (k) (M
where e,,—1(k),...,eo(k) are the delayed values of the tracking error e,(k), and Aq,..., A, are

constant matrices selected such that |z” + 1,21 4 --- 4 A,| is stable, that is, all the solutions of
|z" + 212" + -+« 4+ X, | = 0 are located inside the unit circle centered at the origin.

Lemma 1
Assume that the tracking error e; (k) is defined as in (6) and v; (k) is proposed as in (7). Then, by
using (6) and (7), we can derive the error dynamics as

e(k + 1) = Ae(k) + B ([ve(k) — h(x(k), v(k))] — v, (k)) ®)
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where
e(k) = [efk),....el ()], A=A®IL,, B=B®I,,
0 1 -0 0 ©)
e | B=|:
_An _kn—l _kl 1
Proof
By the definition of e; (k) in (6), we have that
ei(k) = yalk +1i)— y(k +1i)
=yalk + D)+ (=D =yl + 1D+ G —1)] (10)
=ei—1(k +1)
wherei =0,1,...,n—1.
Meanwhile, from (5) and (7), we can obtain that
en(k) = —ATe (k) + [ve(k) — h(x(k), v(k))] — vr (k)
where A = [A,, ..., A;]T. Observing e, (k) = e,—;(k + 1), we derive that
en—1(k +1) = —ATe(k) + [ve (k) — h(x(k), v(k))] — v, (k) Y
Therefore, by utilizing (10) and (11), we can obtain that
eo(k +1) = ey (k),
: (12)
en1(k +1) = —=ATe(k) — v, (k) + [ve (k) — h(x(k), v(k))]
Rewriting (12) in the vector form, and noting e (k) € R™", we can derive (8) and (9). O

Remark 4
If one can find a feedforward control v, (k) to cancel the nonlinear function & (x (k), v(k)) well, that
is, ve (k) = h(x(k), v(k)), and let v, (k) = 0, then the closed-loop system becomes a linear system
etk +1) = Ae (k). Obviously, A is able to make the linear systeme(k + 1) = Ae (k) stable (for
short, A is a stable matrix), for A1, ..., A, are constant matrices selected such that |z" + A1z 14+
--+ A, | is stable. Accordingly, if there exist ve (k) = h(x(k), v(k)) and the robust term v, (k) = 0,
then v; (k) can make the tracking error exponentially converge to zero as time increases. Therefore,
the design of v; (k) in (7) makes sense.

Although the design of the feedback control v;(k) is reasonable, one may doubt whether the
feedforward control v, (k) exists or not. In what follows, we show that the feedforward control
vc (k) does exist. For convenience, the Implicit Function Theorem for vector-valued functions is
first presented, which will be used in the subsequent proof.

Lemma 2 (Implicit Function Theorem [28])

Let f = (f1..... f») be a vector-valued function defined on an open set S in R”*" with values in
R”. Suppose f € C!on S. Let (xo, y,) be a point in S for which f (xg, y,) = 0 and for which
the n x n determinant det[0 f (x¢, ¥o)/0y] # 0. Then, there exists an n-dimensional open set Ty
containing y, and one, and only one, vector-valued function g, defined on 7, and having values in
R™, such that (i) yo = g(x0); (i7) for V(xo, yo) € To, f (x0.g(x0)) = 0.

It should be emphasized that Lemma 2 is actually a local conclusion. That is, Lemma 2 is
valid when (x,y) € Top C S. In what follows, we present a generalized form of Implicit Func-
tion Theorem, which is a corollary of Lemma 2. We call the corollary as the Generalized Implicit
Function Theorem.
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Corollary 1 (Generalized Implicit Function Theorem)

Let f = (f1..... f») be a vector-valued function defined on an open set S in R”*" with values in
R”. Suppose f € C' on S. Let f(x,y) = 0 and det[df(x,y)/dy](x,y) # 0 for V(x,y) € S.
Then, there exists a continuous vector-valued function y = g(x) suchthat f(x,y) =0, V(x,y) €
S. (The proof can be found in [29].)

Denote G(x(k),v(k)) = h(x(k),v(k)) — vc(k), and let G(x(k),v(k)) = 0. From (3) and (4),
we can find that G(x(k), v(k)) is actually a function with respect to x (k), v.(k), v, (k) and v; (k).
Therefore, G(x(k), v(k)) can be represented as

vrlk) —vc(k
G (k). vy (k). ve (k) = (x(k»%) Cvek) =0 (13)
where vz (k) = v (k) + vy (k).
Theorem 1
Assume that the following matrix inequality holds:
8F k),v(k

Ju (k)

where 0 < k3 < kp < 2. Then, there exists a compact set Q' C Q and the unique con-
trol ve(x(k), vy (k))(ve(k) is a function with respect to x(k) and vy (k)) that satisfies (13) for
V(x(k),vr(k)) € Q' x U, where U C R™ is a compact set.

Proof

In order to utilize Lemma 2, we divide the proof into two parts. First, we show that there exists a solu-
tion of (13) (write the solution as v} (k)). Then, we prove that G (x (k),vr(k),vE(k))/ dvx(k)
is a nonsingular matrix.

(a) Existence of the solution v} (k) of (13).
Noting the expression of (13), one shall find that if the conclusion is true, then

*
vE(k) = (x(k), M) (15)
Obviously, v} (k) is the fixed point of (15). Therefore, we just need to prove that there exists
a fixed point for the operator 2 (x (k), -) on the given compact set U C R™.

Because x (k) is defined on the compact set €2, and v (k) is the continuous function with
respect to x(k), by functional analysis [30], we obtain that v(€2) is a compact set on R”.
Hence, we can select U = v(2).

Observe that

dh(x(k), v(k)) | _ ||oh(x(k),v(k)) dv(k)

H Jug (k) H_ du(k) av*(k)”
_ oF (x(k),v(k)) I
- ) ()]
_ |, _ #FG). vk) ”
I adu(k)

By using the matrix inequality (14), we have that
IF (x (k). v(k))

Iy ————————= =21 —k2) I,
m Otal)(k) ( 2) m (17)
oF (x(k), v(k
IR ) .
adv(k)
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1844-1861
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Therefore, by using (16) and (17), we obtain that
oh(x(k), v(k))
BU*(k)

Noting that (x(k), v(k)) is defined on the compact set Q x U and h(x(k),v(k)) is a
continuous function, we can conclude that (2 x U) is a compact set on R”?™ x R™. Hence,
h(x(k),-) is a completely continuous operator on U[31]. By using Schauder’s Fixed-Point
Theorem [31], we can draw the conclusion that there exists at least one fixed point of the
operator i(x (k), ) on the compact set U. That is, the solution v} (k) of (13) exists.

(b) Proof of non-singularity of the m x m matrix 3G (x(k), vy (k), v} (k)) /ovF (k).
Notice that
9G (x (k), v (k), ve(K))
de (k) ve (k) =vg (k)
_ 0(F(x(k),u(k)) —av(k)) du(k)
du(k) Ve (k) |y, (oy=vg (k)
IF (x(k), v(k))
du (k) ve(k)=vi (k)

By utilizing (2), we can conclude that dG(x(k),vr(k),vc(k))/ dve(k) in (18) is

—1Im  (18)

nonsingular.
Consequently, with the aid of (a) and (b) and utilizing Lemma 2, we can conclude that there exists
a unique control v, (x (k), vy (k)) satisfying (13) for V(x(k),vr(k)) € Q' x U(Q' C Q). O
Remark 5

From Assumption 1, one shall notice that the matrix inequality (14) is actually a property of the pos-
itive definite matrix 0F (x (k), v(k))/dv(k), which is utilized in [22, 27]. Therefore, the assumption
about the matrix inequality (14) makes sense. In addition, it should be mentioned that we do not
need the operator /(x(k), -) to be strictly contractive, which is a more relaxed condition than [20,
21].

Remark 6

From Theorem 1, one shall find that the solution of (13) is unique for the given local domain 2’.
Nevertheless, it does not mean that there are no other solutions v, (k) of (13) on the set Q \ €’. In
fact, if Assumption 1 holds, then the solution v, (k) of (13) exists on the whole 2. Now, we prove
this conclusion as follows: Noting that (2) is valid for V(x (k), v(k)) € © x R™, we can obtain that

detI:aG(x(k)sUf(k)sUc(k))} _det[a(F(x(k),v(k))—av(k)) du(k) ]
dve (k) N du(k) dve(ky " (19)
_ m OF (x (k), v(k))

for V(x(k),v(k)) € Q x U. Combining (13) and (19) and utilizing Corollary 1, we can conclude
that there exists a solution of (13) on the whole €2. It is worth pointing out that in this sense, the
solution of (13) may not be unique on the whole 2. Theorem 1 shows the solution v, (k) of (13) is
unique on the given local domain €’ and not on the whole 2.

3. NN CONTROLLER DESIGN

The purpose of this section is to develop an implementation of the controller v, (k). From the afore-
mentioned analysis, we know that v.(k) is a nonlinear controller, which estimates the unknown
nonlinear function & (x (k), v(k)). Nevertheless, the lack of a general structure makes the design of
such a nonlinear controller rather intractable. In fact, the nonlinear controller design is a nonlinear

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1844-1861
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function approximation problem. Hence, according to the universal approximation property of NNs
[32], a two-layer feedforward NN is employed to approximate /(x(k), v(k)). In the remainder of
this section, we shall first give the preliminaries of the two-layer feedforward NN. Then, the struc-
tures of the NN controller and the error system dynamics are presented. Meanwhile, the control
algorithm for system (1) is developed. Finally, the weight update laws for guaranteeing the tracking
performance are established.

3.1. Two-layer feedforward NNs

A general function g(x) € C™(2) can be written as
gx) = W'o (VTx) + e(x) (20)

with o (-) the activation function, &(x) the NN functional reconstruction error, and V and W the
weights for the input layer to the hidden layer and the hidden layer to the output layer, respectively.
The number of hidden layer node is denoted as N. It is shown in [33] that if the hidden layer weight
vector V' is selected initially at random and then keep it unchanged and if N is large enough, the
NN approximation error €(x) can be arbitrarily small. That is, there exists a positive number Ny
such that N = Ny implies |le(x)]| < en. Typically, activation functions for o (-) are bounded,
measurable, and nondecreasing functions from the real numbers onto [—1, 1], which include, for
instance, hyperbolic tangent function o(x) = (e* — e )/(e* + ™). Because the hidden layer
weights are generally kept as constants, (20) is rewritten as

gx) = Who(x) +e(x) 2

where o (x) = o(VTx), x € Q.

3.2. Structure of NN controller and error system dynamics
Suppose that the nonlinear function & (x (k), v(k)) can accurately be represented by
h(x(k),v(k)) = WTo (VT z(k)) + e(k) = W o (z(k)) + e(k) (22)

where V' € RO+FD™XN1 and W e RN1>™ are the ideal weight vectors for the input layer to the
hidden layer and the hidden layer to the output layer of the NN, respectively, Np is the number of
the nodes in the hidden layer, and z(k) = [xT(k) UT(k)]T. The activation function of the hidden
layer o(VTz(k)) is denoted as o (z(k)) for brief; for the hidden layer, weight vector is generally
kept as constants. In addition, e(k) is the NN approximation error.

Because the design of the controller v.(k) is actually to estimate the nonlinear function
h(x(k),v(k)), we can select v, (k) as the output of NNs. That is,

ve(k) = W (k)o (z(k)) (23)

with W(k) the estimates of the ideal weight W.
The error in the weight parameters during the estimation is given by

W(k) =W —W(k) (24)
By using (8), the closed-loop error dynamics becomes
e(k +1) = Ae(k) + B [W (k)$(z(k)) — vr (k) — e(k)] (25)
where ¢(z(k)) = —o(z(k)).

Assumption 3
The NN approximation error £(k) satisfies the following inequality

' (k)e(k) < em(k) = pre’ (k)e (k) (26)

where 8* is a bounded constant value such that ||8*|| < Bas.
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Remark 7

As stated in Section 3.1, the NN approximation error £(k) can be arbitrarily small as long as the num-
ber of the hidden layer node N is large enough. Meanwhile, from (25) (and subsequent Figure 2), we
know that (k) is closely linked with e (k). Hence, we can assume that £(k) lies in a small gain-type
norm-bounded conic sector [34], which satisfies the inequality (26). From a mathematical perspec-
tive, it is generally considered as a mild assumption in comparison with [22], which assumes that
(k) is bounded by a known positive constant. In addition, several literatures, such as [35-38], have
all assumed that the NN approximation errors satisfy (26).

With the aid of Remark 4, we know that A is a stable matrix. Accordingly, there exists a unique
positive definite matrix P € R™"*™" gatisfying the Lyapunov equation

A"PA—P = —nly, (27)

where 7 > 0 is a constant.
By using the same technique employed in [22, 27], we can present another assumption as follows:

Assumption 4
There exist two known positive constants T and p(t < p) such that

tl, < B"PB < pl,, (28)

Note that this assumption is always true given the specific form of B.

Through (25), one might find that the optimal tracking control problem is actually transformed
into the problem of designing a robust controller v, (k) and adaptive laws of the weights such that
the solution of (25) is uniformly convergent. Therefore, in the subsequent section, we focus on
designing such a controller and adaptive laws of the weights to solve the problem.

Prior to continuing the discussion, we give another remark here for explaining the principle of
designing the controller v, (k).

Remark 8

From (15), we know that the controller v, (k) is derived by solving a nonlinear equation. In gen-
eral, it is difficult to make sure whether there exists a solution of such an equation. However, from
Theorem 1, we know that there exists the solution v, (k) of (13) on @ (v.(k) is unique on ).
Hence, from (22) and (23), we shall find that based on the two-layer NN, the problem can be solved
well (Figure 1).

A general schematic diagram of the algorithm is developed in Figure 2 (v, (k) is to be detailed in
the subsequent theorem).

X(k)—> Neural

v, ()—> Network [ VLB (= h(x,0))

Figure 1. The principle for designing the controller v, (k).

v, (k)

yBTPAe(k) le——

e(k)

Y (k+n)

Nonaffine x(k) =Nt x (k)
" OYa

System

Ae(ky+y, (k+n)

>

Neural

P
Network [<7B PAe(k)
\

Figure 2. The schematic diagram of the control algorithm for nonaffine nonlinear systems.
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3.3. Weight updates for guaranteeing tracking performance

In order to guarantee tracking errors to be UAS, the PE assumption [39] is often employed. Never-
theless, it is rather difficult to verify the PE condition of the hidden layer output functions. In the
following theorem, a weight-tuning law is developed such that PE assumption is not required, and
uniform asymptotic stability of the tracking error can be derived.

Before presenting the main result of this section, we need to provide the following assump-
tion. This assumption is generally employed to derive the stability of closed-loop systems
[22-26, 35, 36].

Assumption 5

The output layer weight W is bounded over the compact set €2 by a known positive value Wy,
that is, | W| < Wps. Moreover, in light of the form of activation functions, there exists a constant
om > O such that ||o(z(k))|| < opm.

Theorem 2
Let Assumptions 1-5 hold. Take the control input for system (1) as in (4) with (7), (23), and the
robustifying term

vr(k) = yBTP Ae (k) (29)
where the gain y is a positive parameter. Let NN weight-tuning law be given by
Wk +1) = W (k) + 66 (k) (W ()P (k) — vy (k) — (k)| (30)

with 0 < 6 < 1. Then, W is bounded, and the tracking error e (k) is UAS, provided that the
following condition holds:

1— 602
ﬁTM<ys+‘M (31)

Proof
Define the Lyapunov function candidate as

L(k) = Li(k) + La(k) (32)
where
Ly(k) = e" (k) Pe(k).
_ 1 T
Ly(k) = y@tr (W (k)W(k))

For convenience, we denote V (k) = WT¢(z(k)) and §(k) = v, (k) + &(k). From (24) to (29), the
first difference of the Lyapunov function is derived as

ALi(k) =eT(k + 1)Pe(k + 1) — e (k) Pe (k)
= (Ae(k) + B(V(k) — S(k)))T P (Ae(k) + B(V(k) — 8(k))) — e" (k) Pe (k)
= (V(k) —8(k))" (B"PB) (V(k) — 8(k)) + 2¢"(k)A"P B(V(k) — 8(k))
+e"(k) (A"PA - P)e(k)
< p(V(k) — 8(k))"(V(k) — 8(k)) + 2¢T (k) A" P B(V (k) — 8(k)) — ne™ (k)e (k)
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and

AL, (k) = yietr (W (k + DW (k + 1) — W (k)W (k))

= VL@“ {(W(k) —0¢(z(k)(V(k) — S(k))T)T (W (k) — 0 (2 (k) (V (k) — 8(k))")
- WT(k)W(k)}

= %tf (09" (2 (k) (2 (k) (V (k) — (k) (V (k) — (k)T — 2V (k) (V (k) — 8(k))"]

= 2T EHNIG NV E) ~ STV h) = 3(5) =~ VTNV () 506

Noting AL(k) = AL (k) + AL,(k) and the definition of || - || and by using Assumption 5, we
obtain that

AL(k) < —ne™(k)e (k) — ; (VT(k) —yeT(k)A"PB) (V(k) — §(k))
6
+ (p T ;¢T(z(k)>¢(z(k>)) (V) = 80T (V(K) — 5(K))

< =l = 2 (V70 e @A P B) (V) - 5(0)
+ (o Sk ) 070 = 80006 - 56
Observing the definition of §(k), we derive that
ALY < —alle@I? = 2 (Vi) ~ 7B P Ae) (V) — v, 0)
2 ()~ BT Ae @) s+ (o S ) IV~ vr )2

2 (p + goﬁ) (V&) = v (R)elk) + (p + %oﬁl) T (e (k)

From Assumptions 3, (29), and (31) and by utilizing Cauchy—Schwarz Inequality, we obtain that
ALG) < =1l = (2= p= "oy ) [V =y BT P At
+2 (% —p— ga@) " (k) (V(k) — yB"P Ae(k))
+ (,0 + go@) e (k)e(k) 33)
< —alle@I? = < [V =y B P Ae(o) + =" (e
<= (n=22) 1o - - v~y P et

14
<0.

Equations (32) and (33) guarantee that both e (k) and W (k) are bounded, for L (k) is nonincreasing.
Summing both sides of (33) to infinity, we have that

oo
Bm 1 ~po e 2
) ((n PN oo + L v - yBTP A ) < L) - Lioo)
k=0 14 14
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Therefore, we obtain that

3 (n - ﬂTM) le®)I < L(0) = L(so) (34)

k=0

In view of the boundedness of L(0) — L(oc0), we can derive that the series, which is the left
side of (34), is convergent. By using the necessity of convergent series [28], we can obtain that

lim (n - f’—M) lle(k)[|? = 0. Thatis, lim |le (k)| = 0. Therefore, e (k) is UAS. O
k—o00 14 k—o00
Remark 9
From (25) and (30), we shall find that the weight-tuning rule can be derived as
Wk + 1) = W(k) + 0p(z(k)) (e(k + 1) — Ae(k)) B (35)

Because the NN approximation error &(k) in (30) is typically unknown, the weight updating law
(35) is often used to implement the developed algorithm.

4. NUMERICAL EXAMPLES

The purpose of this section is to verify the theoretical results. Two numerical examples are
presented here.

4.1. Example 1
Consider the nonaffine nonlinear DT system [40] described by

xi(k + 1) = x2(k)
x1(k)x2(k)(x1(k) +2.5)
1+ x2(k) + x3(k)
y(k) = x1(k)
where d (k) is the bounded external disturbance and has the following form:
d(k) = 0.1cos(0.001k)

From (36), we can derive that dF (x(k),u(k))/du(k) = 1 + 0.3u?(k). It is obvious that
dF (x(k),u(k))/du(k) # 0. Choose 2 = [—1,1] x [—1,1]. Because u(x(k)) is a continuous
function with respect to x(k), we can conclude that u(x(k)) is bounded on 2. Consequently,
oF (x(k),u(k))/du(k) is also bounded on 2.

The design parameters are listed as follows. Let A; = 1 and A, = 0.25 (i.e., 22 + 112 + A2
is stable). Meanwhile, we assume that « = 1.25,y = 0.1429,60 = 0.5,n = 1,8y = 0.125, and
p = 3.15. Let the tracking objective be y;(k) = 0.8sin(0.05k) and the initial system state be
x(0) = [0.50.5]T. Without loss of generality, the initial weight for the input layer to the hidden layer
is selected randomly within an interval of [0, 1] and held constant. The initial weight for the output
layer is selected randomly within an interval of [—0.2, 0.2]. Meanwhile, the hidden layer of the two-
layer NN has eight nodes, that is, the structure of the two-layer NN is 3—8-1. It is worth emphasizing
that the number of neurons required for any particular application is still an open problem. Selecting
the proper neurons for NNs is more of an art than a science [41]. In this example, the number of
neurons is obtained by computer simulations. We find that selecting eight neurons for the hidden
layer can lead to satisfactory simulation results.

In our illustration, we denote v(k) = u(x(k)). The computer simulation results are shown in
Figures 3-6. Figure 3 shows the trajectories of y(k) and y,4 (k). Figure 4 indicates the tracking
errors eo(k) and eq (k), which consist of the tracking error vector e (k). Figure 5 is used to illustrate
the control input v(k), and Figure 6 is employed to present the nonlinear function i (x (k), v(k))
and the NN output v, (k). By using Figures 3-6, we shall find that the proposed controller can
make the system output y (k) track the desired reference y; (k) rather well. The convergence of the

xa2(k +1) = +u(k) + 0.1u> (k) + d (k) (36)
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0 20 40 60 80 100 120 140 160 180
Time steps

Figure 3. Trajectories of y(k) and y4 (k) in Example 1.

60 80 100 120 140 160 180
Time steps

Figure 4. Tracking errors eo (k) and e (k) in Example 1.

90 20 40 60 80 100 120 140 160 180
Time steps

Figure 5. Control input v(k) in Example 1.

tracking errors is fast, and tracking errors are UAS. Meanwhile, it is also observed that the NN output
v (k) can approximate the nonlinear function 4 (x (k), v(k)) very well. Furthermore, it is significant
to note that the number of iterative steps in our example is much less than the method proposed
in [40].
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vl ]
- = hedk)

0 éO 40 éO 50 160 1é0 1;10 1&50 180
Time steps

Figure 6. h(x(k), v(k)) and NN output v. (k) in Example 1.

4.2. Example 2
Consider the MIMO nonaffine nonlinear DT system described by

x11(k + 1) = x21(k)
x12(k + 1) = x22(k)
x21(k + 1) = 0.4x55(k) — 0.1 cos(x21(k)) — 0.15sin(x12(k)) + 0.2u (k) — 0.1 tanh(u, (k))
X22(k + 1) = 0.1x11 (k) — 0.3 sin? (x22 (k))u1 (k) + 0.2u» (k)
y1(k) = x11(k)
y2(k) = x12(k) (37
where x1(k) = [x11(k) x12(k)]", x2(k) = [x21(k) x22(k)]", u(k) = [u1(k) u2(k)]", and y(k) =
[y1(k) y2 (k)]
The control objective is to control the system output y (k) to track the prescribed trajectory

ya (k) = [2.6sin(kw/200) 3 cos(k/180)]"

Choose Q = [—3,3] x [-3, 3]. By using (37), we know that dF (x(k),u(k))/0u(k) is a positive
definite matrix. Meanwhile, it is easy to derive that

0.017> < F (x(k), u(k))/du(k) < 0.041,.

5 T
- - =y
2 : o !
4t P Y14
3 1 pre s
SN 'lin"-’ 7N
2p /ot [
/ i /
b \ 20../.40. ..\ .60 80/
{ \ / \ /
0 I L ] % {
\ / \ /
—1F \ "’ \ [ /
\ / / ;
2t /
-3 i i i i i ]
0 200 400 600 800 1000 1200
Time steps

Figure 7. Trajectories of yq (k) and y14 (k) in Example 2.
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T
Yaal®) 4

-4

0 200 400 600 800 1000 1200
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Figure 8. Trajectories of y»(k) and y»4 (k) in Example 2.

4
05 D)
3+ i
0 e,
2F — = e,k
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-3 i i i i i
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Figure 9. Tracking errors ¢;; (k)(i = 0,1; j = 1,2) in Example 2.

40

- K

30 v,(K) | 4

0 260 460 660 860 1 600 1200
Time steps

Figure 10. Control input v (k) in Example 2.

The design parameters are selected as follows. Let A; = 1 and A, = 0.25 (i.e., 22 + 212 + A2
is stable). Meanwhile, we choose that @ = 2,y = 0.1429,0 = 0.5,n = 1,8p = 0.125, and
p = 3.15. The initial system state is selected to be xo = [0.950.310.950.31]T. Without loss of
generality, the method of selecting initial weights is the same as Example 1. The hidden layer of the
NN has 28 nodes, that is, the structure of the two-layer NN is 6-28-2. It should be mentioned that
the number of neurons is derived by computer simulations. In this example, we find that selecting
28 neurons for the hidden layer can lead to satisfactory simulation results.
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Figure 11. h1(x(k), v(k)) and NN output v.1 (k) in Example 2.
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Figure 12. hz(x(k), v(k)) and NN output v.2 (k) in Example 2.

In our illustration, we denote v(k) = u(x(k)) and v(k) = [v; (k) v2(k)]T. The computer simu-
lation results are shown in Figures 7-12. Figures 7 and 8 indicate the trajectories of y;(k), y14 (k)
and y,(k), y24(k), respectively. Figure 9 shows the tracking errors e;; (k)(i = 0,1;j = 1,2),
which consist of the tracking error vector e (k). As a matter of fact, the tracking error vector e (k) is
composed of e; (k)(i = 0, 1), and each e; (k) contains subelements e;; (k) and e;, (k). Figure 10 is
employed to present the control input v; (k)(i = 1,2), which consists of the control vector v (k). Let
hi(x(k),v(k))(i = 1,2) be the subelements of the vector-valued nonlinear function A(x (k), v(k)),
that is, h(x(k),v(k)) = [h1(x(k),v(k)) ha(x(k), v(k))]", and ve; (k)(i = 1,2) be the subele-
ments of the NN output v, (k), that is, ve(k) = [ve1 (k) vea(k)]T. Figures 11 and 12 are used to
show K1 (x(k),v(k)), ve1(k), and hy(x(k), v(k)), vea(k), respectively. From the aforementioned
simulation results (Figures 7—12), it is observed that the system output y(k) can track the desired
trajectory yg (k) very well. Meanwhile, the tracking errors are UAS, and the convergence of the
tracking error is very fast. Moreover, it is also observed that the NN output v, (k) can approximate
the nonlinear function A (x (k), v(k)) rather well.

5. CONCLUSION

In this paper, an NN-based direct adaptive control has been investigated for a class of unknown
MIMO nonaffine nonlinear DT systems. In order to utilize feedback linearization methods, the con-
troller is divided into three parts: the first part is to stabilize linearized dynamics, the second part
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is to cancel the nonlinearity of unknown nonlinear DT plants through the design of NNs, and the
third part is the robustness term. By using Implicit Function Theorem, the output of two-layer NN
is guaranteed to approximate the unknown nonlinear function very well. Pretraining is not required
here, and the weights of the NNs used in adaptive control are directly updated online. By designing
such a controller and without the PE assumption, the tracking error of the output of the closed-loop
system is guaranteed to be UAS based on Lyapunov’s method. In our future work, we shall focus on
how to design an optimal controller for nonaffine nonlinear DT systems.
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